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Abstract

Binary polynomials representation of Aunu permutation patterns has been
used to perform arithmetic operations on words and sub-words of the polynomials
using addition, multiplication, and division modulo two. The polynomials were also
found to form some mathematical structures such as group, ring, and field. This paper
presents the extension of our earlier work as it reports the Aunu binary polynomials of
cardinality eleven and how to find their greatest common divisor (gcd) using the
extended Euclidean algorithm. The polynomials are pairly permuted and the results
found showed that one polynomial is a factor of the other polynomial or one polynomial
is relatively prime to the other and some gave different results. This important feature
is of combinatorial significance and can be investigated further to formulate some
theoretic axioms for this class of Aunu permutation pattern. Binary polynomials have
important applications in coding theory, circuit design, and the construction of
cryptographic primitives.

Keywords: Algorithm, Aunu, Cryptography, Euclidean, Extended, Galois
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I. Introduction

Aunu permutation patterns have been reported to be a class of permutation
avoidance which is of combinatorics and group-theoretic importance,[1,11,111]. The
binary polynomials were generated from the Aunu permutation patterns and some
arithmetic operations were performed as reported in [1V,V].

Finite fields are discrete mathematical objects satisfying all the axioms of a field, much

as for the real and complex numbers except for their finiteness. They are also finite sets
of objects which have arithmetic that allows the usual operations of addition,
subtraction, multiplication, and division except that the set contains only a finite
number of distinct elements. They are also referred to as the Galois field after the
French mathematician Evariste Galois who was one of the first to show interest in them.
It is easy to show that such objects exist only when the number of their elements is a
power of a prime number, [VI].
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Finite fields have been noticed to be the most widely used algebraic structure
in the design of cryptographic schemes. The finite fields have many applications in the
areas of coding theory, signal processing, cryptography, combinatorics, engineering,
and so on, [VII].

The arithmetic operations of the finite field of characteristic 2 known as binary fields
are considered to be very attractive for several cryptographic applications. Such
applications usually need efficient implementation in both hardware and software, thus
a fast execution of arithmetic operations over a finite field is of utmost
importance,[VII1,1X].

One of the approaches to increase the cryptosystems performance is the increasing of
the performance of finite field arithmetic in a multiplication operation. Galois field
allows manageable and effective data manipulation by using Advanced Encryption
Standard (AES) algorithm, [IX].

It has been reported that finite fields are by far, the most widely used algebraic
structure in the construction of cryptographic schemes,[VII,X,XI]. The Aunu
polynomials generated were also found to form some of these algebraic structures
which by extension may likely make it suitable for the construction of such
cryptographic schemes.

Over 2300 years ago, Euclid described, in Book 7 proposition 1 and 2 of his elements
(c. 300 B.C), a simple algorithm for finding the greatest common divisor of two
integers, [8]. The algorithm was chosen by Euclid to be the first step in his development
of the theory of numbers. The greatest common divisor of two integers m and n
gcd(m,n) is the largest integer that evenly divides both m and n.

A binary greatest common divisor was devised by Stein (1961) as reported in [XII].
This algorithm was based on three simple facts:

1. if mand n are even, gcd (m,n) = gcd (%,g);
2. 1f mis even and n is odd, then gcd(m,n) = ged (5,n);

3. If m and n are both odd, then m-n is even and gcd(m, n) = gcd(m — n, n).

This algorithm relies solely on the subtraction, parity testing, and right shifting of even
numbers and requires no division. It is thus more suitable for binary arithmetic.

An algorithm for calculating the modular inverse of an integer can be traced back to
the Aryabhatta (A.D 499) of northern India. The multiplicative inverse of an integer m
mod n exists if and only if m and n are relatively prime, i.e gcd(m,n) =1. We know that
the greatest common divisor of two integers can be expressed as a linear combination
of the two numbers. Therefore, we look for two integers r and s that satisfy the equation
mr + ns = 1. Further, this linear equation says that mr = 1 mod n; therefore r is
the inverse of m mod n. By reversing the steps in the Euclidean algorithm, one can
deriver and s while calculating gcd(m, n). This reversed procedure is known as the
Extended Euclidean algorithm, [V1].

This paper presents the use of an extended Euclidean algorithm to find the gcd of Aunu
polynomials of cardinality eleven by pairing the polynomials in such a way that it is
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permutated to all the words and sub-words as the case may be. The paper is divided
into five sections which comprise: Introduction, definitions of basic terms,
methodology, results, and conclusion.

I1. Definitions of Basic Terms
I1.i. Aunu Polynomials

The Aunu polynomials were derived from binary codes generated in which an
algorithm was constructed to convert the Aunu permutation pattern into binary codes
using a defined generating function, as reported in [I1V,V].

I1.ii. Greatest Common Divisor

For a pair of polynomials f1, f2 € F;[x] there exists a uniquely determined monic
polynomial d € F,[x] such that:

1. d divides f1 and f2

2. any polynomial g € F,[x] dividing both f1 and f2 also divides d.

