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Abstract 

In this research paper, a new derivative-free Simpson 1/3-type quadrature 

scheme has been proposed for the approximation of the Riemann-Stieltjes integral 

(RSI). The composite form of the proposed scheme on the RSI has been derived using 

the concept of precision. The theorems concerning basic form, composite form, local 

and global errors of the new scheme have been proved theoretically. For the trivial 

case of the integrator in the proposed RS scheme, successful reduction to the 

corresponding Riemann scheme is proved. The performance of the proposed scheme 

has been tested by numerical experiments using MATLAB on some test problems of 

RS integrals from literature against some existing schemes. The computational cost, 

the order of accuracy and average CPU times (in seconds) of the discussed rules 

have been computed to demonstrate cost-effectiveness, time-efficiency and rapid 

convergence of the proposed scheme under similar conditions. 

Keywords: Quadrature rule, Riemann-Stieltjes, Simpson’s 1/3 rule, Composite 

form, Local error, Global error, Cost-effectiveness, Time-efficiency 

I.    Introduction 

In numerical integration, the approximate computation of a definite integral is 

the basic problem and this approximate value is known as the area of function under 

the curve which is used in engineering applications. Definite integral I(f ) =∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 

cannot be solved analytically, e.g. for the integrands f(x) = – 𝑒𝑥2
and f(x) = 𝑠𝑖𝑛 𝑥2. 

Numerical evaluation of definite integral I(f ) is known as numerical integration or 

quadrature. Quadrature rules are commonly based on polynomial interpolation. Most 

of the authors studied and used quadrature rules to approximate the classical Riemann 
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integral. However, few authors used quadrature rules to approximate the RSI. 

Riemann-Stieltjes integral is an extension of Riemann integral. Suppose that f(x) is a 

real-valued function and bounded on [a, b] and α is a monotonically increasing 

function on [a, b], then RSI is defined [IV] as 

𝑅𝑆(𝑓(𝑥): 𝛼; 𝑎, 𝑏) = ∫ 𝑓(𝑥)𝑑𝛼(𝑥)
𝑏

𝑎
           (1) 

where f(x) is integrand and α(x) is integrator. 

Several applications have been used in numerical evaluation of RSI such as Statistics 

and probability theory, Complex analysis, Functional analysis, Operator theory and 

others. Much work in the literature has been devoted to improving quadrature 

approximations of the Riemann integral, to mention a few [XIV]-[II] and related 

extension for integral equations [XIV]. Meanwhile, recently some efficient numerical 

integration schemes for Riemann integral with standard error analysis were promoted 

for numerical cubature and simulation of switched reluctance machines [V], [VII]. 

In this regard, the quadrature rules for the RSI are focused on a 

few works in literature. In 2008, Mercer [VIII] proposed a trapezoidal rule for the 

RSI without numerical test and derived Hadamard integral inequality. In 2012, 

Mercer [IX] used the idea of relative convexity and just discussed the inequalities in 

the midpoint scheme and Simpson's scheme on the RSI. In 2013, Zhao et al [XVIII] 

introduced a new family of closed Newton-Cotes quadrature with a Midpoint 

derivative. 

In 2014, Zhao et al. [XIX] presented the midpoint derivative-based trapezoid-type 

scheme for the RSI without numerical verification in which midpoint is used for the 

evaluation of function derivative. In 2015, Zhao et al. [XVIII] presented a composite 

trapezoidal rule for the RSI without numerical verification. Memon et al. [VI] 

proposed a derivative-based trapezoidal rule for the RSI with some numerical 

examples.        

In this research, a new Simpson’s 1/3-type scheme for the RSI is derived in basic and 

composite forms. The theoretical error analysis and consequent verification on some 

test problems are presented to demonstrate cost-effectiveness, time efficiency and 

rapid convergence of the proposed scheme. 

II.   General Formulation of Quadrature Rules for the Riemann Integral 

The general integration formula to evaluate a definite integral over a finite 

interval    [a, b] is described in [II],[III] as follows:  

  𝐼(𝑓; 𝑎, 𝑏) = ∫ 𝑓(𝑥)𝑑𝑥 ≈ ∑ 𝑤𝑖𝑓(𝑥𝑖)
𝑛
𝑖=0

𝑏

𝑎
                (2)                                                                                                        

Where n + 1 has different integration points at x0, x1,…, xn within the interval 

[a, b] and n+1 weights wi, i = 0, 1, 2,..., n. If the integration points are divided equally 

over the interval, then  

xi = a+ih, where ℎ =
𝑏−𝑎

𝑛
. 

The closed quadrature formula of Newton-Cotes for evaluating a definite 

integral over [a, b] is defined as:      

  𝐼(𝑓; 𝑎, 𝑏) = ∫ 𝑓(𝑥)𝑑𝑥
𝑥𝑛

𝑥0
≈ ∑ 𝑤𝑖𝑓(𝑥0 + 𝑖ℎ)𝑛

𝑖=0                           (3) 
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There are several ways to determine the weighting coefficients wi‘s in equation (3). 

A common approach depends on the precision of a quadrature formula where the 

constants w0, w1, …, wn are chosen so that the approximation error in equation (3)  

becomes zero, i.e. 

𝐸(𝑓) = ∫ 𝑓(𝑥)𝑑𝑥 − ∑ 𝑤𝑖𝑓(𝑥𝑖)
𝑛
𝑖=0 = 0

𝑏

𝑎
                                       (4) 

where f (x) = 𝑥𝑗, j = 0, 1, 2, …, n. 

Definition 1. The largest positive integer n for which quadrature rule has exact 

value for all polynomials of degree less than or equal to n is known as the degree of 

precision.    

Definition 2. The order of leading error terms in a method is known as the order of 

accuracy of a quadrature rule. 

Definition 3. The local error term of a quadrature rule with precision p is defined as 

𝑅[𝑓] = 𝐶(𝑏 − 𝑎)𝑝+2𝑓(𝑝+1)(𝜉),  where 𝜉 ∈ (𝑎, 𝑏).                      (5) 

where C is constant and p + 2 is the order of accuracy of a quadrature rule.   

