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Abstract 
System identification is an important task in control theory. Classical control 

theory is usually known for integer-order processes. Nowadays real processes are 

fractional order usually. According to a large number of fractional-order systems, the 

identification of these systems is so important. This paper aims to evaluate an improved 

Biogeography-based Optimization (BBO) approach to estimate the parameters and 

orders of fractional-order systems. After that, a method based on this algorithm has 

been introduced to synchronization of chaotic systems. Results show that the proposed 

scheme has high accuracy. 

Keywords: Fractional-order system, System identification, Biogeography-based 

Optimization 
 

I.   Introduction 

The main point of system identification is the estimation of the parameters of 

a process in good situations [X, XIV]. The system identification is the basis of 

controller design in the system. Fractional order dynamics identification has been done 

in some studies. These methods are numerical [XV], or analytical [XI, XXII]. Many 

classical methods have been used for the online identification of systems. Calculations 

on the fractional-order system are so complicated then system identification of 

fractional order systems seems to be a challenging problem [XIX]. The fractional-order 

systems usually have been identified using the integer version. The usual way for a 

fractional-order system is approximation methods with integer systems. This point 

causes errors to form real model and identified model. Order identification on 

fractional-order systems is a new point of view on system identifications. In this paper, 

a new method has been introduced to the parameters and orders identification of a 

fractional-order system. This method is using Biogeography-based Optimization 

(BBO). BBO is a new type of optimization method. This algorithm is obtained from 

biogeography [VI]. The basis of this algorithm is n the immigration and emigration of 

the animal species among islands [VIII, IX]. 
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This algorithm shares the information among solutions using the adaption of 

the migration operator. This feature makes BBO applicable to a large number of 

problems. 

We use this technique to find the parameters and orders of the fractional-order 

system. This method enables us to achieve a very good approximation. The basic step 

of fractional order system identification is understanding the theory of fractional 

calculus. This section deals with fractional order integration and derivation which 

describes in the next part. The studied system is chaotic. These systems have complex 

behavior then identification of these systems is so important. 

Evolutionary algorithms for the identification have been done in many studies 

[I, XII]. 

These algorithms can be used in some cases for the fractional-order system but 

new modified algorithms can be improved this task. About chaotic systems, this task 

becomes more challenging. To the best of our knowledge, a specified method for order 

identification of fractional order systems has not been introduced yet. Especially in the 

chaotic case, it is an important task, because the order of a chaotic system in the 

fractional-order chaotic system plays an important role. A few changes in the fractional 

order of a chaotic system change this system to a stable, unstable, or hyperchaotic 

system. Then exact order identification besides the parameter identification gives a 

better view for fractional-order chaotic systems. 

Synchronization between chaotic systems is the one of most applicable topics 

on the chaotic system. A large variety of applications are introduced for chaos 

synchronization [XXIV, XXI, II]. 

Synchronization between fractional-order chaotic systems is a new topic in 

recent decades  [XVII, XVIII]. Different methods have been introduced in this field 

[XX, V, VII]. 

The main organization of this paper is as follows. In section 2, basic definitions 

of fractional calculations have been introduced. The general description of the 

biography-based optimization has been written in section3. In section 4, a fractional-

order chaotic system is defined and parameters and orders identifications using this 

method have been done. 

This section shows the simulation results of the proposed method. The main 

conclusions of the paper are mentioned in section 5. 
 

II.   Experimental Study 
 

Materials 
 

Euler's gamma function is one of the usable functions on fractional 

calculations. This function is defined as follows. 

𝑇(𝑛) − ∫ 𝑡𝑛−1𝑒−𝑡𝑑𝑡  
𝑥

0
      (1) 

Three types of definitions are well-known definitions for the fractional-order 

operator. The RL definition of the fractional-order operator is defined as follows [1]. 
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𝑑𝛼

𝑑𝑡𝛼 𝑓(𝑡) =
1

Γ(𝑛−𝛼)

𝑑𝛼

𝑑𝑡𝛼 ∫
𝑓(𝑛)(𝑇)

(𝑡−𝑇)𝑛−𝛼+1 𝑑𝑇 
𝑡

0
     (2) 

The Laplace transform of the fractional derivative is defined as follows. 

 ℒ (
𝑑𝛼

𝑑𝑡𝛼 𝑓(𝑡)) = 𝑠𝛼ℒ(𝑓(𝑡)) − ∑ [
𝑑𝛼−1−𝑘𝑓(𝑡)

𝑑𝑡𝛼−1−𝑘 ]𝑡=0  
𝑛−1
𝑘=0    (3) 

where L shows the Laplace transformer. For solving ordinary differential equations 

Laplace  transform is an effective method. Also for the fractional-order systems, this 

transform has many capabilities. 
 

