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Abstract 

                   The article contains the results of computational experiments for the non-

homogeneous Burger's problem and finding its solution by using the non-classical 

variational-Cole-Hopf transformation approach. On using exact linearization via 

Cole-Hopf transformation, as well as the application of the non-classical variational 

approach, then the non-homogeneous Burger's problem has been solved. The solution 

which is obtained by this approach is in a compact form so that the original 

nonlinear solution is easy to be approximated. The accuracy of this method is 

dependent on the types of selected basis and its number. 

Keywords: Burger's problem; numerical solution; Cole-Hopf transformation; non-

classical variational. 

I.    Introduction  

     Consider the following non-homogeneous one-dimensional nonlinear 

Burger's equation: 

t




u(x, t) − 

2

2x




u(x, t) + u(x, t)

x




u(x, t) = J(x, t), a<x<b, t > 0  (1) 

with the initial condition 

u(x, 0) = h(x),    a < x < b      (2) 

and the boundary conditions: 

u(a, t) = f(t) 

and                                  , t > 0             (3) 

u(b, t) = g(t) 

where  > 0 and a, b are real numbers. 

First appeared in 1915 by Bateman [II], who used the equation as a model 

for the motion of a viscous fluid when the viscosity approaches zero and derived two 
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types of steady-state solutions for the infinite domain problem [I, VII, XI, XIII, 

XVIII, XIX]. 

Several people have investigated Burger's equation, there have been a lot of 

studies and researches on the equation [IV, VI, VIII, XIV]. Lighthill formally derived 

the equation as a second-order approximation to the dimensional unsteady Navier-

Stokes equations [III, XII, XVII]. A similar result and observation were obtained by 

Moran and Shen, [V,IX,X,XV,XVI]. 

 This article aims to solve the problem (1)-(3) approximately by using Cole-

Hopf transformation together with a non-classical variational approach. 

II.       Exact Linearization of Problem Formulation: 

If the linear equation: 

t




(x, t) = 

2

2x




(x, t) − 

1

2
(x, t)V(x, t)    (4) 

Where: 

V(x, t) = 

x

0

 J(x, t) dx (5) 

Is subjected to the transformation: 

(x, t) = F(u)        (6) 

Where, for the moment F is specified.  

Now, finding the derivatives of (x, t) as follows: 

t




(x, t)= F

t




u(x, t)      (7) 

x




(x, t) = F

x




u(x, t) 

2

2x




(x, t) = F

2

2x




u(x, t) + F

2

u(x, t)
x

 
 
 

   (8) 

where Prime denotes the derivative of F with respect to u. 

Substituting (7)-(8) in equation (4), we get: 

F
x




u(x, t) =  

2

2
F

x

 



u(x, t) + F

2

u(x, t)
x

 
 

  

 − 
1

2
FV(x, t) (9) 
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Dividing both sides of equation (9) by F, we obtain: 

       
x




u(x, t) =  

2

2
u(x, t)

x

 
   

 + 
2

F
u(x, t)

F x

   
  

   
− 

1

2

F

F

 
 

 
V(x, t)  (10) 

To put equation (1) in the form of equation (10), modified equation (1) by the 

introduction of continuously differentiable function  (x, t) defined by setting: 

u(x, t) = 
x




(x, t)       (11) 

then equation (1) becomes: 

2

x t



 
(x, t) + 

x




(x, t)

2

2x




(x, t) = 

3

3x




(x, t) + G(x, t) (12) 

which upon integrating with respect to x, then equation (12) becomes: 

t




(x, t) + 

1

2

2

(x, t)
x

 
 

 
 = 

3

3x




(x, t) + V(x, t)  (13) 

where: 

V(x, t) = 

x

a

 G(x, t) dx 

i.e., equation (1) is equivalent to equation (10), if: 


F

F

 
 

 
 = −

1

2
 

F + 
1

2
F = 0 

Then: 

F = A exp(−/2) + B       (14) 

where A and B are arbitrary constants. 