Definition 4. The global error term of a quadrature rule with precision p is defined as 

𝑅[𝑓] = 𝐷(𝑏 − 𝑎)ℎ𝑝+1𝑓(𝑝+1)(𝜇), where 𝜇 ∈ (𝑎, 𝑏).                       (6) 

where D is constant and p + 1 is the order of accuracy of a quadrature rule.   

Some well-known closed Newton-Cotes quadrature formulas for the classical 

Riemann integral  in the basic form [XIV],[II] are: 

Trapezoidal rule : 

∫ 𝑓(𝑥)𝑑𝑥 = 𝑇 =
𝑏−𝑎

2
(𝑓(𝑎) + 𝑓(𝑏)) −

(𝑏−𝑎)3

12
𝑓′′(𝜉),

𝑏

𝑎
                                (7) 

where 𝜉 ∈ (𝑎, 𝑏). 

The Trapezoidal rule provides an exact answer for all polynomials whose degree one 

or less, so its precision is 1, and the order of accuracy is 3. 

Simpson’s 1/3 rule: 

∫ 𝑓(𝑥)𝑑𝑥 = 𝑆13 =
𝑏−𝑎

6
[𝑓(𝑎) + 4𝑓 (

𝑎+𝑏

2
) + 𝑓(𝑏)] −

(𝑏−𝑎)5

2880
𝑓4(𝜉),

𝑏

𝑎
         (8) 

where 𝜉 ∈ (𝑎, 𝑏). 

The Simpson’s 1/3 rule provides an exact answer for all polynomials whose 

degree three or less, so its precision is 3 and order of accuracy is 5. 
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Simpson’s 3/8 rule: 

∫ 𝑓(𝑥)𝑑𝑥 = 𝑆38 =
𝑏−𝑎

8
[𝑓(𝑎) + 3𝑓 (

2𝑎+𝑏

3
) + 3𝑓 (

𝑎+2𝑏

3
) + 𝑓(𝑏)] −

(𝑏−𝑎)5

6480
𝑓4(𝜉),

𝑏

𝑎
       (9) 

where 𝜉 ∈ (𝑎, 𝑏). 

The Simpson’s 3/8 rule provides an exact answer for all polynomials whose degree 

three or less, so its precision is 3 and order of accuracy is 5. 

Some well-known closed Newton-Cotes quadrature formulas for the classical 

Riemann integral in the composite form [XIV],[XVIII] are: 

Trapezoidal rule: 

∫ 𝑓(𝑥)𝑑𝑥 = 𝐶𝑇 =
ℎ

2
[𝑓(𝑎) + 2∑ 𝑓(𝑥𝑖)

𝑛−1
𝑖=1 + 𝑓(𝑏)] −

(𝑏−𝑎)ℎ2

12
𝑓(2)(𝜇),

𝑏

𝑎
    (10) 

where 𝜇 ∈ (𝑎, 𝑏). 

The Trapezoidal rule provides an exact answer for all polynomials whose degree one 

or less, so its precision is 1, and the order of accuracy is 2. 

Simpson’s 1/3 rule:  

∫ 𝑓(𝑥)𝑑𝑥 = 𝐶𝑆13 =
ℎ

3
[

𝑓(𝑎) + 2∑ 𝑓(𝑥2𝑖)
(
𝑛

2
)−1

𝑖=1

+4∑ 𝑓(𝑥2𝑖−1)
𝑛

2

𝑖=1
+ 𝑓(𝑏)

]
𝑏

𝑎
−

(𝑏−𝑎)ℎ4

180
𝑓(4)(𝜇),     (11) 

where 𝜇 ∈ (𝑎, 𝑏). 

The Simpson’s 1/3 rule provides an exact answer for all polynomials whose degree 

three or less, so its precision is 3 and order of accuracy is 4. 

Simpson’s 3/8 rule: 

∫ 𝑓(𝑥)𝑑𝑥 = 𝐶𝑆38 =
3ℎ

8
[
𝑓(𝑎) + 3∑ (𝑓(𝑥𝑖) + 𝑓(𝑥𝑖+1))

𝑛−2
𝑖=1

+2∑ 𝑓(𝑥𝑖)
𝑛−3
𝑖=3 + 𝑓(𝑏)

] −
(𝑏−𝑎)ℎ4

80
𝑓(4)(𝜇),

𝑏

𝑎
        (12) 

where 𝜇 ∈ (𝑎, 𝑏). 

The Simpson’s 3/8 rule provides an exact answer for all polynomials whose degree 

three or less, so its precision is 3 and order of accuracy is 4.  

III.     Proposed Simpson’s 1/3 Scheme for the Riemann-Stieltjes Integral 

The proposed Simpson’s 1/3 scheme for the RSI in basic form is given in Theorem 1.  

Theorem 1. Let f(t) and g(t) be continuous on [a, b] and g(t) be increasing there. The  

Simpson’s 1/3 scheme for the RSI can be described as  

∫ 𝑓(𝑡)𝑑𝑔 ≈ 𝑆13 = (
4

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑏

𝑎
−

1

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑎
− 𝑔(𝑎)) 𝑓(𝑎)

𝑏

𝑎
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+(
4

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑎
−

8

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑏

𝑎
) 𝑓 (

𝑎+𝑏

2
)  

+(𝑔(𝑏) −
3

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑎
+

4

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑏

𝑎
) 𝑓(𝑏).      (13) 

Proof of Theorem 1. 

