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Abstract 

In this work, we explore some unknown properties of the Boubaker 

polynomials. The orthogonalization of the Boubaker polynomials has not been 

discussed in the literature. Since most of the application areas of such polynomial 

sequences demand orthogonal polynomials, the orthogonality of the Boubaker 

polynomials will help extend its theareas of application. We investigate orthogonality 

of classical Boubaker polynomials using Sturm-Liouville form and then apply the 

Gram-Schmidt orthogonalization process to develop modified Boubaker polynomials 

which are also orthogonal. Some classical properties, like orthogonality and 

orthonormality relation and zeros, of the modified Boubaker polynomials, have been 

proved. The contributions from this study have an impact on the further application 

of modified Boubaker polynomials to not only the cases where classical polynomials 

could be used but also in cases where the classical ones could not be used due to 

orthogonality issue. 

Keywords: Orthogonalization, Boubaker polynomials, zeros, Recurrence relation, 

Gram-Schmidt process, Sturm-Liouville form. 

I.     Introduction 

A sequence of polynomial indexed by the nonnegative integers 0, 1, 2, 3, ..., 

in which each index is equal to the degree of the corresponding polynomial [I]. 

Polynomial sequences are applied in physics, approximation theory, and ordinary 

differential equations. For example, Legendre, Hermite, Jacobi, Laguerre, Bessel’s, 

and Chebyshev polynomials can be used in these applications because of 

orthogonality property [VI]. 

The most recent polynomials sequences are the Boubaker polynomials which were 

given by Prof Dr. Karim Boubaker in 2007 while solving heat equation. The 
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Boubaker polynomials are components of a polynomial sequence [VII]  which were 

proposed in a physics study that yielded a thermal model of the pyrolysis spray 

device, They represent a mathematical tool for solving heat transfer equation inside a 

given domain [0, 2] [IX], The Boubaker polynomials have been used to develop a 

new numerical method for computation of the number of complex zeros of real 

polynomials in the open unit disk by Shaikh and Boubaker [XVIII]. These 

polynomials have also been used to solve nonlinear Volterra-Fredholm integral 

equations and for solving inhomogeneous second order differential equations using 

Boubaker-Turki polynomials [XII]. The well-known BPES (Boubaker polynomial 

expansion scheme) and related Boubaker theorem have also been used widely for the 

optimization of Copper tin sulphide ternary materials precursor’s ratio [XXI]. 

Several works s in literature have already explored the application of Boubaker 

polynomials in many aspects. To mention a few, we briefly review here. In [VII], the 

solution to the heat equation in particular cases of uniform and the non-uniform fluid 

deposit was yielded as a guide to geometrical and temporal parameters control. On 

the other hand, the morphological and optical properties of as-grown copper tin 

sulfide layered materials have been investigated using an original analytical protocol 

[III]. The Boubaker polynomial scheme was also applied to determine the neutron 

angular flux profile in a particular nuclear system [VIII]. Some new properties of the 

Boubaker polynomials and applications to the approximate analytical solution of 

Love’s integral equation were presented in [XV]. In [XII], the Chebyshev-dependent 

inhomogeneous second-order differential equation for the m-Boubaker polynomials 

was formulated. The application of Boubaker polynomials on the Lotka–Volterra 

equation and the stability with Routh–Hurwitz criterion were discussed in 

[XIII],[XVI]. Shaikh and Boubaker [XVIII] developed an efficient numerical method 

for computation of the number of complex zeros of real polynomials inside the open 

unit disk. In [XI], an asymptotic expression was presented calculating two oppositely 

charged discs’ capacitance. Labiadh and Boubaker [XIV] presented a Sturm-Liouville 

shaped characteristic differential equation to the Boubaker polynomials as a supply to 

further efforts for proposing different analytic expression.  