For simplicity, in case of the Burger's equation (with A = 1, B = 0), we have: 

(x, t) = −2 ln(x, t)       (15) 

The following transformation has been developed which is defined by: 
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
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

u(x, t) = −2

(x, t)
x

(x, t)







, (x, t)   0,  x, t     (16) 

where  = {(x, t) | a < x < b, t > 0}. 

Transformation (16) derived from (11) and (15). Then Burger's equation (1) 

reduces to the linear heat equation: 

t




(x, t) = 

2

2x




(x, t) − 

1

2
(x, t)V(x, t)    (17) 

where: 

V(x, t) = 

x

a

 J(x, t) dx 

The transformation of the initial condition (2), becomes: 

(x, 0; ) = 

x

a

1
(x )dx

2
e

 
 −  

  


, a < x < b    (18) 

and boundary conditions becomes: 

(a, t; ) = 

t

0

1
f (t )dt

2
e

 
 −  

  


 

and                                                                            , t > 0        (19) 

              (b, t; ) = 

b t

a 0

1
(x )dx g(t )dt

2
e

 
   −  + 

  
 

 

III.    Non-Classical Variational Formulation: 

Now, using the non-classical variation technique to solve approximately the 

problem: 

t




(x, t) = 

2

2x




(x, t) − 

1

2
(x, t)V(x, t), a < x < b, t > 0  (20) 

where: 

V(x, t) = 

x

a

 J(x, t) dx 
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with initial condition: 

(x, 0; ) = 

x

a

1
(x )dx

2
e

 
 −  

  


, a < x < b    (21) 

and boundary conditions: 

(a, t; ) = 

t

0

1
f (t )dt

2
e

 
 −  

  


 

and                                                                , t > 0                   (22) 

(b, t; ) = 

b t

a 0

1
(x )dx g(t )dt

2
e

 
   −  + 

  
 

 

Let: 

t




(x, t) − 

2

2x




(x, t) + 

1

2
(x, t)V(x, t) = 0 

Define the operator by: 

2

2

1
. . V(x, t)

t 2x

  
−  + 

   

(x, t) = 0 

Then, we have: 

L(x, t; ) = 0 (23) 

Where (x, t; )  ,  = C2([a, b][0, T]), for some T > 0, where the linear operator 

L is defined by: 

L = 
2

2

1
. . V(x, t)

t 2x

  
−  + 

   

     (24) 

The linear operator L is not symmetric relative to the classical bilinear form, 

then a non-classical variational approach can be defined as: 

Step.1: Define arbitrary bilinear form as follows: 

(1, 2) = 



 12 d       (25) 

where  = {(x, t) | x  [a, b], t  [0, T], T > 0}. 

Step.2: Define new bilinear form, as follows: 

<1, 2> = (1, L2)       (26) 

Where L is defined by (24). 
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Step.3: Construct the functional as: 

F[] = 
1

2
<L, > − <f, > 

= 
1

2
(L, L)− (f, L) 

and since f(x, t)  0, then: 

F[] =  
b T

2

a 0

L (x, t) dtdx  ,   for some T  (0, t)   (27) 

From (3.24) and (3.27), we have: 

F[] = 
1

2

b T

a 0

  t




(x, t) − 

2

2x




(x, t) + 

1

2
(x, t)V(x, t)

2



 dtdx (28) 

Step.4: To find the approximate solution to the functional (28) and to overcome the 

problem of the calculus of variations, the Ritz method which is mentioned in chapter 

two have been applied to get a suitable approximation (as a critical point of the 

functional (28)) and as follows: 

(x, t; ) = W(x, t; ) + 

n

i 1=

 ai()Gi(x, t; )    (29) 

where W(x, t; ) is a chosen function of indicated variables satisfying the given non-

homogeneous boundary an initial conditions (21)-(22) and Gi(x, t; ), i = 1, 2, …, n, 

are the suitable basis (for example polynomial functions) of the independent variables 

x and t. in the relation (29), the ai's are constants to be determined, such that the 

functional (28) is satisfied. 