Looking for the Simpson’s 1/3 scheme for the RSI, we find a0, b0,
 c0 such that: 

∫ 𝑓(𝑡)𝑑𝑔 ≈ 𝑎0𝑓(𝑎) + 𝑏0𝑓 (
𝑎+𝑏

2
) + 𝑐0𝑓(𝑏)

𝑏

𝑎
                                           (A) 

is exact for f (t) = 1, t, t2, t3. That is, 

∫ 1𝑑𝑔 = 𝑎0 + 𝑏0 + 𝑐0
𝑏

𝑎
   

∫ 𝑡𝑑𝑔 = 𝑎0𝑎 + 𝑏0 (
𝑎+𝑏

2
) + 𝑐0𝑏

𝑏

𝑎
  

∫ 𝑡2𝑑𝑔 = 𝑎0𝑎
2 + 𝑏0 (

𝑎+𝑏

2
)
2
+ 𝑐0𝑏

2𝑏

𝑎
  

∫ 𝑡3𝑑𝑔 = 𝑎0𝑎
3 + 𝑏0 (

𝑎+𝑏

2
)
3
+ 𝑐0𝑏

3𝑏

𝑎
  

By using integration by parts of the RS integral, as in [XIX], we have the following 

system of equations (B)-(E).  

𝑎0 + 𝑏0 + 𝑐0 = 𝑔(𝑏) − 𝑔(𝑎)                                                                      (B) 

𝑎0𝑎 + 𝑏0 (
𝑎+𝑏

2
) + 𝑐0𝑏 = 𝑏𝑔(𝑏) − 𝑎𝑔(𝑎) − ∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑎
                              (C) 

𝑎0𝑎
2 + 𝑏0 (

𝑎+𝑏

2
)
2
+ 𝑐0𝑏

2 = 𝑏2𝑔(𝑏) − 𝑎2𝑔(𝑎) − 2𝑏 ∫ 𝑔(𝑡)𝑑𝑡
𝑏

𝑎
+ 2∫ ∫ 𝑔(𝑥)𝑑𝑥

𝑡

𝑎

𝑏

𝑎
𝑑𝑡      (D) 

𝑎0𝑎
3 + 𝑏0 (

𝑎 + 𝑏

2
)
3

+ 𝑐0𝑏
3 = 𝑏3𝑔(𝑏) − 𝑎3𝑔(𝑎) − 3𝑏2 ∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑎

 

+6𝑏 ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡
𝑡

𝑎

𝑏

𝑎
− 6∫ ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑦

𝑎

𝑡

𝑎

𝑏

𝑎
                                    (E) 

The coefficient matrix of the system of linear equations (B)-(E) can be written as M 

and MR is its reduced echelon form. 

  𝑀 =

[
 
 
 
 
 
1   1   1

𝑎
𝑎+𝑏

2
 𝑏

𝑎2 (
𝑎+𝑏

2
)

2

𝑏2

𝑎3 (
𝑎+𝑏

2
)

3

𝑏3
]
 
 
 
 
 

,   𝑀 ≈
𝑅

𝑀𝑅 = [

1   0   0
0   1   0
0   0   1
0   0   0

] 

As in MR, the first three rows are nonzero rows, so M has three linearly independent 

rows, and rank(M) = 3. To find the coefficients a0, b0 and c0, we solve equations (B), 

(C) and (D) simultaneously, to have:  

𝑎0 =
4

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑏

𝑎

𝑏
−

1

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡 − 𝑔(𝑎)

𝑎

𝑏
,  

𝑏0 =
4

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑎

𝑏
−

8

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑏

𝑎

𝑏
,  
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𝑐0 = 𝑔(𝑏) −
3

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡 +

4

(𝑏−𝑎)2
𝑎

𝑏 ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡
𝑡

𝑏

𝑎

𝑏
.  

Putting the values of coefficients a0, b0 and c0 in (A), we have:   

∫ 𝑓(𝑡)𝑑𝑔 ≈ 𝑆13 = (
4

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑏

𝑎
−

1

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑎
− 𝑔(𝑎)) 𝑓(𝑎)

𝑏

𝑎

  +(
4

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑎
−

8

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑏

𝑎
) 𝑓 (

𝑎+𝑏

2
)  

+(𝑔(𝑏) −
3

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑎
+

4

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑏

𝑎
) 𝑓(𝑏).  

which is the same as (13), and the precision of this scheme is 3.  

The local error term of proposed Simpson’s 1/3 scheme using the concept of 

precision is derived in Theorem 2 and the reduction for the classical Riemann integral 

is discussed in Theorem 3. 

Theorem 2. Let f(t) and g(t) be continuous on [a, b] and g(t) be increasing there. The  

Simpson’s 1/3 scheme for the RSI with local error term can be described as 

∫ 𝑓(𝑡)𝑑𝑔 = 𝑆13 + RS13[f] = (

4

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑏

𝑎

−
1

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑎
− 𝑔(𝑎)

)𝑓(𝑎)
𝑏

𝑎
    

+(
4

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑎
−

8

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑏

𝑎
) 𝑓 (

𝑎+𝑏

2
)  

+(𝑔(𝑏) −
3

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑎
+

4

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑏

𝑎
) 𝑓(𝑏)  

+(
−(𝑎−𝑏)2(3𝑎+5𝑏)

96
∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑎
+

17𝑏2−10𝑎𝑏−7𝑎2

48
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑏

𝑎
  

−𝑏 ∫ ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑦
𝑦

𝑎
𝑑𝑡 +

𝑡

𝑎

𝑏

𝑎 ∫ ∫ ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑦
𝑦

𝑎
𝑑𝑧

𝑧

𝑎
𝑑𝑡

𝑡

𝑎

𝑏

𝑎
) 𝑓(4)(𝜇)𝑔′(𝜂)   (14)  

𝑤ℎ𝑒𝑟𝑒𝜇, 𝜂 ∈ (𝑎, 𝑏).     

Proof of Theorem 2. 

The precision of Simpson’s 3/8 scheme for RSI is 3. Let 𝑓(𝑡) =
𝑡4

4!
 .   