The polynomial d is called the greatest common divisor of f1 and f2 and is denoted
by ged(f1, 2).

I1.iii. The Extended Euclidean Algorithm (EEA) gives not only the greatest common
divisor of two polynomials but also an equation relating them. Let f, g € F,[x], then

Extended Euclidean algorithm gives polynomials s, t € F,[x], such that
sf +tg = ged(f, 9).
I11.  Procedure/Methodology

Each step is a reduction algorithm step of the form D — q.d = r . For each
such line, the next replaces the previous dividend D with the previous divisor d, and
replaces the divisor with the previous remainder r. The algorithm terminates when the
right-hand side (remainder) is 0. The last non-zero remainder is the greatest common
divisor.

Each step in the Euclidean algorithm is a division with remainder, and the dividend for
the next step is the divisor of the current step, the next divisor is the current remainder,
and a new remainder is computed.

That is, to compute the gcd of polynomials

f(x)and g(x), initialize F(x) = f(x),G(x) = g(x) R(x) = f(x)g(x)
While R(x) # 0

replace F(x)by G(x)

replace G(x)by R(x)

recompute R(x) = F(x).G(x)

When R(x) =0, G(x) = gcd(f(x),g(x)).

Alternatively, the gcd can be computed using the following algorithm

Algorithm
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f=q9+n
g =qxry T 1
g=qrtn

T =q3r; 713
n-1=qn+0
We have gcd(f,g) =1 .
The Euclidean algorithm for polynomials with coefficients in a field (FZZZ/Z) is exactly
parallel in structure to the Euclidean algorithm for integers.
IV. Results

In what follows, we provide derived polynomials representation of Aunu
permutation of cardinality eleven using a similar technique as reported [IV,V]. We also
use the Extended Euclidean algorithm in the computation of the gcd for pairs of
polynomials in this category.

p1(x)=x3+x+1

po(x) =x®+x5+x*+x3+1

ps(x)=x+x7 +x*+x3+1

pa(x) =xB3 +x2 +x11 + 48+ x5 +x*+ 1

ps() =x7 +x* +xB +x2 +x0 + 4B+ xt+x3+x+1

Pe(x) = x20 + x19 + x17 + x0 + x11 + x> +x3+x+1

pr () =x** +x?T+xV +x0 +xM +x2 a7+ X+ x+ 1

ps(x) = x27 + x26 + x23 + x22 + x18 4 x17 + x5 4 x1* + x12 4 x11 + x°
+x8+x0+x°+1

Po(x) = x31 + x27 + x26 + x23 + x1% + x17 + 216 + x1* + x13 + x11 + x10
+x8 4+ +x3+x+1

P1o(x) = x33 + x32 + x27 + x%* + x23 + x22 + x?1 + x20 + x19 + x18 + x16
+ x5+ a1+ x12 4 x7 +xC +xt +x3+1

P11 () = x38 + x33 + x30 + x29 + x27 4 x26
+ 2%+ x2% + 123 + x22 + x21 4+ 118 4 x17 4 x5 4 412
+axtt a8 Fxb+xt+x+1

A. p;(x) can be permuted into ten classes and their gcd is computed as follows:
L (p2(0), p1 (1)) 2. (p3 (%), p1(x)) 3. (P4 (%), p1 (X)) 4. (s (x), p1 (X))

5. (p6(x), p1 (%)), 6. (p7(x),p1(x)), 7. (P (x), P1(x)), 8. (o (x), p1(x))

9. (P10(x), p1(x)), 10. (p11(x), p1(x))

1. Compute the gcd of p, (x) and p, (x) as polynomials with coefficients in GF (2)
pa(x) =x® + x5+ x* +x3+1, p(x)=x3+x+1
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X+ +xt+ 3+ 1+ (P Hx+ D +Hx2+ 1) =x%+x
B+ x+1+(2+x)(x+1)=1
x2+x+(DE2+x)=0
= ged(p (1) p1(x)) = 1

2. Compute the gcd of p5(x) and p, (x) as polynomials with coefficients in GF (2)
ps(x)=x+x"+x*+x3+1, px)=x3+x+1
xS+ 1+ 3+ DEC+H ) =23+ x+1
BHx+1+1(3+x+1)=0
=~ p1(x) is a factor of p3(x)

3. Compute the ged of p,(x) and p, (x) as polynomials with coefficients in GF (2)
pa(x) =xB3 +x2 +x +x8+ x5 +x*+1 , p()=x3+x+1
xB +x2 +x a8+ xS+ xt+1
+ O3+ x+DEO+H %+ xC+ P+t + 22+ 1)
=x?+1