The derivatives computations are as follows: 

(x, t; )

t

 


 = 

W(x, t; )

t

 


 + 

n

i 1=

 ai()
iG (x, t; )

t

 


  (30) 

2

2

(x, t; )

x

  


 = 

2

2

W(x, t; )

x

 


 + 

n

i 1=

 ai()

2
i

2

G (x, t; )

x

 


  (31) 

Then back substitution of equations (29), (30) and (31) into the functional (28), 

yields: 
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F[] = 
1

2

b T

a 0

 
W(x, t; )

t

 
 

 + 

n

i 1=

 ai
iG (x, t; )

t

  


 
 − 

2

2

W(x, t; )

x

  
 

 + 

n

i 1=

 ai

2
2 n

i
i i2

i 1

G (x, t; ) 1
V(x, t; ) W(x, t; ) a G (x, t; )  dtdx

2x =

   
+   +         

  (32) 

Step.5: Take the derivatives of the functional (32) with respect to aj's, j = 1, 2, …, n; 

to find the critical points of the functional (32), 

j

F
0

a


=


, j = 1, 2, …, n 

1

2

b T

a 0

 
j

W(x, t; )

a t

  
 

 + 

n

i 1=

 ai
iG (x, t; )

t

  


 
 − 

2

2

W(x, t; )

x

  
 

 + 
n

i 1=

 ai

2
2 n

i
i i2

i 1

G (x, t; ) 1
V(x, t) W(x, t; ) a G (x, t; )  dtdx

2x =

   
+  +         

  = 0 

b T

a 0

 
W(x, t; )

t

 
 

+

n

i 1=

 ai
iG (x, t; )

t

  


 
 − 

2

2

W(x, t; )

x

  
 

 + 

n

i 1=

 ai

2
i

2

G (x, t; )

x

 
 

+ 
n

i i
i 1

1
V(x, t) W(x, t; ) a G (x, t; )

2 =

 
 +      

   

n

j i 1a =

 


 ai

iG (x, t; )

t

 


 − 

n

j i 1a =




 ai

2
i

2

G (x, t; )

x

 
+


 

n

i i
j i 1

1
V(x, tx) a G (x, t; )

2 a =


 

  
  dtdx = 0 



 
 
 
 
 
 
 

J. Mech. Cont. & Math. Sci., Vol.-16, No.-11, November (2021)  pp 11-25 

Jawad Kadhim Tahir 

18 

 

b T

a 0

 
W(x, t; )

t

 
 

 − 
2

2

W(x, t; ) 1
V(x, t)W(x, t; )

2x

 
+   

 + 

n

i 1=

 ai 

iG (x, t; )

t

 




 − 
2

i
i2

G (x, t; ) 1
V(x, t)G (x, t; )

2x

 
+   

 
n

j i 1a =

 




ai 

iG (x, t; )

t

 



 − 

2
i

i2

G (x, t; ) 1
V(x, t)G (x, t; )

2x

 
+   

 dtdx = 0 

Let: 

fij(x, t; ) = hi(x, t; )hj(x, t; ), i = 1, 2, …, n; j = 1, 2, …, n 

where: 

       hi (x, t; ) = iG (x, t; )

t

 


−

2
i

2

G (x, t; )

x

 


+

i
1

V(x, t)G (x, t; )
2




, i = 1,…,n 

and 

di(x, t; ) = hi(x, t; )M(x, t; ), i = 1, 2, …, n 

such that: 

M(x, t; ) = 
W(x, t; )

t

 


 − 

2

2

W(x, t; )

x

 


 + 

1
V(x, t)W(x, t; )

2



 

Step.6: Have a system of algebraic equations C()a() = b*(), where: 

a() = [a1(t; ), a2(t; ), …, an(t; )]T 

and C() is nn constant matrix defined as:  