So the local error term of Simpson’s 1/3 scheme (13) for RSI is determined by 

RS13[f] = 
1

4!
∫ 𝑡4𝑑𝑔 − 𝑆13

𝑏

𝑎
                                                                           (15) 

 From [8], we know that 

1

4!
∫ 𝑡4𝑑𝑔 =

1

24
(𝑏4𝑔(𝑏) − 𝑎4𝑔(𝑎)) −

𝑏3

6
∫ 𝑔(𝑡)𝑑𝑡 +

𝑏2

2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑏

𝑎

𝑏

𝑎

𝑏

𝑎

 

−𝑏 ∫ ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑦𝑑𝑡 +
𝑦

𝑎

𝑡

𝑎

𝑏

𝑎 ∫ ∫ ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑦𝑑𝑧𝑑𝑡
𝑦

𝑎

𝑧

𝑎

𝑡

𝑎

𝑏

𝑎
       (16) 
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By Theorem 1 and scheme (13), we have:  

𝑆13(𝑡4; 𝑔; 𝑎, 𝑏) = (
4

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑏

𝑎
−

1

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑎
− 𝑔(𝑎))

𝑎4

4!
  

+(
4

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑎
−

8

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑏

𝑎
)

(𝑎+𝑏)4

24.4!
  

+(𝑔(𝑏) −
3

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑎
+

4

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑏

𝑎
)

𝑏4

4!
        (17) 

Using (16) and (17) in (15), we have: 

 𝑅𝑆13[𝑓] = (
−(𝑎−𝑏)2(3𝑎+5𝑏)

96
∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑎
+

17𝑏2−10𝑎𝑏−7𝑎2

48
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑏

𝑎
 

−𝑏 ∫ ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑦
𝑦

𝑎
𝑑𝑡 +

𝑡

𝑎

𝑏

𝑎 ∫ ∫ ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑦
𝑦

𝑎
𝑑𝑧

𝑧

𝑎
𝑑𝑡

𝑡

𝑎

𝑏

𝑎
) 𝑓(4)(𝜇)𝑔′(𝜂) (18) 

This is the required local error term of the proposed S13 scheme for RS-integral.  

Theorem 3. With g(t) = t, the proposed S13 scheme with the error term (14) for the 

RS-integral reduces to the corresponding S13 scheme (see [II]) i.e. (8) for the 

classical Riemann integral.   

Proof of Theorem 3.  

By Theorem 2, we have 

∫ 𝑓(𝑡)𝑑𝑔 = ∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎
= (

4

(𝑏−𝑎)2
∫ ∫ 𝑥𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑏

𝑎
−

1

𝑏−𝑎
∫ 𝑡𝑑𝑡

𝑏

𝑎
− 𝑔(𝑎)) 𝑓(𝑎)

𝑏

𝑎
  

+(
4

𝑏−𝑎
∫ 𝑡𝑑𝑡

𝑏

𝑎
−

8

(𝑏−𝑎)2
∫ ∫ 𝑥𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑏

𝑎
) 𝑓 (

𝑎+𝑏

2
)  

+(𝑔(𝑏) −
3

𝑏−𝑎
∫ 𝑡𝑑𝑡

𝑏

𝑎
+

4

(𝑏−𝑎)2
∫ ∫ 𝑥𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑏

𝑎
) 𝑓(𝑏)  

+(
−(𝑎−𝑏)2(3𝑎+5𝑏)

96
∫ 𝑡𝑑𝑡

𝑏

𝑎
+

17𝑏2−10𝑎𝑏−7𝑎2

48
∫ ∫ 𝑥𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑏

𝑎
  

−𝑏 ∫ ∫ ∫ 𝑥𝑑𝑥𝑑𝑦
𝑦

𝑎
𝑑𝑡 +

𝑡

𝑎

𝑏

𝑎 ∫ ∫ ∫ ∫ 𝑥𝑑𝑥𝑑𝑦
𝑦

𝑎
𝑑𝑧

𝑧

𝑎
𝑑𝑡

𝑡

𝑎

𝑏

𝑎
) 𝑓(4)(𝜇)𝑔′(𝜂)   (19) 

It is easy to obtain:  

∫ 𝑡𝑑𝑡
𝑏

𝑎

=
𝑏2 − 𝑎2

2
, 

∫ ∫ 𝑥𝑑𝑥𝑑𝑡
𝑡

𝑎

𝑏

𝑎

=
𝑏3

6
−

𝑎2𝑏

2
+

𝑎3

3
, 

∫ ∫ ∫ 𝑥𝑑𝑥𝑑𝑦
𝑦

𝑎

𝑑𝑡
𝑡

𝑎

𝑏

𝑎

=
𝑏4

24
−

𝑎2𝑏2

4
+

𝑎3𝑏

3
−

𝑎4

8
, 

∫ ∫ ∫ ∫ 𝑥𝑑𝑥𝑑𝑦
𝑦

𝑎

𝑑𝑧
𝑧

𝑎

𝑑𝑡
𝑡

𝑎

𝑏

𝑎

=
𝑏5

120
−

𝑎2𝑏3

12
+

𝑎3𝑏2

6
−

𝑎4𝑏

8
+

𝑎5

30
, 

and, using these in (19), we finally get: 

∫ 𝑓(𝑥)𝑑𝑥 =
𝑏−𝑎

6
[𝑓(𝑎) + 4𝑓 (

𝑎+𝑏

2
) + 𝑓(𝑏)] −

(𝑏−𝑎)5

2880
𝑓(4)(𝜉),

𝑏

𝑎
            (20) 



 

 

 

 

 

 

J. Mech. Cont.& Math. Sci., Vol.-15, No.-11, November (2020) pp 132-148 

Kashif Memon et al 

 

 

139 

 

where 𝜉 ∈ (𝑎, 𝑏), which shows the reducibility of the proposed S13 scheme to the 

classical Riemann integral form (8).  

Now, the proposed composite Simpson’s 1/3 scheme for the RSI integral is 

derived by dividing the interval into small subintervals and applying the integration 

rule to each subinterval, and the results are showcased in Theorem 4. 