B+ x+1+2+ D +1D) =1

(xX24+x)+1(x*+x)=0

w ged(Pa(x), p1(x)) =1

4. Compute the gcd of ps(x) and p; (x) as polynomials with coefficients in GF (2)

ps(x) =x17 +x* +xB3 +x2 +x0+xB b xt +x3+x+1, p(%)
=x3+x+1

X7+t 4 x13 + x12 4 x0  x® xt + a3+ x
+ 3 +x+ DM +x2 +x" +x2+x) =x2+x+1

A x+1+C2+x+ D +1) =x

+x+1+)x+1D =1

x+1(x) =0

= ged(ps(x), p1(x)) =1

5. Compute the gcd of pg(x) and p, (x) as polynomials with coefficients in GF (2)

Pe(¥) =x20 +x +xV7 +x® +x + x5+ x3+x+1, py(x)
=x3+x+1

X204+ x4 X7 x xT xS x4 x4+ 1
+ (3 +x
+ D(xY7 + x10 + x5 + 1 + 113 + x10 + x7 + x5 + x4
+x3+x2+1) =x?
B+x+1+GHX)=x+1
2+ x+Dx+1D) =1
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x+1+1(x+1)=0
= ged(ps (), p1(x)) = x +1

6. Compute the gcd of p,(x) and p, (x) as polynomials with coefficients in GF (2)

pr () =x* +x? +x9 +xo M 12 T  xB x7 +xC x4+ 1,

p(x)=x3+x+1
p7 () =x + x4+ x24T B 7 X x+ 1

+OS+x+ DO+ x + V7 + x5+ +x% + 2B +x7 +x° +x% +x)
= x2

B+x+1+0OGHDE)=x+1

x2+(x+1Dx) =x

x+1+)AQ) =1

x+1(x) =0

~ged(p, (), pr () = 1

7. Compute the gcd of pg(x) and p; (x) as polynomials with coefficients in GF (2)
pe(x) = x27 + x26 + x23 4+ x22 + x18 + x17 + x5 + x1* + x12 4 411 + x°
+x8+x0+x5+1, px)=x3+x+1
x27 + x20 + x23 + x22 + x18 + x17 + 115 4 x1 + 212 4 x11 4 x% + 48
+x0+x5+1
+ (3 +x+ D%+ x23 + x22 + 218 + x17 + x15 4 x4
+x2 +x0+x7 +x0 + x>+ x3 +x + 1) = x?
B+x+1+G6DE) =x+1
2+ (x+1Dx) =x
x+1+1) =1
x+1(x)=0
= ged(pg(x), p1 () = 1

8. Compute the gcd of pg(x) and p, (x) as polynomials with coefficients in GF (2)

Do(x) = x31 + x27 4+ x26 + x23 + x1% + x17 + 210 + xM + x13 + x11 + x10
+x8+ x>+ x3+x+1, pr)=x3+x+1

X3+ %27 4+ x26 4+ x23 + x19 4+ x17 4+ x10 4 x4 4 413 4 x4 410 4 48 4 x5
+x3+x+1
+ (3 +x
+ 1) (28 + x20 + x2° + x23 + x23 + x22 + x21 + x20 + xV7
+x x5 xS+ a3+ x)=x2+1

B+x+1+@2+DKX) =1

X+1+1(x%2+1)=0

~ ged(po(x), p1(x)) = 1
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9. Compute the gcd of p;o(x) and p; (x) as polynomials with coefficients in GF (2)

P1o(x) = x33 + x32 + x?7
+ x2% + x23 + x22 + x21 4+ x20 4 x19 4 x18 4 x16 4 %15
B+ x4+ x7 +x0+x*+x3+1, pp()=x3+x+1

¥33 4 32 & 427 4 324 L 423 4 522 L 421 4 120 4 19 4 418 4 116 | 415
+xBP+x x” +xC+xt + a3+ 1
+ (3 +x+ D30 + x2% + x28 + x5 + x2% + x23 + x?1
+x20 + x84 x13 4+ x12 4 x4 x10 x4 O+ x + 1)

BHx+1+EHE) =x+1

2+x+Dx+1D) =1

x+1+1(x+1)=0

 ged(pro(x), p1(x)) =1

10. Compute the ged of p;;(x) and p, (x) as polynomials with coefficients in GF (2)

P11 (x) = x38 + x33 + x30 4+ x29 4 x27 4 x26
+x24+x24+x23+x22+x21+x18+x17+x15+x12
+ax x84+ xt+x+1 p () =x3 +x+1

38 1 ¢33 4 30 4 429 4 127 4 126
+ X% 4 X% a2 a2 x4 x18 p x 1T 415 4 x12
B x4+ 14+ (3 +x
+ 1) (235 + 233 + 232 + 231 + 130 + x26 + x21 + x20 4 x18
+ x17 4 x10 4 x15 4 x4 x12 4 xT1 4 x10 4 x% 4 x8 4 x©
+x)=x%+1

BHx+1+E2+D) =1

x24+1+1(x*2+1) =0

~ged(p (), pr(x)) =1

B. p,(x) can be permuted into nine classes and their gcd is computed as follows:
L (p3(x), p2(x)) 2. (04 (%), P2 ())3. (p5 (x), P2 (X)) 4. (D6 (x), P2 (%))

5. (p7(x), 2(x)), 6. (Ps(x), P2(x)), 7. (Po (%), P2(x)), 8. (P10 (x), P2 (%))

9. (p11(x), P2 (x)).