A dynamical nonlinear model of the spatial time-dependent evolution of A3 point 

during a particular sequence of resistance spot welding in steel material was treated 

using Boubaker polynomials [XIX]. The solution to heat equation in particular cases 

of uniform and the non-uniform fluid deposit was yielded as a guide to geometrical 

and temporal parameters control [XVII]. An analytical method was introduced for the 

identification of predator-prey population’s time-dependent evolution in a Lotka–

Volterra predator-prey model which takes into account the concept of accelerated-

predator-satiety using Boubaker polynomials [XVIII]. Yücel discussed some new 

applications of the Boubaker polynomials expansion scheme (BPES) in the field of 

fluids motion and wave dynamics [XX]. A computational method for solving the 

optimization problem was presented using the indirect method (spectral method 

technique) based on Boubaker polynomials [XVII]. The numerical solution of 

boundary-value problems was acquired recently using an enhanced version of 

Boubaker polynomials [II]. 
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The main features of the present work are to provide a means for the development of 

some classical properties, like the Sturm–Liouville form and orthogonality of 

Boubaker polynomials, as these have not been established until now, so, it is 

important here to investigate these properties. If these properties are proved, then 

these will open-up ways for new research in this field. We present characteristic 

differential equations and other general properties of Boubaker polynomials known 

till now to discuss orthogonalization and derive orthogonality relationship, 

orthonormality relationship, zeros of modified Boubaker polynomials. 

II.     Classical Properties of Orthogonal Polynomials 

The classical properties which are followed by a conventional polynomial 

family are: characteristics differential equation, series solution, Rodriguez’s formula, 

the three-term recurrence relation, generating function, orthogonality relation, self-

adjoint  form or Strum-Liouville form, weight function, eigenvalues and 

eigenfunction,  norm, zeros, etc, 

For example, we first discuss the classical properties of the Legendre’s polynomials 

[I]. For the Legendre’s polynomials (LPs), the second-order characteristic differential 

equation is: 

(1 − 𝑥2)
d2y

dx2 
− 2𝑥

dy

dx
+ n(n + 1)y =0       (1) 

The power series solution of (1) can be expressed as: 

y(x) = 𝑎0𝑦1(x)+ 𝑎1𝑦2(x)        (2) 

where, 𝑦1(𝑥) =  1 −
𝑛(𝑛+1)𝑥2

2!
+

(𝑛−1)𝑛(𝑛+1)(𝑛+2)𝑥4

4!
−…     (3) 

and,   𝑦2(𝑥) = 𝑥 −
(𝑛−1)(𝑛+2)𝑥3

2!
+

(𝑛−3)(𝑛−1)(𝑛+2)(𝑛+4)𝑥5

4!
− ⋯   (4) 

Rodriguez’ formula for the LPs is:    

𝑃𝑛(𝑥) = 
1

2𝑛𝑛!

dn

dxn 
(1 − 𝑥2) 𝑛, n=0,1,2,…       (5) 

The three-term recurrence relation for LPs is given as:  

(2n + 1)xPn+1(x) = (n+1)Pn(x) −nPn−1(x), n = 1, 2, 3, …     (6) 

The LPs are generated using the following generating function:   

G(x, t) =    
1

√1−2tx+t2
 =∑ 𝑃𝑛(𝑥)∞

𝑛=0 𝑡𝑛       (7) 

The orthogonality relation of LPs in [-1, 1] is expressed as:    

∫ 𝑝𝑛(𝑥)
1

−1
 𝑃𝑚(𝑥)dx = 

2

2𝑛+1
𝛿𝑛𝑚 with 𝛿𝑛𝑚 =  {

0 𝑖𝑓 𝑚 ≠ 𝑛
1 𝑖𝑓 𝑚 = 𝑛

    (8) 

Similarly, the Laguerre polynomials [V], Chebyshev polynomials [VI], Jacobi 

polynomials [IV], Hermite and Bessel polynomials [X] also follow similar classical 

properties like LPs. 
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III.     Basic Properties of Original Boubaker Polynomials 