Theorem 4. Let f(t) and g(t) be continuous on [a, b] and g(t) be increasing there. Let 

the interval [a, b] be subdivided into 2n subintervals [xk, xk+1] with width h = 
𝑏−𝑎

𝑛
 by 

using the equally spaced nodes xk = a+kh, where k = 0, 1, …, n. The composite 

Simpson’s 1/3 scheme to 2n subintervals  for the RSI can be described as 

∫ 𝑓(𝑡)𝑑𝑔 ≈ 𝐶𝑆13 = [
4𝑛2

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡 −

𝑛

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑥1

𝑎
− 𝑔(𝑎)

𝑡

𝑎

𝑥1

𝑎
] 𝑓(𝑎)

𝑏

𝑎

  

+
4𝑛

𝑏−𝑎
∑ [∫ 𝑔(𝑡)𝑑𝑡 −

2𝑛

𝑏−𝑎
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥𝑘−1

𝑥𝑘

𝑥𝑘−1

𝑥𝑘

𝑥𝑘−1
]𝑛

𝑘=1 𝑓 (
𝑥𝑘−1+𝑥𝑘

2
)  

+
𝑛

𝑏−𝑎
∑ [

4𝑛

𝑏−𝑎
{∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥𝑘−1
+

𝑥𝑘

𝑥𝑘−1
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥𝑘

𝑥𝑘+1

𝑥𝑘
}

− {3∫ 𝑔(𝑡)𝑑𝑡 + ∫ 𝑔(𝑡)𝑑𝑡
𝑥𝑘+1

𝑥𝑘

𝑥𝑘

𝑥𝑘−1
}

]𝑛−1
𝑘=1 𝑓(𝑥𝑘)  

+[𝑔(𝑏) −
3𝑛

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑥𝑛−1
+

4𝑛2

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥𝑛−1

𝑏

𝑥𝑛−1
] 𝑓(𝑏)  (21) 

Proof of Theorem 4.  

By (13), the Simpson’s scheme 1/3 for RSI integral is 

∫ 𝑓(𝑡)𝑑𝑔 ≈ (
4

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑏

𝑎
−

1

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑎
− 𝑔(𝑎)) 𝑓(𝑎)

𝑏

𝑎
  

+(
4

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑎
−

8

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑏

𝑎
) 𝑓 (

𝑎+𝑏

2
)  

+(𝑔(𝑏) −
3

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑎
+

4

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑏

𝑎
) 𝑓(𝑏).      (22)      

Applying rule on (22) over each subinterval, we have 

∫ 𝑓(𝑡)𝑑𝑔 ≈ [
4

(
𝑏−𝑎

𝑛
)
2 ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑥1

𝑎
−

1
𝑏−𝑎

𝑛

∫ 𝑔(𝑡)𝑑𝑡
𝑥1

𝑎
− 𝑔(𝑎)] 𝑓(𝑎)

𝑏

𝑎
  

+[
4

𝑏−𝑎

𝑛

∫ 𝑔(𝑡)𝑑𝑡
𝑥1

𝑎
−

8

(
𝑏−𝑎

𝑛
)
2 ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑥1

𝑎
] 𝑓 (

𝑎+𝑥1

2
)  

+[𝑔(𝑥1) −
3

𝑏−𝑎

𝑛

∫ 𝑔(𝑡)𝑑𝑡
𝑥1

𝑎
+

4

(
𝑏−𝑎

𝑛
)
2 ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑥1

𝑎
] 𝑓(𝑥1)  

+. . . + [
4

(
𝑏−𝑎

𝑛
)
2 ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥𝑘−1

𝑥𝑘

𝑥𝑘−1
−

1
𝑏−𝑎

𝑛

∫ 𝑔(𝑡)𝑑𝑡
𝑥𝑘

𝑥𝑘−1
− 𝑔(𝑥𝑘−1)] 𝑓(𝑥𝑘−1)  
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+[
4

𝑏−𝑎

𝑛

∫ 𝑔(𝑡)𝑑𝑡
𝑥𝑘

𝑥𝑘−1
−

8

(
𝑏−𝑎

𝑛
)
2 ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥𝑘−1

𝑥𝑘

𝑥𝑘−1
] 𝑓 (

𝑥𝑘−1+𝑥𝑘

2
)  

+[𝑔(𝑥𝑘) −
3

𝑏−𝑎

𝑛

∫ 𝑔(𝑡)𝑑𝑡
𝑥𝑘

𝑥𝑘−1
+

4

(
𝑏−𝑎

𝑛
)
2 ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥𝑘−1

𝑥𝑘

𝑥𝑘−1
] 𝑓(𝑥𝑘)  

+. . . + [
4

(
𝑏−𝑎

𝑛
)
2 ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥𝑛−1

𝑏

𝑥𝑛−1
−

1
𝑏−𝑎

𝑛

∫ 𝑔(𝑡)𝑑𝑡
𝑏

𝑥𝑛−1
− 𝑔(𝑥𝑛−1)] 𝑓(𝑥𝑛−1)  

+[
4

𝑏−𝑎

𝑛

∫ 𝑔(𝑡)𝑑𝑡
𝑏

𝑥𝑛−1
−

8

(
𝑏−𝑎

𝑛
)
2 ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥𝑛−1

𝑏

𝑥𝑛−1
] 𝑓 (

𝑥𝑛−1+𝑏

2
)  

+[𝑔(𝑏) −
3

𝑏−𝑎

𝑛

∫ 𝑔(𝑡)𝑑𝑡
𝑏

𝑥𝑛−1
+

4

(
𝑏−𝑎

𝑛
)
2 ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥𝑛−1

𝑏

𝑥𝑛−1
] 𝑓(𝑏)  

= [
4𝑛2

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑥1

𝑎
−

𝑛

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑥1

𝑎
− 𝑔(𝑎)] 𝑓(𝑎)  

+[
4𝑛

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑥1

𝑎
−

8𝑛2

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑥1

𝑎
] 𝑓 (

𝑎+𝑥1

2
)  

+[
4𝑛

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑥2

𝑥1
−

8𝑛2

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥1

𝑥2

𝑥1
] 𝑓 (

𝑥1+𝑥2

2
)  

+[
4𝑛

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑥𝑘

𝑥𝑘−1
−

8𝑛2

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥𝑘−1

𝑥𝑘

𝑥𝑘−1
] 𝑓 (

𝑥𝑘−1+𝑥𝑘

2
)  

+[
4𝑛

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑥𝑛−1
−

8𝑛2

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥𝑛−1

𝑏

𝑥𝑛−1
] 𝑓 (

𝑥𝑛−1+𝑏

2
)  

+[

4𝑛2

(𝑏−𝑎)2
(∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑥1

𝑎
+ ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥1

𝑥2

𝑥1
)

−
𝑛

𝑏−𝑎
(3∫ 𝑔(𝑡)𝑑𝑡

𝑥1

𝑎
+ ∫ 𝑔(𝑡)𝑑𝑡

𝑥2

𝑥1
)

] 𝑓(𝑥1)  

+[

4𝑛2

(𝑏−𝑎)2
(∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥1

𝑥2

𝑥1
+ ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥2

𝑥3

𝑥2
)

−
𝑛

𝑏−𝑎
(3∫ 𝑔(𝑡)𝑑𝑡

𝑥2

𝑥1
+ ∫ 𝑔(𝑡)𝑑𝑡

𝑥3

𝑥2
)

] 𝑓(𝑥2)  

+. . . 