1. Compute the gcd of p;(x) and p, (x) as polynomials with coefficients in GF (2)
() =x’+x" +x*+x3+1, p(X)=x+x>+x*+x3+1
X" +xt 3+ 1+ xS+t 3+ D+ +x+ 1)

— 2

=x“+1
X+ xS+ xt+x+ 1+ (2 + D +x2) =x
x2+1+(x)(x) =1
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x+1(x)=0
~ ged(ps(x) p2(x)) =1
2. Compute the gecd of p,(x) and p, (x) as polynomials with coefficients in GF (2)

Pa(@) =xB +x2 +xM +xB + x5+ x* + 1, pp(x) = x% + x° + x* + 3
+1

xB a2 a8 S+t + 1+ (k0 + 2%+ xt a3
+ D(x7 + x* +x3 +x2) = x3 + x2

BHx+1(x3+x) =1

x3+x2+1(x3+x%) =0

= ged(pa(x) p2(x)) =1

3. Compute the gcd of ps(x) and p, (x) as polynomials with coefficients in GF (2)
ps(x) =x7 +xM +xB +x2 + x0 x84 x* + a3 +x+ 1,
p2(x) =x®+ x> +x* +x3+1

X7 x4 x12 4+ x0 a¥ xt +x3+x+ 1
+xC+x+xt+x3+ DM + 10+ 28 +x7 +x°
+x3+x?)=x3+1

xS +xt P+ 1+ P+ D+ + ) =x+x+ 1

B+ + %2 +x+1D)(x+1)=0

~ ged(ps(x) p2 () = x* +x +1

4. Compute the gcd of pg(x) and p, (x) as polynomials with coefficients in GF (2)

Pe(@) =x20 +xP +xV +x +xt + xS+ a3+ x+1, p(x)
=x+x5+xt+x3+1

x20 +x +x7 +x xS a3+ x+ 1
+ (x®+ x5 +x*+x3+ DO + 212 + 21+ 210 4 x% + x* 4+ &2
+ 1) =x>+x3+x%+x

X+ +xt 3+ 1+ P+ 3+ P+ )+ D) =x3+x+1

P+t +x+ (P +x+ D) =x

BHx+1+@E2+1D) =1

x+1(x) =0

~ ged(ps(x) p2(x)) =1

5. Compute the gcd of p,(x) and p, (x) as polynomials with coefficients in GF (2)
pr(x) =x?* +x? 1+ xP + x0 FxM + x2 M +xB X7 X+ x
+1, p () =x+x5+x*+x3+1
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x x4 x4 x4 x84 T+ X+ x+ 1

+(x®+ x5 +xt+x3+1)(x18

+x7 xS B %+ %+ x7 x5+ x% +x

+1) =x3+x?
x4+ xS +xt+ 3+ 1+ (P + )3 +x) =1
x3+x2+1(x3+x%)=0
= ged(ps (%) p2(x)) = x° + x?

6. Compute the gcd of pg(x) and p, (x) as polynomials with coefficients in GF (2)
pe(x) = x%7 + x26 4+ x23 + x22 + x8 + x17 + x5 + 2™ + x12 + 11+ x°
+x8+x0+x°+1,  p)=x0+x>+xt+x3+1
x27 + x20 + x23 + x22 + x18 + x17 + 215 + 21 + x12 4+ x11 + x% + 48
+x8+x5+1
+x®+ x>+ x*t + 23+ D2+ 21 + 213 + x10 + x6 + x2 +x)
=xS+xt+x2+x+1
x4+ xS +xt+ 3+ 1+t +x2+x+ D) =xt +x%+x+ 1
x4+ xt+x?+x+ 1+ P+ x+ D+ D) =23+ x% +x
xt+x?+x+1+ O3 +x2+x0)(x+1) =x%2+1
B+ +x+ P+ D+ =1
x> +1+1(x*+1)=0
=~ ged(pg(x) p2(x)) = 1

7. Compute the gcd of pg(x) and p, (x) as polynomials with coefficients in GF (2)

Po(x) = 231 + x27 + x26 + x23 + x19 + x17 + x16 + x1* + 113 + x11 + x10 + 8
+x>+x3+x+1, po(x) =x® +x5+x*+x3+1