A characteristic differential equation, series solution, the three-term 

recurrence relation, and generating function of original Boubaker polynomials (BPs) 

are already well-known. The characteristic differential equation of BPs is: 

(𝑥2 − 1) (3n𝑥2 + 𝑛 − 2)𝑦′′+3n (n𝑥2 + 3𝑛 − 2)𝑦′-n (3𝑛2 𝑥2+𝑛2 -6n+8) y = 0  (9) 

The series solution of (9) can be represented as: 

Bn(x) =  ∑
n−4p

n−p

⌊
n

2
⌋

n=0 (n−p
p

) (−1)px(n−2p)      (10) 

The first ten BPs are:  

     𝐵0(x) = 1    

     𝐵1(x) = x 

     𝐵2(x) = 𝑥2+2 

     𝐵3(x) = 𝑥3 + 𝑥 

     𝐵4(x) = 𝑥4 – 2 

     𝐵5(x) = 𝑥5 − 𝑥3- 3x 

     𝐵6(x) =𝑥6 − 2𝑥4- 3𝑥2 +2 

     𝐵7(x) =𝑥7 − 3𝑥5 − 2𝑥3+5x 

     𝐵8(x) = 𝑥8 − 4𝑥6 + 8𝑥2-2 

    𝐵9(x) = 𝑥9 − 5𝑥7 + 3𝑥5+10𝑥3-7x 

The three-term recurrence relation for original BPs can be given as: 

𝐵𝑚(x) = x𝐵𝑚−1(x) - 𝐵𝑚−2(x)      for m > 2     (11) 

The generating function for BPs is: 

G(x, t) =    
1+3t2

1+t(t−x)
        (12) 

The original BPs are defined in [0, 2] but are not orthogonal.  

IV.   Present Contributions and Main Results 

First, we attempt to discuss orthogonalization of the original BPs using the 

Strum-Liouville form, and we will show that the outcome of such an approach on 

original BPS is not viable.  The procedure is followed from [I] as presented in the 

following Lemma 1. 

Lemma 1. Consider a second-order homogeneous differential equation 

 a(x)
𝑑2𝑦

𝑑𝑥2 +b(x)
𝜕𝑦

𝜕𝑥
 +c(x) +𝜆𝑦 = 0          (13)  

with boundary conditions (14) and (15) as 
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𝛼1y(𝑥0) +𝛼2y’(𝑥0) = 0                      (14) 

𝛽1y(𝑥01) +𝛽2y’(𝑥01) = 0                    (15) 

With the following functions, (13) can be converted to the Strum-Liouville equation 

p(x) = exp (  ∫  
𝑏(𝑠)

 𝑎(𝑠)

𝑥1

𝑥0
 ds)                  (16) 

r(x) = 
1

𝑎(𝑠)
 exp ( ∫

𝑏(𝑠)

𝑎(𝑠)

𝑥1

𝑥0
 ds)              (17) 

q(x) = = 
𝑐(𝑥)

𝑎(𝑠)
 exp ( ∫

𝑏(𝑠)

𝑎(𝑠)

𝑥1

𝑥0
 ds)         (18) 

With these definitions above differential equation can be transformed to the known 

Strum- Liouville equation  

   
𝑑

𝑑𝑥
 (p(x) 

𝑑𝑦

𝑑𝑥
) + (q(x) +𝜆r(x))y(x) =0        (19) 

1

𝑟(𝑋)
 (

𝜕

𝜕𝑥
(p(y) 

𝜕𝑦

𝜕𝑥
)+q(x))y(x) = -𝜆y(x)                     (20) 

Or, [𝑟(𝑥)𝑦′]′ +[q(x)+𝜆p(x)]y=0      (21)   

(20) and (21) are both Strum-Liouville forms of (13). The function p, q and r must be 

independent of n. 