C()=

b T b T b T

11 12 1n

a 0 a 0 a 0

b T b T b T

21 22 2n

a 0 a 0 a 0

b T b T b T

n1 n2 nn

a 0 a 0 a 0

f (x, t; )dtdx f (x, t; )dtdx f (x, t; )dtdx

f (x, t; )dtdx f (x, t; )dtdx f (x, t; )dtdx

f (x, t; )dtdx f (x, t; )dtdx f (x, t; )dtdx


  





  





  


     

     

     













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





and 

b*() = 

b T

1

a 0

b T

2

a 0

b T

n

a 0

d (x, t; )dtdx

d (x, t; )dtdx

d (x, t; )dtdx

 
 

 
 
 

 
 
 
 
 

 
  

 

 

 

 

By using the Gauss-elimination algorithm for the system of algebraic 

equations, one can solve the problem of n-unknown variables as the solution of the 

system of algebraic equations, and since the set of functions are a complete set of 

functions and which are linearly independent functions, the system  

C()a() = b*() has a unique solution. 

Step.7: On using the solution (29), then: 

u(x, t) = −2

(x, t)
x

(x, t)







 

to find an approximate solution of the original problem (1)-(3). 

IV.    Illustrations 

Problem (1): 

Consider a non-homogeneous one-dimensional Burger's equation: 

t




u(x, t) − 

2

2x




u(x, t) + u(x, t)

x




u(x, t) = 4xt4, 0 < x < 1, t >0  (33) 

with the initial condition 

u(x, 0) = x, 0 < x < 1       (34) 

and the boundary conditions: 

u(0, t) = 4t 

                         , t > 0              (35) 

u(1, t) = cost 

Case One: If  = 1. Then the heat problem (17)-(19) becomes: 

(x, t)

t




 = 

2

2

(x, t)

x

 


 − 

1

2
(x, t)V(x, t), 0 < x < 1, t > 0  (36) 
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




where V(x, t) = 2x2t4, with initial condition: 

(x, 0; ) = 

21
x

4e
−

, 0 < x < 1 (37) 

and boundary conditions: 

(0, t; ) = 
2te−  

and                                                       , t > 0                  (38) 

(1, t; ) = 

1 1
sin t

4 2e

 
− − 
   

Table 1: The approximate solution and the error of problem (36)-(38). 

x t (x, t) Error = E 

0.1 0.4 0.8562 0.0114 

0.1 0.9 0.4776 0.0055 

0.2 0.4 0.8539 0.0211 

0.2 0.8 0.5720 0.0062 

0.3 0.8 0.5846 0.0248 

0.4 0.8 0.5913 0.0073 

0.5 0.5 0.7585 0.0063 

0.5 0.8 0.5924 0.0012 

0.6 0.7 0.6377 0.0064 

0.6 0.5 0.7373 0.0063 

0.6 0.8 0.5888 0.00035 

0.6 0.9 0.5416 0.0077 

0.7 0.4 0.7544 0.0066 

0.7 0.6 0.6675 0.0087 

0.7 0.7 0.6238 0.0091 

0.7 0.8 0.5812 0.0015 

0.7 0.9 0.5400 0.0074 

0.8 0.1 0.8240 0.0289 

Table (2) show the approximate solution of the non-linear Burger's equation (33)-

(35), when  = 1. 
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Table 2: The approximate solution of problem (33)-(35), when  = 1. 

x t 
Approximate 

solution u(x, t) 
x t 

Approximate solution 

u(x, t) 