131 4+ 227 + x26 + x23 + x1% + 27 + x10 + M + 213 x4 x10 4 48 4 &
+x3+x+1
+ (x® + x5+ x* + x3 + 1)(x?° +24+ x20 + x1% + x18 + x15
x24T 4 x0 4 xB xS+ xt+x3) =3+ x4 x

x4+ +xt+ 3+ 1+ (P 2+ )3+ 1) =x2+x+1

3+x?+x+(x2+x+1)Hx)=0

= ged(pe(x) (X)) = x* +x + 1

8. Compute the gcd of p;o(x) and p, (x) as polynomials with coefficients in GF (2)
Pro(x) = x33 + x32 4+ x?7
+ x2% + x23 + x2% + x21 + x20 + x1% + x18 4 x16 4 x15
+xB 4+ x4+ x7+x0+x*+x3 41, py(x)
=x®+x5+x*+x3+1
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¥33 1 (32 4 27 4y 24 4 223 4 122 L 421 4 420 4 419 4 18 4 16 4 415
+axB a7+ +xt a3+ 1
+ (x + x> + x* + x3
+ 1D (x?7 + x2° + x23 + 221 + x16 + x15 + x1* + x12 + x10
+x*+x3+x+1D)=x3+1
X+ xS+ xt +x3+ 14+ O+ D+ ) =x2+x+1
BH1+O%2+x+Dx+1)=0
. ged(pro(x) p2(x)) = x* +x +1

9. Compute the gcd of p;4(x) and p, (x) as polynomials with coefficients in GF (2)
P11 () = x38 4 x33 + x30 4 x29 4 x27 4 x26
+ x24 + x24 + x23 + x22 + x21 + x18 + x17 + X15 + X12
a8+ xb+xt+x+1, p(x)
=x®+x>+x*+x3+1
x38 +x33 +X30 +x29 +X27 +X26
+ x24 + x24 + x23 + x22 + x21 + x18 + x17 + X15 + X12
+x+ x84 xb+xt+x+1
+ (x® + x5+ x* + 23+ 1)(x3% + 231 + 128 + x4 + x20
+x2 + x17 + 210 + x12 4 X1+ x10 4+ x7 + x6 + x* + x?
+x)=x3+x%+1
X+ xS+ xt+ 3+ 14+ O3+ 2+ D)3 +Hx+ 1) =22+ x
B+ +1+ (X% +0)(x) =1
x2+x+1(x2+x)=0
~ged(pri(x) p2(x)) =1
C. p3(x) can be permuted into eight classes and their gcd is computed as follows:
L (pa (), p3(0)) 2. (05 (x), p3(x)) 3. (P6(x), p3(x)) 4. (p7 (%), P3 (%))
5. (ps(x), p3(x)), 6. (Po(x), P3(x)), 7. (P10(x), P3(x)), 8. (11(x), p3(x)).

1. Compute the gcd of p,(x) and p3(x) as polynomials with coefficients in GF (2)
Pa() =xB +x2 +x + a8+ x5+ x* +1 p3(0) =x+x7 +x*+x3+1
B+ x2 xS+ xt 14+ (P x7T +Hxt+x3+ Dt +x3 +x)
=x8+x0+xt+x3+x+1

X0+ x"+xt+ 3+ 1+ (B xC+xt+x3+x+ D)%)
=x+x3+x2+x+1

X+ +xt+ a3 +x+ 1+ O+ +xZ+x+ D)3+ 1) = x3 +x?

xS+ x4+ 1+ +HxD)2+x)=x2+x+1

B+ + (2 +x+ D)) =x

2+x+1+0)+1) =1

x+1(x)=0

= ged (pa(x), ps(x)) = 1
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2. Compute the gecd of ps(x) and p;(x) as polynomials with coefficients in GF (2)

ps(x) = x17 +x +xB +x2 +x0 + x84+ xt + 23+ x + 1, p3(x)
=x7+x"+xt+x3+1

X7 M B+ +x0 aB bxt+x3 x+ 1+ (% +x7 +xt+ 43
+ DB+ x + x5 +x3+x2+x+1)
=xb+ x5+ x* + x3 + x?

O +x”+xt+ 3+ 1+ + x>+t + a3+ X)X +x%2 +x+ 1)
=x3+x2+1

X0+ xS+t + i+ + (32 + DB+ x+ 1) =x+1

B+ +1+(x+1)(x?) =1

x+1+1(x+1)=0

= ged (ps(x), p3(x)) = 1

3. Compute the gcd of pg(x) and p;(x) as polynomials with coefficients in GF (2)
Pe(x) = x20 + x19 4+ x17 + x4 x4+ x5+ x3+x+1, p3(x)
=x?+x"+x*+x3+1
x20 4 x4 x0T xS+ x4 x4+ 1
+x+x”+x*+x3+ DO+ 210+ x% + x6 + x?
+x3+x2+x+1)=x7 +x% + x5+ x* + x3 + x?
x4+ x7T +xt a3+ 1+ (T xS xt+x3HxD)(2+Hx+ 1)
=x+x>+x*+x3+x%2+1
7 +x8+x°+xt+x3 +x) + (0 + x> +xt + 23+ x2 + 1D (x)
=x%+x
X+ xS+ xt a1+ (20t +x2P+ D) =x+1
>+x+(x+1x)=0
~ ged (pe(x), p3(x)) = x +1
4. Compute the gcd of p,(x) and p;(x) as polynomials with coefficients in GF (2)