Now, we apply Lemma 1 on the characteristic differential equation of original BPs to 

attempt to derive Strum-Liouville form and hence discuss the orthogonality. The BPs 

characteristic differential equation is: 

(𝑥2-1)(3n𝑥2+n-2) 𝑦′′+3x (n𝑥2+3n-2) 𝑦′-n(3𝑛2𝑥2+𝑛2-6x+8)y =0   (22) 

Using coefficients of (22) we have q(x) = 0, and 

p(x)  =  𝑒
∫

3x (n𝑥2+3n−2) 

(𝑥2−1)(3n𝑥2+n−2) 
𝑑𝑥

        (23) 

r(x) = 
1

(𝑥2−1)(3n𝑥2+n−2)
 𝑒

∫
3x (n𝑥2+3n−2) 

(𝑥2−1)(3n𝑥2+n−2) 
𝑑𝑥

2

0       (24)                                                                            

Solving (23) by integration partial fractions, we have:  

p(x)=exp[
1

3𝑛
∫ ∫[

9𝑛

2(𝑥−1)
 + 

9𝑛(2𝑛−1)

2(𝑛+1)(𝑥+1)
 +  

(3𝑛−6𝑛2)𝑥

(𝑥2+ 
𝑛−2

3𝑛
)

 +
9𝑛(2𝑛+1)

(𝑛+1)(𝑥2+ 
𝑛−2

3𝑛
)
]dx

2

0
  (25) 

 Solving integration in (25), we have:  

p(x)=
3

2
ln(x-1)+

3(2𝑛−1)

2(𝑛+1)
ln(x+1)+

(1−2𝑛)

2
ln(𝑥2 +  

𝑛−2

3𝑛
 )+

9𝑛(2𝑛−1)

(𝑛+1)(𝑛−1)
 𝑡𝑎𝑛−1{

3𝑛(𝑛−2)(𝑥+2)

(𝑛−2)2−18𝑛2𝑥)
}

          (26) 

Putting these in Strum- Liouville form, we have  
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[
𝑦′

(𝑥2−1)(3n𝑥2+n−2)
{{ 

3

2
ln(x − 1) + 

3(2𝑛−1)

2(𝑛+1)
ln(x + 1) +

(1−2𝑛)

2
ln (x2 +

n−2

3n
)} +

 
9𝑛(2𝑛−1)

(𝑛+1)(𝑛−1)
 𝑡𝑎𝑛−1 (

3𝑛(𝑛−2)(𝑥+2)

(𝑛−2)2−18𝑛2𝑥)
) }]

′

    

+λ[{ 
3

2
ln(x − 1) +  

3(2𝑛−1)

2(𝑛+1)
ln(x + 1) +

(1−2𝑛)

2
ln (x2 +

n−2

3n
)} +

 
9𝑛(2𝑛−1)

(𝑛+1)(𝑛−1)
 𝑡𝑎𝑛−1 (

3𝑛(𝑛−2)(𝑥+2)

(𝑛−2)2−18𝑛2𝑥)
) ] 𝑦 = 0                                           (27) 

We observe that with every coefficient, there exists “n” which does not allow making 

the Strum-Liouville form of the original Boubaker differential equation. Therefore,  

orthogonality cannot be proved for original Boubaker polynomials.  

It is necessary to modify original Boubaker polynomials, so that orthogonality, 

Strum-Liouville and other classical properties can be established.  

Another famous method to prove orthogonalization of Boubaker polynomials that is 

the Gram–Schmidt process is used ahead [I],[II], as quoted in Lemma 2. 