+[

4𝑛2

(𝑏−𝑎)2
(∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥𝑛−1

𝑥𝑛

𝑥𝑛−1
+ ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥𝑛

𝑥𝑛+1

𝑥𝑛
)

−
𝑛

𝑏−𝑎
(3∫ 𝑔(𝑡)𝑑𝑡

𝑥𝑛

𝑥𝑛−1
+ ∫ 𝑔(𝑡)𝑑𝑡

𝑥𝑛+1

𝑥𝑛
)

] 𝑓(𝑥𝑛)                   

     +[𝑔(𝑏) −
3𝑛

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑥𝑛−1
+

4𝑛2

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥𝑛−1

𝑏

𝑥𝑛−1
] 𝑓(𝑏) 

= [
4𝑛2

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑎

𝑥1

𝑎
−

𝑛

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑥1

𝑎
− 𝑔(𝑎)] 𝑓(𝑎)  

  +
4𝑛

𝑏−𝑎
∑ [∫ 𝑔(𝑡)𝑑𝑡

𝑥𝑘

𝑥𝑘−1
−

2𝑛

𝑏−𝑎
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥𝑘−1

𝑥𝑘

𝑥𝑘−1
]𝑛

𝑘=1 𝑓 (
𝑥𝑘−1+𝑥𝑘

2
)  

+
𝑛

𝑏−𝑎
∑ [

4𝑛

𝑏−𝑎
(∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥𝑘−1

𝑥𝑘

𝑥𝑘−1
+ ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥𝑘

𝑥𝑘+1

𝑥𝑘
)

−(3∫ 𝑔(𝑡)𝑑𝑡
𝑥𝑘

𝑥𝑘−1
+ ∫ 𝑔(𝑡)𝑑𝑡

𝑥𝑘+1

𝑥𝑘
)

]𝑛−1
𝑘=1 𝑓(𝑥𝑘)  
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     +[𝑔(𝑏) −
3𝑛

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑥𝑛−1
+

4𝑛2

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥𝑛−1

𝑏

𝑥𝑛−1
] 𝑓(𝑏).  

The proposed composite Simpson’s 1/3 scheme for the RSI has been proved.      

The global error term of the proposed S13 scheme for RSI is described in Theorem 5. 

Theorem 5. Let f(t) and g(t) be continuous on [a, b] and g(t) be increasing there. Let 

the interval [a, b] be subdivided into 2n subintervals [xk, xk+1] with width h = 
𝑏−𝑎

𝑛
 by 

using the equally spaced nodes xk = a+kh, where k = 0, 1, …, n. The composite 

Simpson’s 1/3 scheme with global error term RCS13[f]  for the RSI can be described 

as 

∫ 𝑓(𝑡)𝑑𝑔 = 𝐶𝑆13 + 𝑅𝐶𝑆13[𝑓]
𝑏

𝑎

 

=[
4𝑛2

(𝑏−𝑎)2
∫ ∫ g(x)dxdt

𝑡

𝑎

𝑥1

𝑎
 −

𝑛

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑥1

𝑎
− 𝑔(𝑎)] 𝑓(𝑎)  

+
4𝑛

𝑏−𝑎
∑ [∫ 𝑔(𝑡)𝑑𝑡 −

2𝑛

𝑏−𝑎
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥𝑘−1

𝑥𝑘

𝑥𝑘−1

𝑥𝑘

𝑥𝑘−1
]𝑛

𝑘=1 𝑓 (
𝑥𝑘−1+𝑥𝑘

2
)  

+
𝑛

𝑏−𝑎
∑ [

4𝑛

𝑏−𝑎
{∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥𝑘−1
+

𝑥𝑘

𝑥𝑘−1
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥𝑘

𝑥𝑘+1

𝑥𝑘
}

− {3∫ 𝑔(𝑡)𝑑𝑡 + ∫ 𝑔(𝑡)𝑑𝑡
𝑥𝑘+1

𝑥𝑘

𝑥𝑘

𝑥𝑘−1
}

]𝑛−1
𝑘=1 𝑓(𝑥𝑘)  

+[𝑔(𝑏) −
3𝑛

𝑏−𝑎
∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑥𝑛−1
+

4𝑛2

(𝑏−𝑎)2
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥𝑛−1

𝑏

𝑥𝑛−1
] 𝑓(𝑏)  

+𝑛 [

−(𝑎−𝑏)2(3𝑎+5𝑏)

96
∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑎
+

17𝑏2−10𝑎𝑏−7𝑎2

48
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑏

𝑏

𝑎

−𝑏 ∫ ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑦
𝑦

𝑎
𝑑𝑡 +

𝑡

𝑎

𝑏

𝑎
∫ ∫ ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑦

𝑦

𝑎
𝑑𝑧

𝑧

𝑎
𝑑𝑡

𝑡

𝑎

𝑏

𝑎

] 𝑓(4)(𝜇)𝑔′(𝜂)                 (23) 

𝑤ℎ𝑒𝑟𝑒𝜇, 𝜂 ∈ (𝑎, 𝑏). 

Proof of Theorem 5. 