pr () =x?* +x? 1+ x + x4 M x24T B+ X7 +xC+x+ 1,
ps(x) =x"+x7 +x*+x3+1
x0T +xB+xT X+ x+ 1
+ (% +x7 +x* + 23+ D) + 213+ 12 4 a1+ x10
+x” +x0+xt+x+1)=x8 + x5+ x* +x8
X+ x7T+xt+x3 1+ (Bt DN ) =T+ X+ + a3+ 1
B+t 3+ T+ H P+ D+ D) =x+1
x7+x0+ x5+ + 1+ + D+t +x3) =1
x+1+1(x+1)=0
~ged (p7(x), ps(x)) = 1
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5. Compute the gcd of pg(x) and p;(x) as polynomials with coefficients in GF (2)
ps(x) = x27 + x26 + x23 + x22 + x18 + x17 + x5 + M + x12 + X1 + x°
+x8+x+x°+1, ps()=x+x" +x*+x3+1
x27 4+ x%6 + x23 + x22 + X8 + 17 + 415 + a1 4+ 212 + x4 x% + 8
+x6+x°+1
+ (P +x7+x* + 23+ 1D + 27 + 216 + x5+ x13
+x + x84+ xt+ 1) =2+ x5+ x
X+ x7 x4+ 1+ B+ ) () =x +x2+1
B+ xS +x+ (e +x?2+ D2 =x*+x
x+x?2+ 1+t +0)(x?) =x3+x2+1
xt+ x4+ +x2+ D +1D) =x2+1
B+ +1+(x?+Dx+1) =x
2+1+()x+1D) =1
x+(Dx=0
= ged (pg(x), p3 (1)) = 1

6. Compute the gcd of pg(x) and p3(x) as polynomials with coefficients in GF (2)
pg(x) — x31 + x27 + x26 + x23 + x19 + X17 + X16 + x14 + X13 + xll + xlO
+x8+ x5 +x3+x+1,
ps(x)=x+x" +x*+x3+1
X31 +x27 +X26 +X23 +X19 +X17 + x16 + x14- + x13 + xll + xlO + x8
+x5+x3+x+1
(% +x7 +x* + 13+ 1) (%2 + 220 + x16 + 115 4 x1* + x12 + x% + x2
+x)=x+x5+x*+x3+x2+1
X+ x7T+xt 31+ (P x2S +x%+x+ 1)
=x+1
x4+ +xt+ 3+ %2+ 1+ (x+DEP+x3+x+1) =0
« ged (po(x), p3(x)) = x +1

7. Compute the gcd of p;(x) and p5(x) as polynomials with coefficients in GF (2)
Pro(x) = x33 + x32 + x?7
+ 2% + x84 122 4 121+ x20 4 119 4 118 4 16 4 115
+aB+xZ X" x4+ 1,
ps(x)=x+x7 +x*+x3+1
x33 +x32 +X27 _|_x24-+x23 +X22 +x21+x20+x19+x18 _|_x16 _|_x15 +
B+ x4 x” +x+xt a3+ 1+ (% 7 a3+ D% +23+
x22 4+ x4+ x20 x4 x12 B xb x> +x?) =B+ xC + x>+ xt +
x? + x+1
X0+ x7+xt + 3+ 1+ (B xSt x?+x+ D)
=x+x*+x?2+x+1
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Bxtta®+xt+a tax+ 1+ @+t a2 +x+ D)
=x>+x3+x+1
X+ xt+x?+x+1+ P+ x3+x+ D) =1
XS+ x+1+DES+x3+x+1)=0
. ged (pro (), p3(X) = x° +x3 +x +1

8. Compute the gcd of p;4(x) and p;(x) as polynomials with coefficients in GF (2)

P11 (x) = x38 4 x33 4 x30 4 529 4 x27 4 426
+ x24 + x24 + x23 + x22 + x21 + x18 + x17 + x15 + x12
+x a8 +xb+xt+x+ 1, p3(x)
=x+x"+xt+x3+1

38 4 33 4 30 4 529 4 127 4 26
+ x24 + x24 + x23 + x22 + x21 + x18 + x17 + x15 + x12
+xl+ 8 +xb+xt+x+1
+ (x%+x7 + x* + x3
+ 1)(x%7 + x27 + x25 + x22 + x19 + x17 + x13 + x10 4+ x°
+x0+x+ a3+ x2+x)=x"+ x5+ x3+x2+1

0+ xTHxt+x3 1+ T+t + 1D)(XP)
=x"+x3+x%2+1

X7+ x5+ a3+ 1+ O+ 2+ D) =xt+ a3+ 1

O+ + P+ 1+ (P 3+ D+ 1) =x% +x

xt+x3+1+ (2 +x0)(x?) =1

> +x+ (D> +x)=0

~ged (P11 (), p3(x)) = 1

D. p.(x) can be permuted into seven classes and their gcd is computed as follows:
1. (5 (%), P4 (%)) 2. (D6 (%), P4 ())3. (p7 (%), P4 (x)) 4. (P (x), P4 (X))

5. (po(x), P4 (%)), 6. (P10(x), P4(x)), 7. (P11(x), P4 (x)).