Lemma 2. Let V (,) be the inner product vector space of polynomials and                   

{ 𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑛} be the arbitrary basis of V then an orthogonal basis of V is given 

by the vectors { 𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛} as  

𝑣1(𝑥)= 𝑢1(x) 

𝑣2= 𝑢2 − 
< 𝑢1,𝑣1> 𝑣1

‖ 𝑣1‖2  

𝑣3= 𝑢3 −
< 𝑢3,𝑣1> 𝑣1

‖ 𝑣1‖2 −
< 𝑢1,𝑣2> 𝑣2

‖ 𝑣2‖2  

𝑣𝑛= 𝑢𝑛 − ∑
< 𝑢𝑛,𝑣𝑖> 𝑣𝑖

‖ 𝑣𝑖‖2
𝑛−1
𝑖=1                                                                            (28) 

 where inner product from and norm are defined as:    

<f(x), g(x)> =  ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
2

0
       (29) 

And, ‖𝑓(𝑥) 𝑔(𝑥)‖2 =∫ (𝑓(𝑥)𝑔(𝑥))2𝑑𝑥
2

0
      (30) 

We now apply the process of Lemma 2 to derive modified orthogonal Boubaker 

polynomials.  

Let  𝐵0(x) = 1  𝐵1(x) = x and 𝐵2(x) = 𝑥2+2,  𝐵3(x) = 𝑥3+x, 𝐵4(x) = 𝑥4-4, . . . 𝐵𝑛(x) 

are original BPs, and   X = {1, x, 𝑥2+2, 𝑥3 + 𝑥, 𝑥4-2,  . . .  𝐵𝑛(x)} be finite arbitrary 

 Basis.  Let Y = {𝑃0(x), 𝑃1(x) , 𝑃2(x), … 𝑃𝑛(x) } be the required orthogonal basis for 

the modified orthogonal Boubaker polynomials (MOBPs). 

The inner product space used here is defined as: 

 〈𝑓(𝑥), 𝑔(𝑥)〉 = ∫ 𝑤(𝑥)𝑓(𝑥)𝑔(𝑥) 𝑑𝑥
2

0
                             (31) 

Here, we consider w(x) = 1 as the weight function of MOBPs and the norm space as 

defined as: 
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 ‖𝑓(𝑥)𝑔(𝑥)‖2 =∫ (𝑓(𝑥)𝑔(𝑥))22

0
 dx         (32) 

Now,  

𝑝0(x) =   = a = 1 , and   

𝑝1(x)  = 𝐵1(x) −
〈 𝐵1(x) ,〉𝑃0(x) 

〈,𝑃0(x),   𝑃0(x)〉
𝑃0(x) 

  

𝑝1(x)   = x −
〈𝑥,1〉1

〈1,1〉
 = x – 1  

 

𝑝2(x) = 𝐵2(x) – 
〈𝐵2(x),𝑃0(x) 〉𝑃0(x)

〈𝑃0(x),𝑃0(x)〉
 – 

〈,𝐵2(x)  𝑃1(x) 〉𝑃1(x) 

〈,𝑃1(x),   𝑃1(x)  〉
   

         = 𝑥2+ 2 −
(𝑥2+2,1)1

(1,1)
−  

(,𝑥2+2,𝑋−1)

(𝑋−1,𝑋−1)
(x-1) = 𝑥2 − 2x +  

 2

 3
 

Similarly 

 𝑝0(x) = 1 

 𝑝1(x) = (x-1) 

 𝑝2(x) =  (𝑥2-2x +
2

3
)  

𝑃3(x) =  (𝑥3 − 3𝑥2  +  
12

5
x − 

2

5
)  

𝑃4(x) =   (𝑥4 − 4x3  + 
36

7
x2  −  

16

7
x +

8

35
)  

𝑃5(x)  = (𝑥5 − 5x4  +  
80

9
x3  − 

20

3
x2 +

40

21
−

8

63
)  

𝑃6(x) =  (𝑥6 − 6x5  +  
150

11
x4  −  

160

11
x3 +

80

11
x2 −

16

11
x +

16

231
)  

𝑃7(x) =   (𝑥7 − 7x6  + 
252

13
x5  −  

350

13
x4 +

2800

143
x3 −

1008

143
x2 +

448

429
x −

16

429
)  