From (19), the local error in a sub-interval, say [xp-1, xp], of the S13 rule is 

(
−(𝑥𝑝−1−𝑥𝑝)

2
(3𝑥𝑝−1+5𝑥𝑝)

96
∫ 𝑔(𝑡)𝑑𝑡

𝑥𝑝

𝑥𝑝−1
+

17𝑥𝑝
2−10𝑥𝑝−1𝑥𝑝−7𝑥𝑝−1

2

48
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥𝑝−1

𝑥𝑝

𝑥𝑝−1

 

−𝑥𝑝 ∫ ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑦
𝑦

𝑥𝑝−1
𝑑𝑡 +

𝑡

𝑥𝑝−1

𝑥𝑝

𝑥𝑝−1
∫ ∫ ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑦

𝑦

𝑥𝑝−1
𝑑𝑧

𝑧

𝑥𝑝−1
𝑑𝑡

𝑡

𝑥𝑝−1

𝑥𝑝

𝑥𝑝−1
) 𝑓4(𝜇)𝑔′(𝜂),

 𝑤ℎ𝑒𝑟𝑒𝜇𝑝, 𝜂 ∈ (𝑥𝑝−1, 𝑥𝑝). 

Hence, the global error is obtained by summing over n such terms: 
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∑

(

 
 
 
 

−(𝑥𝑘−1−𝑥𝑘)2(3𝑥𝑘−1+5𝑥𝑘)

96
∫ 𝑔(𝑡)𝑑𝑡

𝑥𝑘

𝑥𝑘−1

+
17𝑥𝑘

2−10𝑥𝑘−1𝑥𝑘−7𝑥𝑘−1
2

48
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑥𝑘−1

𝑥𝑘

𝑥𝑘−1

−𝑥𝑘 ∫ ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑦
𝑦

𝑥𝑘−1
𝑑𝑡

𝑡

𝑥𝑘−1

𝑥𝑘

𝑥𝑘−1

+∫ ∫ ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑦
𝑦

𝑥𝑘−1
𝑑𝑧

𝑧

𝑥𝑘−1
𝑑𝑡

𝑡

𝑥𝑘−1

𝑥𝑘

𝑥𝑘−1 )

 
 
 
 

𝑛
𝑘=1 𝑓(4)(𝜇)𝑔′(𝜂),  

=

𝑛 [

−(𝑎−𝑏)2(3𝑎+5𝑏)

96
∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑎
+

17𝑏2−10𝑎𝑏−7𝑎2

48
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑏

𝑏

𝑎

−𝑏 ∫ ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑦
𝑦

𝑎
𝑑𝑡 +

𝑡

𝑎

𝑏

𝑎 ∫ ∫ ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑦
𝑦

𝑎
𝑑𝑧

𝑧

𝑎
𝑑𝑡

𝑡

𝑎

𝑏

𝑎

] [
1

𝑛
∑ 𝑓(4)(𝜇𝑘)𝑔′(𝜂)𝑛

𝑘=1 ].

Let M = 
1

𝑛
∑ 𝑓(4)(𝜇𝑘)𝑔′(𝜂)𝑛

𝑘=1 . 

Clearly, 𝑚𝑖𝑛
𝑥∈[𝑎,𝑏]

{𝑓(4)(𝑥)𝑔′(𝑥)} ≤ 𝑀 ≤ 𝑚𝑎𝑥
𝑥∈[𝑎,𝑏]

{𝑓(4)(𝑥)𝑔′(𝑥)}. Since f (4)(t) and 

g’(t) are continuous in [a, b], then there exist two points 𝜇and 𝜂 such that M 

=𝑓(4)(𝜇)𝑔′(𝜂). 

This implies that the error term RS13[f] is  

=

𝑛 [

−(𝑎−𝑏)2(3𝑎+5𝑏)

96
∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑎
+

17𝑏2−10𝑎𝑏−7𝑎2

48
∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑡

𝑡

𝑏

𝑏

𝑎

−𝑏 ∫ ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑦
𝑦

𝑎
𝑑𝑡 +

𝑡

𝑎

𝑏

𝑎 ∫ ∫ ∫ ∫ 𝑔(𝑥)𝑑𝑥𝑑𝑦
𝑦

𝑎
𝑑𝑧

𝑧

𝑎
𝑑𝑡

𝑡

𝑎

𝑏

𝑎

] 𝑓(4)(𝜇)𝑔′(𝜂),  

𝑤ℎ𝑒𝑟𝑒𝜇, 𝜂 ∈ (𝑎, 𝑏) and h = 
𝑏−𝑎

𝑛
.    

IV.    Results and Discussion  

In previous studies [VIII], [IX], [XIX], focusing the quadrature schemes for 

RS- integral numerical experiments were not performed for confirming the theoretical 

accuracy. Here, in order to confirm the validity of theoretical results, the present 

study solved three numerical problems for each scheme taken from [VI], [I], [III], 

[XII] etc. All the results are computed using MATLAB in Intel (R) Core (TM) 

Laptop with RAM  8.00GB and processing speed of 1.00GHz-1.61GHz. For 

numerical results, double-precision arithmetic is used. The performance of the 

proposed CS13 scheme for the RSI is compared with other existing schemes: CT, 

ZCT and MZCT [XVIII],[XIX],[VI]. 

Example 1. ∫ 𝑠𝑖𝑛 5 𝑥𝑑 𝑐𝑜𝑠 𝑥
4.5

3.5
 = 0.227676016130689   

Example 2. ∫ 𝑠𝑖𝑛 𝑥 𝑑𝑥36

5
 = -59.655908136641912 

Example 3. ∫ 𝑒𝑥𝑑 𝑠𝑖𝑛 𝑥
6

5
 = 187.4269314248657 

The absolute error is expressed in [XVI] as 

  Absolute Error = | Exact value – Approximate value |       (24) 
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 The computational order of accuracy as described in [XV] is defined as                                   

                 𝑝 =
𝑙𝑛(

|𝑁(2ℎ)−𝑁(0)|

|𝑁(ℎ)−𝑁(0)|
)

𝑙𝑛 2
,                        (25) 

where N(h) represents approximate value at step size h and N(0) represents the 

exact result. Table 1 compares all schemes of quadrature variants in terms of absolute 

errors versus the number of strips for all test problems. Line plots of the error of all 

schemes discussed above have been shown in Figs. 1-3 for all test problems. 