1. Compute the gcd of ps(x) and p,(x) as polynomials with coefficients in GF (2)

ps(x) =x7 + x4+ xB + x2 4+ x0 + 8+ x* +x3 +x + 1,
Pa(x) = xB3 +x12 +x1 +xB + x> +x* + 1

X7+ x4 x84 xt 3+ x+1
+ B+ T x4+ x Hat + D a3+ 1)
=x2+x0 +x%+x7 + x5 +x* +x

xB a2 xS+ xt+1
+ P2 +x0+x°+x7+ x> +xt+x)(x + 1)
=x7+x"+x+x°+x2+x+1
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x4 x0 x4 x7 x5+ xt +x
+(x?+x7+x0+ x> +x2+x+ 1)(x3)
=x8+x"+x3+x

X0+ x” +x+ xS+l x+ 1+ B+ +x3+x)(x + 1)
=x0+x5+xt+x3+1

X+ x7 + a3+ x+ (P xt +x3+ D%+ D) =xt +x%2+x+1
x4+ xP+xt+ x4+ 1+t i+ x+ D2+ x)=x3+x+1
xt+xl+x+1+ @3 +Hx+ D) =1
B+x+1+ME3+x+1)=0
= ged(ps(x), pa(x)) = 1

2. Compute the gcd of pg(x) and p,(x) as polynomials with coefficients in GF (2)

Pe(¥) =x20 +x +xV +x +x + x5+ a3+ x + 1, py(x)
=xB+x12 +xT +x8+ x5+ x4+ 1

x20 4 x4+ xS i b+ 1+ (3 + x? + xM +x8 4+ X
+xt+DE7+ x>+ x2+x+ 1)
=x12 4+ x11 + x8 + x* + x3 + x2

xB a2 xS+t 1+ P2+ B+ xt a3+ X)) (%)
=xl+x%+x8+x2+1

x4+ x ¥+t + 3+ 2+ M+ x%+ X+ X2+ D)(x+ 1)
=x0+x2+x+1

P+ x? + a8+ x?2 + 1+ (0 +x?2+x+ D) =x" +x8 +x2 +x +1
x4+ x2+x+1+ O+ +x2+x+D)(x+ 1) =28 +x3 +x% +x
X+ a8+l x+ 1+ 0O+ 3+ 2+ ) (x+ 1) =x*+x%2+1
B+l +x?+x+ (a2 + D +x2) =x3+x
xt+x2+1+ (3 +0)x) =1
3+x+MDE3+x)=0

~ ged(ps (), pa(x)) = 1

3. Compute the gcd of p,(x) and p,(x) as polynomials with coefficients in GF (2)

pr () =x2* + x21 + 219 + 210 + 21 + 212 + 21 + 28+ x7 + x°
+x+1, pi(x)
=xB +aZ a8+ x5+ xt+1

x4 x4+ x4 Mt 2 M B T X+ x+ 1
+ (B +x2 +x + a8 + X%+ xt + 1) (M + x10)
=x24+x0 + a8 +x7+x+x+1
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xB x4+t aB xS x4+ 1
24+ 7+ x8+x+ D+ 1)
=x10 +x% + x8 + x® + x5 + x* + x?

(2 +x0+x8+x7 +x+x+1)
F 0+ a8+ X+ xS+t D)X+ x+ 1)
=x8+x"+x3+x2+x+1

x10 + x% + x8 4+ x6 + x> + x* + x?
+ B+ x"+x3+x2+x+ D2+ 1)
=x"+x0+x?+x+1

xBHx’ a3+ + 1+ HxC+HxfHx+ D) =1
x7+x+x?+x+1+ D7 +x°+x2+x+1) =0
w ged(pr (x), pa(x)) = x +1

4. Compute the gcd of pg(x) and p,(x) as polynomials with coefficients in GF (2)

pe(x) = x%7 + x26 + x23 + x22 + x18 + x17 + x15 + xM + x12 + x11 + x°
+x8+x6+x°+1,
pa(x) =xB +x12 + xM +xB + x5 +x* + 1

X%+ x%0 + x23 4+ x22 18 x4 15 x4 12 4 1 4 X% 48
+x®+x°+1
+ (B + 22+ x84 x5t + DM+ x12 + X1
+x0 4+ x84+ x0+x*+x2+x+1)
=x0+x% +x7 +x°+x%+x

xB 4+ x12 +xtt xS+ xt+1
+ (x0+ x4+ x7 + x>+ x2 +x)(x3 +x)
=x8+x0+x3+x%+1

x4+ x% +x7 +x+xl+x+ (B A+ P+ X2+ D2 +Hx+ 1)
=x®+x%+1

B+ xl+ a3+ + 1+ (xC+x2+ D2+ 1) =x* +x3 +x2
x+x2+1+ O+ 3+ x)xP+x)=x3+x%2+1
xt+x3+x2+ (3 +x2+ D) =x%+x
B2 +1+ 2+ =1