𝑃8(x) =    (𝑥8 − 8x7  + 
392

15
x6  − 

224

5
x5 +

560

13
x4 −

896

39
x3 +

896

143
x2 −

512

715
x +

128

6435
)  

 

𝑃9(x) = (𝑥9 − 9x8  + 
7616

225
x7  −  

15512

225
x6 +

26768

325
x5 −

6832

117
x4 +

30464

1287
x3 −

17792

3575
x2 +

42368

96525
x −

896

96525
)  

 

𝑃𝑛(x) = 𝐵𝑛(x) -∑
<𝐵𝑛(x),𝑃𝑖(x)>

<𝑝𝑖(x),𝑃𝑖(x)>
𝑛−1
𝑖=0 𝑃𝑖(x),         (33) 

Where 𝐵𝑛(x) =∑
𝑛−4𝑝

𝑛−𝑝

⌊
𝑛

2
⌋

𝑛=0 (𝑛−𝑝
𝑝

) (−1)𝑝𝑥(𝑛−2𝑝). 

Hence, the orthogonal basis for the MOBPs is: 

Y = {𝑃0(x), 𝑃1(x) , 𝑃2(x), … 𝑃𝑛(x)}  

Y={1, x-1,
1

3
(3𝑥2-6x + 2),  

1

35
 (35𝑥4 − 140𝑥3 +180𝑥2-80x+8),   

1

126
 (21𝑥6-126𝑥5 −35720𝑥4 + 143720𝑥3 −172680𝑥2+57584x)… 𝑃𝑛(x)}  (34) 

Figs. 1 and 2, respectively, show the proposed orthogonal Boubaker polynomials P0-

P4 and P5-P9, whereas Fig. 3 shows the first ten MOBPs together. It is evident from 

Fig. 1-3 that all zeros of the proposed MOBPs are real and lie in [0, 2], thus MOBPs 

is a new family of orthogonal polynomials defined in [0, 2] with all real zeros 

contained in the same interval.  Table 1 lists all the zeros of the first ten proposed 

MOBPs in decimal form, whereas in Table 2 zeros of polynomials up to n = 5 are 

listed in closed form.  
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The proposed modified orthogonal Boubaker polynomials (MOBPs) as defined in 

(33)-(34) are orthogonal in the interval [0, 2], and the corresponding orthogonality 

relation is given as:  

  ∫ [𝑃𝑚(𝑥)𝑃𝑛(𝑥)] 𝑑𝑥 =
2

0
0  𝑖𝑓 𝑚 ≠  𝑛              (35) 

For instant verification, one can see that for p0 and p1, and for p0 and p2, the inner 

products are zero. 

 

 

The orthonormal set of polynomials corresponding to the orthogonal set (34) can also 

be defined for the MOBPs as 

Let 𝐙 =  {𝑒0   , 𝑒1, 𝑒2, 𝑒3, . . . . 𝑒𝑛−1} be orthonormal set 

From (33), we have  

  ‖𝑃0(𝑥)‖2 = ∫ (𝑃0(𝑥))22

0
 dx =  ∫ (1)22

0
dx =  2  

  ‖𝑃0(𝑥)‖ = √2. 

Now, since 

𝑒𝑛−1 =
𝑃𝑛−1(𝑥)

‖𝑃𝑛−1(𝑥)‖
, n = 1, 2, 3, 4              (36) 

So, we have: 

 𝑒 0= 
1

√2
 

𝑒1= √
2

3
 (x-1) 

𝑒2 =  √
8

45
   (𝑥2 − 2x + 

2

3
 ) 

𝑒3=√
8

175
    (𝑥3 − 3𝑥2  +  

12

5
x – 

2

5
) , … 

Hence Z = {𝑒0,𝑒1,𝑒2, 𝑒3,. . . . 𝑒𝑛−1} is an orthonormal set of Y. 

