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Abstract

A modified extended iteration procedure is applied to compute the analytical
periodic solutions of the nonlinear oscillator having fractional terms. A nonlinear

oscillator with U% force is given to demonstrate the effectiveness and expediency

of the iteration scheme. Mickens’ extended iteration method is a well-established
method for studying random oscillations. The method is also simple and
straightforward to accomplish approximate frequency and the corresponding periodic
solution of the strongly nonlinear oscillator. The method gives high validity for both
small and large initial amplitudes of oscillations. We have used an appropriate
truncation of the obtained Fourier cosine series in each step of iterations to determine
the approximate analytic solution of the oscillators. The second, third, and fourth

approximate frequencies of the truly nonlinear oscillator with U% force show a

good agreement with their exact values. Also, we have compared the calculated
results with some of the existing results. We have shown that the method performs
reasonably better.

Keywords: Mickens’ Extended iteration procedure; Nonlinear oscillator with the
fractional term; Nonlinearity; Fourier series.

I. Introduction

Nonlinear oscillations are a significant expression of dynamic behavior met in
various fields. Every dynamic system displays oscillations of some kind. The most
intuitional and evident nonlinear oscillations are in the field of engineering, but they
are also regularly met in other fields, such as electromagnetism, logistics (stock),
economy (business cycles), biology (population cycles), etc. The exact mathematical
description and characterization of nonlinear oscillations are therefore of great
importance in science, engineering, medical science, economics, etc. So studies on
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nonlinear oscillations system are most attractive of researchers. Although research on
non-linear systems is a lot complex and sensitive because the characteristic of the
non-linear system unexpectedly changes due to some small deviation of existing
parameters as well as time. A lot of analytical methods are established to solve
nonlinear oscillators such as Perturbation Method [XXX, XXXI]; Homotopy
Perturbation Method [I11]; He’s Homotopy Perturbation Method [IV, V]; Harmonic
Balance Method [VI, XXIV-XXVI]; Iterative Method [I, XI-XXII, XXVII-XXIX];
Cubication Method [1X]; He’s Max-Min Method [I1], Rational Energy Balance
Method [VII]; Energy Balance Method [XXIII], He’s Energy Balance Method
[VIII, X], etc. Among them, Mickens’ extended iteration method is one of the most
extensively utilized methods in which the nonlinear term is strong. Mickens has
developed an extended iteration technique and further effort has been through by
Lim, Hu, Wu, and Haque.

The core point of this paper is to solve approximately the nonlinear oscillator with the
fractional term by using Mickens’ extended iteration method and to compare the
output obtained with the exact one and with the result obtained by He’s energy
balance method (HEBM) [X] to the oscillator. As we can see, the results presented in
this paper reveal that the Mickens extended iteration method is very efficient and
competent for the nonlinear oscillator with the fractional term.

I1. The methodology
There are three steps in the iterative process:
(i) Considering a second-order ordinary differential equation
(ii) Constructing it into standard form
(iii) Taking iterative scheme
(i) Consider the second-order nonlinear differential equation of the form
F(u,u)=0 with u(0)=a ,u(0)=0 1)
Equation (1) rewritten of the form
Ui+ f(u)=0 ()
(ii) Now the iteration form of equation (2) is

i+ o’u=0’u-fu)=H( o) ©)

where @ is the natural frequency and currently @” as well as @ is unknown.
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(iii)  The Iterative scheme of equation (3) is of the form

Uk+1+a)k2uk+1:H(Uk,a)k);kzo,l,Z,--- )

u(t)= acos(at), .
And

uk+l(o)= a, uk+l(0) =0 ) (6)

where a is the amplitude of the oscillator.

The extended iteration scheme is of the form

Uk+1+wk2uk+l:H(uk1uk)+Hu(uO’wk)(uk —Uy) (7)

oH i i
where H, =8_ And u, ,, satisfies the conditions (6)
u

u(t), u,(t), u;(t).... and @, , @, , @, .... are the first, second, third, ......

approximate roots and corresponding frequencies of the oscillators respectively
obtained by avoiding the secular terms in each step of iteration.

I11. Solution Procedure

%

We consider an U force nonlinear oscillator as

Wl

U+eu®=0. (8)

Adding @”u on both sides of equation (8), we get

1
i+ o’u=0’u-cud =H(u,w?) 9)
1
where H(u,0*) = w*u-su? (10)
1 -2
Therefore H, = o” -3¢u 3 (11)

According to our consideration, the extended scheme of equation (7) will be

1
= 1 _2

.. 2

Ui +ulka+l =(a)k2u0 —&ug) + (o, _gguo 3)(u, —Uy) (12)

To obtain first iterated result, we have

1
U, + wlu, = w?acosd — g(acosh)? (13)
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After expanding the equation (13) reduces to

1

U, + wfu, = (o?a—1.1595952670£a°) cos &

(14)
1 1
+0.2319190534¢a3 cos 30 —0.1159595267 a3 cos 50
To avoid secular terms from equation (14), we obtain

1
1.0768450525 2

Q, = - . (15)

ag

Q), indicates the first approximate frequency of the oscillator.