> +x+ D% +x)=0

~ ged (pg (1), pa(x)) = 1

5. Compute the gecd of pg(x) and p,(x) as polynomials with coefficients in GF (2)
Po(x) = x31 + x27 4+ x26 + x23 + x19 + x17 + x16 + x4 4+ x13 + x11
+x0+x8 + xS+ x3+x+1, pa(x)
=xB + a2 +x+x8 +x+xt+1
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130+ x%7 + x20 4+ x23 + x19 + a7 4 10 + x4 413 4 1T 4 x10 4 4B
+x>+x3+x+1
+ B+ x2 +x +x® +x5 +xt + D (X8 + 2 41
a0+ x7 +x0+xt + 1)
=x12 +x10 + x7 +x6 +x3 +1
B+ x4+ x ¥ xS+ xt+1
+ @+ x0T+ x P+ D+ 1)
=x0+x0+x5+x3+x
X2+ x4+ x7 +x+ 3+ 1+ (O xS+ P+ ) (k2 + 1)
=x8+x3+x+1
X0+ xS+ +x+ (B + 3+ x+ D) =x+x2+x
B3 +x+1+EC+x2+0)(x+ 1) =x*+x+1
x+x?+x+ (O +x+DED =x3+x
xf+x+1+ O3 +x0)x) =x2+x+1
Brx+ P +x+Dx+1D)=x+1
2+x+1+(x+1x=1
x+1+(MDx+1)=0

“ ged(pe (%), pa(x)) = 1

6. Compute the gcd of p;(x) and p,(x) as polynomials with coefficients in GF (2)

Pro(x) = x33 + x32 4+ x?7
+ X% + x23 122 4 x21 4 x20 4 519 4 418 4 x16 4 415
+axB+ x4+ x7 +x0+x*+x3+1,p,(x)
=xB+x12+x +x8+ x5 +xt+1
x33+x32+x27+x24+x23+x22 +x21 +x20+x19+x18+x16 _l__xlS
+xB +x2 +x7 +x0+x*+x3+1
+ (13 + 22 4+ x4 x® x5+ xt
+ 1) (%0 + x18 4+ x17 4 21 4+ x12 4 21 4+ x% 4+ x8 4+ x7
+x0+x) =xl+x%+xB+x7 +xC+xt+x3+x2+1
B +x2 +x x84+ x5 +xt+1
+ M+ X+ x8+x7 +x+xt +x3+x%2+ D2+ x)
=x8+x7+x+x*+x3+x%2+1
X x4 a7 a3+ a2 +1
+ OB+ x"+x+xt + 3+ 2?2+ D3+ x% +x)
=x>+x?+x+1
X Hx7 +xC+xt 3+ P+ 1+ (P %+ + D3 +x2 +x)
=x*4+x%+1

xS+ x?+x+1+ P+ 2+ D) =23 +x%2+1
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x*+x?2+ 1+ +x2+ D+ 1) =x
+x?+1+@0)E2+x)=1
x+ (M) =0
~ ged (p1o(x), pa(x)) = 1

7. Compute the ged of p;4(x) and p,(x) as polynomials with coefficients in GF (2)

P11 (%) = 238 + 133 + x30 4 29 4 27 4 x26
4 2% 4 2%  x23 4 22 x2L 18 1T x5y 12
+x +xB +xC +xt+x+1,
Pa(x) = B3 +x12 + x4 x8 + x5 + x* + 1

138 + 233 + 230 + 129 + 127 + 126 + 12 + 12 + 1B + 122 + 1% 4 x18 +
R i T S Sl Pl P A b Al o B S C A P Tl S e S
X+t + D%+ 22 122+ x4+ 17 216 M x4 X7 +x +
x*+x3) = 22+t a0+ 1%+ x84+ X3+ x4l
x4+ 44 Hxt +1
+ (22 +x +x0 +x% + 2B+ 3+ x4+ D (%)
=x0+x%+x8 + x5 +x?+x+1
x4 x4+ x84 x4 x+ 1
+ 0+ %+ x8+ 2%+ 2%+ x+ D (x?)
=x?+x8+x7+xt+x2+1
X0+ + a8+ xS+’ +x+ 1+ (P + ¥+ x7 Hxt +x%2 + 1) ()
=x3+1
X0+ a8+ x7+xt +x2+14+ (P + xS+ xt P+ X%+ 1) =x
3+1+(x)E) =1
x+(Dx)=0

s ged(pr (), pa(x)) = 1
V. Conclusion

The paper presented results on the gcd of binary polynomials of Aunu
permutation patterns of cardinality eleven using an extended Euclidean algorithm. It
was established that most of the gcd of the permuted classes of words and sub-words
were coprime. This has an application in the construction of cryptographic schemes
that requires a public key and private key to be coprime. The results presented are for
p1(x),p2(x),p3(x) and p,(x). The remaining classes of the polynomials will be
presented in our future research.
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