This is the fundamental set of results regarding the orthogonality and orthonormality 

of the Boubaker polynomials in [0, 2] as presented in this work in comparison to the 

existing literature on this subject. The MOBPs may be used in future applications in 

the fields of boundary-value problems, numerical integration and integral equations.  
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Figure 1: Proposed modified orthogonal BPs from 𝑃0(x)   to 𝑃4(x) 

 

Figure 2: Proposed modified orthogonal BPs from 𝑃5(x)   to 𝑃9(x) 

 

Figure 3: Proposed modified orthogonal BPs from 𝑃0(x)   to 𝑃9(x) 
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Table 1: Zeros or roots of orthogonality polynomials 

Serial 

number 

 Value of n 𝑷𝑵(𝒙)      Zeros 

01        0 𝑃0(𝑥) NA 

02        1 𝑃1(𝑥) 1 

03        2 𝑃2(𝑥) 1.577350269189626 

0.422649730810374 

04        3 𝑃3(𝑥) 1.774596669241485 

1.000000000000000 

0.225403330758517 

05        4 𝑃4(𝑥) 1.861136311594047 

1.339981043584861 

0.660018956415143 

0.138863688405947 

06        5 𝑃5(𝑥) 1.932469514203213 

1.661209386466132 

1.238619186083275 

0.761380813916789 

0.338790613533737 

0.067530485796848 

07      6 𝑃6(𝑥) 1.932469514203213 

1.661209386466132 

1.238619186083275 

0.761380813916789 

0.338790613533737 

0.067530485796848 

08      7 𝑃7(𝑥) 1.949107912343022 

1.741531185598892 

1.405845151377761 

0.999999999999842 

0.594154848622642 

0.258468814400603 

0.050892087657241 

09     8 𝑃8(𝑥) 1.960289856497143 

1.796666477414708 

1.525532409915025 

1.183434642496488 

0.816565357504091 

0.474467590083699 

0.203333522586372 

0.039710143502464 

10     9 𝑃9(𝑥) 1.970000361771120 

1.843285948669672 

1.623725031434496 

1.331732276411801 

1.000000000000182 

0.668267723586097 

0.376274968571590 

0.156714051322658 

0.029999638232384 
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Table 2: First five polynomials Zeros in square root form 

 

V.   Conclusion 

The conventional Boubaker polynomials were considered in this study, and 

an attempt was made to discuss the orthogonalization of original BPs so that these 

can also be used in the future for applications limited to orthogonal polynomial 

families only. We outlined issues related to the Strum-Liouville form of the original 

BPs and limitations of the original BPs for orthogonalization. Using the Gram-

Schmidt orthogonalization process, we proposed a new family of modified orthogonal 

Boubaker polynomials (MOBPs) in the interval [0, 2]. The zeros of MOBPs, the 

relations of orthogonality were discussed, and an orthonormal basis was also 

formulated for the proposed MOBPs. The contributions of this research will help 

researchers apply the new polynomials without any limitation of the orthogonality.    

Serial  

number 

Valueof  n 𝑷𝑵(𝒙)      Zeros 

01        0 𝑃0(𝑥)  

02        1 𝑃1(𝑥) 1 

03        2 𝑃2(𝑥) 1

3
 (3±√15) 

04        3 𝑃3(𝑥) 1,  
1

5
 (5±√15)   

05        4 𝑃4(𝑥) 
1±√

1

35
(15 − 2√30) , 

  
1

2
[2±√4 +

8

35
(√30 − 10)] 

 

06        5 𝑃5(𝑥) 
1,   

1

2
[2±√4 +

8

63
(√70 − 14)],  

  
1

3
[3±√

1

7
(35 − 2√70)] 



 

 

 

 

 

 

J. Mech. Cont.& Math. Sci., Vol.-15, No.-11, November (2020) pp 119-131 

Nazeer Ahmed Khoso et al 

 

 

130 

 

VI.   Acknowledgements 

Authors are thankful to their institutes for providing facilities for the conduct of this 

research. 