It has been observed from the line plots in Figs. 1-3 that the error of existing schemes 

reduced slowly whereas the error of the proposed scheme reduced rapidly for all test 

problems. Tables 2, 3 and 4 confirm that the computational orders of accuracy are the 

same as those of theoretically proved previous section, of all schemes for all test 

problems. The proposed CS13 scheme exhibits an order of accuracy of 4 which is the 

same as the MZCT scheme but the error reduction is rapid for the former. The CT 

scheme exhibits an order of accuracy of 2, whereas for the ZCT scheme, due to the 

issues and mistakes highlighted in [VI], the order oscillates and doesn’t converge to 4. 

Tables 5 shows the quantity of function, derivative and integral estimations for all 

schemes for m strips. Figs. 4-6 show computational performance in terms of total 

computational cost and the average CPU usage in seconds for the three integrals 

mentioned in Examples 1-3 using CT, ZCT, MZCT and CS13 schemes. It is observed 

from numerical results that the proposed scheme took less cost to achieve the error 

10-5 as compared to existing schemes for all test problems as also confirmed in Figs. 

4-6 (a). 

It is seen from Figs. 4-6 (b) that the proposed scheme has taken smaller 

average CPU time to achieve the error 10-5 as compared to existing schemes for 

Examples 1-3.  

 

Table 1: Comparison of absolute errors by all schemes for Examples 1-3. 

Quadrature 

variants 

Example 1 

(m=20) 

Example 2 

(m=100) 

Example 3 

(m=20) 

CT 1.1862E-03 4.9713E-04 3.9042E-02 

ZCT 1.6698 E-03 5.5959 E-04 3.9042E-02 

MZCT 1.8552 E-06 1,2428E-09 2.4399E-06 

CS13 5.2161E-09 3.2709E-11 1.1106E-07 
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Fig 1. Error Plots to approximate integral in Example 1 

 

 
Fig 2. Error Plots to approximate integral in Example 2 

 
Fig 3. Error Plots to approximate integral in Example 3 
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Table 2: Computational order of accuracy in all methods for Example 1 

 

Number 

of stripsm  

CT ZCT MZCT  CS13  

n P n P n P n P 

 1 

2 

4 

8 

16 

32 

64 

1 

2 

4 

8 

16 

32 

64 

NA 

2.5728 

2.0420 

2.0091 

2.0022 

2.0006          

2.0001 

1 

2 

4 

8 

16 

32 

64 

NA 

3.3788 

4.3106 

-0.8154 

2.1713 

3.2118 

1.1185 

1 

2 

4 

8 

16 

32 

64 

NA 

5.0724 

4.1474 

4.0348 

4.0086 

4.0021 

4.0006 

2 

4 

8 

16 

32 

64 

128 

NA 

4.2504 

4.0593 

4.0147 

4.0037 

4.0009 

4.0002 

 

Table 3: Computational order of accuracy in all methods for Example 2 

 

Number of 

 stripsm  

CT ZCT MZCT  CS13  

n P n P n P n P 

 5 

10 

20 

40 

80 

160 

5 

10 

20 

40 

80 

160 

NA 

2.0018 

2.0004 

2.0001 

2.0001 

2.0000           

5 

10 

20 

40 

80 

160 

NA 

1.9243 

2.4487 

2.3985 

2.3985 

2.4557 

5 

10 

20 

40 

80 

160 

NA 

4.0025 

4.0007 

4.0001 

4.0000 

3.9998 

10 

20 

40 

80 

160 

320 

NA 

4.0004 

4.0001 

4.0001 

4.0000 

Exact 

 

Table 4: Computational order of accuracy in all methods for Example 3 

 

Number of 

 stripsm  

CT ZCT MZCT  CS13  

n P n P n P n P 

 1 

2 

4 

8 

16 

32 

1 

2 

4 

8 

16 

32 

NA 

1.9319 

1.9844 

1.9962 

1.9990 

1.9998 

1 

2 

4 

8 

16 

32 

NA 

1.9319 

1.9844 

1.9962 

1.9990 

1.9998 

1 

2 

4 

8 

16 

32 

NA 

3.8984 

3.9761 

3.9941 

3.9985 

3.9985 

2 

4 

8 

16 

32 

64 

NA 

4.0133 

4.0034 

4.0009 

4.0002 

4.0001 
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Table 5: Computational cost in quadrature variants for m strips. 

 

Quadrature 

 Variants 

Functional 

Evaluations 

Derivative 

Evaluations 

Integral evaluations of   g 

(x) 

Total 

 

 f g f(1) f(2) Single Double Triple 

CT m+1 2 0 0 m 0 0 2m+3 

ZCT m+1 2 0 M m m m 5m+3 

MZCT m+1 2 0 M m m m 5m+3 

CS13 2m+1 2 0 0 m m 0 4m+3 

 

  

(a) Total computational cost (b) Average CPU time (in seconds) 
 

Fig 4. Performance to achieve absolute error of atmost 1E-05 for Example 1 
 

  

(a) Total computational cost (b) Average CPU time (in seconds) 

Fig 5. Performance to achieve an absolute error of atmost 1E-05 for Example 2 

  

(a) Total computational cost (b) Average CPU time (in seconds) 

Fig 6. Performance to achieve an absolute error of atmost 1E-05 for Example 3 
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V.    Conclusion 

A new derivative-free Simpson’s 1/3 scheme has been proposed for RSI with a 

local error term. The composite form of this scheme has been derived with a global 

error term. Three numerical problems have been tested to confirm the validity of the 

proposed scheme. The numerical results are discussed in terms of absolute error, the 

order of accuracy, computational cost and average CPU time. It is observed from 

numerical results that the proposed scheme is much efficient as compared to existing 

schemes for all test problems. In the future, the focus may be diverted to the 

derivative-based Simpson’s 1/3 schemes for the RSI in basic and composite form 

with error terms.   
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