0.1 0.4 −0.0211 0.6 0.8 0.1945 

0.1 0.9 −1.2158 0.6 0.9 0.0015 

0.2 0.4 0.1269 0.7 0.4 0.8638 

0.2 0.8 −0.5538 0.7 0.6 0.6639 

0.3 0.8 −0.3276 0.7 0.7 0.5054 

0.4 0.8 −0.1279 0.7 0.8 0.3171 

0.5 0.5 0.4914 0.7 0.9 0.1070 

0.5 0.8 0.0461 0.8 0.1 0.9377 

0.6 0.5 0.6399 0.8 0.9 0.1700 

0.6 0.7 0.3727 0.9 0.7 0.7223 

Case Two: If  = 0.1. Then the heat problem (17)-(19) becomes: 

(x, t)

t




 = 0.1

2

2

(x, t)

x

 


 − 5(x, t)V(x, t), 0 < x < 1, t > 0  (39) 

where V(x, t) = 2x2t4, with initial condition: 

(x, 0; ) = 
22.5xe− , 0 < x < 1     (40) 

and boundary conditions: 

(0, t; ) = 
10te−  

and                                                  , t > 0                  (41) 

 

 

 

 

 

 

 

 

 



 
 
 
 
 
 
 

J. Mech. Cont. & Math. Sci., Vol.-16, No.-11, November (2021)  pp 11-25 

Jawad Kadhim Tahir 

22 

 

Table 3: The approximate solution and the error of problem (39)-(41). 

x t (x, t) Error = E 

0.1 0.7 1.0321 0.0097 

0.2 0.8 0.9147 0.0072 

0.3 0.7 0.8046 0.0970 

0.4 0.8 0.6324 0.0083 

0.4 0.9 0.5898 0.0096 

0.4 0.6 0.6824 0.0137 

0.5 0.1 0.5264 0.0546 

0.5 0.3 0.5470 0.0373 

0.5 0.4 0.5542 0.0097 

0.6 0.2 0.3998 0.0571 

0.6 0.3 0.4122 0.0515 

0.6 0.8 0.3662 0.0689 

0.7 0.3 0.2949 0.0858 

0.7 0.8 0.2664 0.0075 

0.7 0.9 0.2264 0.0822 

0.8 0.3 0.1997 0.0750 

0.8 0.7 0.2082 0.0040 

0.9 0.2 0.1132 0.0992 

0.9 0.6 0.1279 0.0087 

0.9 0.5 0.1461 0.0279 

Table (4) show the approximate solution of the non-linear Burger's equation (33)-

(35), when  = 0.1. 
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Table 4: The approximate solution of problem (33)-(35), when  = 0.1. 

x t 
Approximate solution 

u(x, t) 
x t 

Approximate solution 

u(x, t) 

0.1 0.7 0.1540 0.6 0.3 0.6172 

0.2 0.8 0.2720 0.6 0.8 0.6154 

0.3 0.7 0.3437 0.7 0.3 0.7230 

0.4 0.8 0.4641 0.7 0.8 0.6518 

0.4 0.9 0.5174 0.7 0.9 0.6989 

0.4 0.6 0.4196 0.8 0.3 0.8405 

0.5 0.1 0.5253 0.8 0.7 0.6853 

0.5 0.3 0.5147 0.9 0.2 1.1061 

0.5 0.4 0.5055 0.9 0.6 0.8191 

0.6 0.2 0.6374 0.9 0.5 0.8557 

 

V.    Conclusions 

             The Cole-Hopf transformation is employed as a major rule to transform a 

nonlinear partial differential equation to a nonsymmetric (concerning inner product) 

linear partial differential equation. Due to the difficulties arising in solving many 

nonsymmetric linear partial differential equations with initial and boundary 

conditions, we are suggesting the method of non-classical approach to overcome the 

difficulties. The numerical results can be improved and obtain a better degree of 

accuracy when a large number of basis functions are selected or even when a type of 

a basis function is of a suitable linearly independent class of functions. It should be 

noted that the proposed procedure for solving non-homogeneous Burger's problem is 

easily and effectively to be implemented. As one can see from the numerical results, 

the number  (kinematics viscosity) plays an important role in determining the 

approximate solution of Burger's problem, where the solution is completely 

dependent on . 
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