 

Conflict of Interest:  

No conflict of interest regarding this article 

 

 

References 

I. Abramowitz, M. and Stegun, I. A. (Eds.). "Orthogonal Polynomials." 

Ch. 22 in Handbook of Mathematical Functions with Formulas, Graphs, 

and Mathematical Tables, 9th printing. New York: Dover, pp. 771-802, 

1972. 

II. Ahmed, I. N. (2020). Numerical Solution for Solving Two-Points 

Boundary Value Problems Using Orthogonal Boubaker 

Polynomials. Emirates Journal for Engineering Research, 25(2), 4. 

III. Amlouk, A., Boubaker, K., & Amlouk, M. (2010). SnO2 thin films 

morphological and optical properties in terms of the Boubaker 

Polynomials Expansion Scheme BPES-related Opto-Thermal 

Expansivity ψAB. Journal of Alloys and Compounds, 490(1-2), 602-604. 

IV. Andrews, G. E.; Askey, R.; and Roy, R. "Jacobi Polynomials and Gram 

Determinants" and "Generating  Functions for Jacobi Polynomials." §6.3 

and 6.4 in a Functions. Cambridge, England: Cambridge University 

Press, pp. 293-306, 1999. 

V. Andrews, G. E.; Askey, R.; and Roy, R. "Laguerre Polynomials." §6.2 

in Special Functions. Cambridge, England: Cambridge University Press, 

pp. 282-293, 1999 

VI. Barry, P. (2013). On the connection coefficients of the Chebyshev-

Boubaker     polynomials. The Scientific World Journal, 2013. 

VII. Boubaker, K. (2007). On modified Boubaker polynomials: some 

differential and analytical properties of the new polynomials issued from 

an attempt for solving bi-varied heat equation. Trends in Applied 

Sciences Research, 2(6), 540-544 

VIII. Boubaker, K. (2011). Boubaker polynomials expansion scheme (BPES) 

solution to Boltzmann diffusion equation in the case of strongly 

anisotropic neutral particles forward–backward scattering. Annals of 

Nuclear Energy, 38(8), 1715–1717.  

IX. Boubaker, K., Chaouachi, A., Amlouk, M., & Bouzouita, H. (2007). 

Enhancement of pyrolysis spray disposal performance using thermal 

time-response to precursor uniform deposition. The European Physical 

Journal-Applied Physics, 37(1), 105-109. 



 

 

 

 

 

 

J. Mech. Cont.& Math. Sci., Vol.-15, No.-11, November (2020) pp 119-131 

Nazeer Ahmed Khoso et al 

 

 

131 

 

X. Carlitz, L. "A Note on the Bessel Polynomials." Duke Math. J. 24, 151-

162, 1957. 

XI. Chew, W. C., & Kong, J. A. (1981, March). Asymptotic formula for the 

capacitance of two oppositely charged discs. In Mathematical 

Proceedings of the Cambridge Philosophical Society (Vol. 89, No. 2, pp. 

373-384). Cambridge University Press 

XII. Dada, M., Awojoy ogbe, O. B., Hasler, M. F., Mahmoud, K. B. B., & 

Bannour, A. (2008). Establishment of a Chebyshev-dependent 

inhomogeneous second order differential equation for the applied 

physics-related Boubaker-Turki polynomials. Applications and Applied 

Mathematics: An International Journal, 3(2), 329-336. 

XIII. Dubey, B., Zhao, T.G., Jonsson, M., Rahmanov, H., 2010. A solution to 

the accelerated-predator-satiety Lotka–Volterra predator–prey problem 

using Boubaker polynomial expansion scheme. J. Theor. Biol. 264 (1), 

154–160. 

XIV. Labiadh, H., & Boubaker, K. (2007). A Sturm-Liouville shaped 

characteristic differential equation as a guide to establish a quasi-

polynomial expression to the Boubaker 

polynomials. Дифференциальные уравнения и процессы управления, 

(2), 117-133. 
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