After removing secular terms, the equation (14) changes to

1

1
U, + @ju, =0.2319190534 a® cos3¢0 —0.1159595267c a® cos50  (16)
The solution of equation (16) is

u, (t) = C cos @ +a (—0.0250000000 cos 36

17)
+0.0041666667 cos 50)
Using u,(0) =a, we have C =1.0208333333
Therefore,
u, (t) =a(1.0208333333%0s6 — 0.025000000@0s3¢ (18)
+0.00416666670s50)
This u, (t) represents the first approximate analytical solution of the oscillator.
For the second level, we have
2 2 1 > 1 2
U, + o;u, = (@ Uy —Uy3) + (@ —§U03)(U1—U0). (19)
-2 1
That is U, + ®u, = @, °u, —geuo?ul—ggug. (20)

After expanding the equation (20) reduces to
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1
li, + w’u, = (1.0208333333a0,> —1.16974172555a°) cos &
1

+(~0.0250000000 acw” +0.2466775386 £ a®) cos 30 (1)

1
+(0.0041666667am,” —0.1225481362 ¢ a®) cos 50

To avoid secular terms from equation (21), we obtain

1
1.0704529160Q 2
w, = - (22)

asd

Q) indicates the second approximate frequency of the oscillator.

Then equation (21) yield

1 1

li, + w?u, = 0.2180308025 a® cos30 —0.117773680%k a® cos560  (23)
This u, (t) represents the first approximate analytical solution of the oscillator.

The solution of (23) is
u,(t) =C, cosé +a(-0.0237844289 cos 30

: (24)
+0.0042825443c0s56)

Using u,(0) =a , we have C, =1.019501884&
Therefore,

u,(t) =a(1.01950188460s0 —0.023784428%0s30 (25)

+0.00428254430s50)
This is the second approximate analytical solution of the oscillator.
For the third level, we have
-2 1
U, + w?u, = w,’u, —gguo?uz—ggug’. (26)

By expanding, we have

1
i, + w?u, = (1.01950188460,> —1.169137586% a®)cosd
1
—(0.023784428%m,% —0.245980082& a®)cos39  (27)
1
+(0.004282544%m,% —0.1223889282 a°) cos50
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To avoid secular terms from equation (27), we obtain

1

_ 1.070875036%2 (28)

w, T
ag

This is the third approximate frequency of the oscillator.
Then equation (27) becomes

1
(i, + w?u, = 0.2187047337 £a’ cos 39 29)
1

—0.1174778205 £a® cos 50

The solution of equation (29) is
u,(t) =C, cos@+ a(—0.0238391412 cos 34 . (30)
+0.0042684190cos58)
Using u,(0) =a ,we have C, =1.0195707222

Therefore,

u, (t) = a(1.0195707222c0s0 — 0.0238391412:0530

(31)
+0.004268419@0s50)

This u,(t) indicates the third approximate analytical solution of the oscillator.

Proceeding to the fourth level x, (t)satisfies the equation

1
-2 d
. 2 —
U, + wlu, = o, u3—§5u03u3—§£u03. (32)

By expanding, the equation (33) reduces to

1
l, + w’x, = (1.019570722220,° —1.169167626% a®) cosO
1

— (0.0238391412m,” —0.246010911% a*)cos36 (33)

1
+(0.0042684190w®,” —0.1223915856¢ a®) cos560

To avoid secular terms from equation (33), we obtain

1

_1.0708526428&8 2 (34)

1
a3
Which is the fourth approximate frequency of the oscillator.

cO4
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IV. Results and discussions

To obtain approximate solutions of a nonlinear oscillator with U}é force,
we have applied an extended iteration method. Here we have calculated first, second,
third, and fourth approximate frequenciesw,, @, ,®, and @,. The frequency-
amplitude relationships are given in Table-1, Table-2, Table-3, and Table-4. To show
the validity of the obtained solutions we have compared the results with the existing
results determined by He's energy balance method [10]. The comparison between the
third-order approximate solution of equation (8) for £ =0.1& a=10, ¢=1.0&
a=10, £=0.1& a=10ande =0.1& a=10 together with corresponding exact
solutions are presented in Figure-1, Figure-2, Figure-3, and Figure-4. Analyzing the
results, we see that in our proposed method, the relative errors are less for all values
of amplitude for the existing He’s energy balance method and the values of
frequencies are very proximate to exact values.

Table 1: Comparison of the approximate frequencies with exact frequency w, of

1
U+csud=0when ¢=0.1
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Table 2: Comparison of the approximate frequencies with exact frequency w, of
1
lU+eu®=0when £=1.0
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Table 3: Comparison of the approximate frequencies with exact frequency @, of
1
l+ecud=0when £=10.0
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Table-4: Comparison of the approximate frequencies with exact frequency

1
o, of U+&u®=0when £=100.0

. HEBM
Note: Here ayy;

represents the approximation frequency obtained by Ganji S. S. et
al [X].
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Figl. A comparison between the third-order approximate solutions of
1
U+cu®=0when £=0.1 and a=10 together with the corresponding exact

solution.
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Fig2. A comparison between the third-order approximate solutions of
1
U+cu®=0when £=10 and a=10 together with the corresponding exact

solution.
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Fig 4. A comparison between the third-order approximate solution of U + cu=0

when £ =100 and a =10 together with the corresponding exact solution.

V. Conclusion

We used a very easy but efficient method for the nonlinear oscillator. It can
be observed that the second, third, and fourth approximations of the nonlinear
oscillator provide almost the exact result. The method can be easily extended to any
nonlinear oscillator without any difficulty. Moreover, the present work can be used as
an illustration for many other applications in searching for periodic solutions of
nonlinear oscillations and so can be found widely applicable in engineering and

science.
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