III.   Results and Discussions 
 

Biogeography based optimization 

The basis of BBO is the study of biological organisms' geographical 

distribution. In the science of biogeography, a habitat is an ecological area that is 

inhabited by particular plant or animal species and geographically isolated from other 

habitats. In comparison with other evolutionary optimization methods, BBO has some 

unique characteristics. In the BBO algorithm, habits identified the problem possible 

solutions. Operators of inhabit share information between the problem solutions. These 

operators are based on the concept of migration. 

The main four parameters of BBO are as follows. 

1- Suitability index variable (SIV) 

shows habitability in an island variable 

2- Habitat suitability index (HSI) 

shows the goodness of the solution, like fitness score in Genetic algorithm 

3- Immigration rate (𝜆) 

shows how likely a solution is to accept features from other solutions 

4- Emigration rate (𝜇) 

shows how likely a solution is to share its features with other solutions. 

A bad habit is that low emigration and high emigration is happed on it. It means, when  

HIS increases, the number of species becomes more. This makes more ability for the 

species  to leave the island. This event leads to high emigration. HSI has a direct relation 

to the  emigration rate and population. Low immigration rate happens in the habitats 

which are  already saturated with species. Also, HSI has a reverse relation with the 

immigration rate. 

The value of HSI for the low HSI habitats is increased by the immigration of species 

from  other habitats. If this condition happens but HSI doesn't increase then species in 

that habitat go extinct which is the cause of additional immigration. 

In the BBO, the population of solutions is vectors of integers. Each integer in a solution 

vector shows SIV. In the BBO, the emigration rate 𝜇𝑘  and immigration rate 𝜆𝑘of each 

habitat can be calculated as follows.   
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  {
𝜆𝑘 =

𝐸𝑘

𝑃

𝜇𝑘 = 𝐼(1 −
𝑘

𝑝
)
         (4) 

Where k is the number of habitats and P is the individual number. 

The main steps of improved BBO are defined as follows: 

1- Generation of habitats and consider immigration and emigration rate to these 

habitats. 

2- Ordering the generated habitats. 

3-Using the habitats rank, define 𝜆 , 𝜇 

4- Destination j is selected using the𝜇. 

5- Immigration from 𝑥𝑖𝑗o 𝑥𝑖𝑘is done (i shows the number of habitats and k is an integer 

number). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The chaotic attractor of the fractional-order Lorenz system 

6- Applying the mutation operator. 

7- For each habitat, repeat steps 4-6. 

8- For each integer k in ith habitat, repeat steps 5-6. 

9- Modify the habitats with the new generations. 

11- Return to step 4 if the final criteria do not satisfied. 

 

PROBLEM FORMULATION AND APPLICATION 

Parameter identification 

An n-dimensional fractional-order system as follows is considered. 

  𝐷𝛼𝑌(𝑡) = 𝑓(𝑌(𝑡). 𝑡. 𝜃)       (5) 

where Y (t) = (Y1(t); Y2(t)…, 𝑌𝑛 (t))T 2 𝑅𝑛  is the state vector of system.0 = 

(0102. … . 0𝑛)𝑇 represents the parameters and 𝛼 = 𝛼1. 𝛼2. … . 𝛼𝑛)(0 < 𝛼𝑖 < 1)are orders. 

F (Y (t); t; h) =(𝑓1(𝑌(𝑡). 𝑡 . 𝜃) . 𝑓2(𝑌(𝑡) . 𝑡 . 𝜃). … . 𝑓𝑛(𝑌(𝑡). 𝑡 . ℎ ))𝑇.  
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The main advantage of the proposed method in this paper is that we introduced a 

method that can identify orders and parameters of a fractional-order system 

simultaneously. Estimation of the system (5) is written as follows. 

  𝐷𝛼𝑌̂(𝑡) = 𝑓(𝑌̂(𝑡). 𝑡. 𝜃)       (6) 

where 𝜃 = (𝜃1 . 𝜃2 . … . 𝜃𝑛)𝑇 shows the estimated parameters and 𝛼̂ =
(𝛼̂1 . 𝛼̂2 . … . 𝛼̂𝑛) is the 

estimated orders. Also 𝑌̂(𝑡) = (𝑌̂1(𝑡). 𝑌̂2(𝑡). … . 𝑌̂𝑛(𝑡))𝑇 represents the vector of the 

estimated states. For identification, the following equation is minimized. 

𝐹 = ∑ ||𝑌(𝑡) − 𝑌̂(𝑡)||2 𝑁
𝑘=1      (7) 

where 𝑘 = 1 . 2 . … . 𝑁 is the number of sampling data. The second norm of a vector is 

shown using the || . || . States of the main and the estimated system are shown as 𝑌𝑘and 

𝑌̂𝑘,  respectively. 
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Figure 2. Parameters estimation of a fractional-order chaotic system, σ (a) ρ (b) _ (c) 
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Now the minimum of the function (7) leads to the estimated parameters and orders of 

the system. In this paper, we employ the BBO algorithm to identify the parameters and 

order of the system (5). The main advantage of the BBO algorithm in comparison to 

the other methods is that this algorithm needs the minimum parameter tuning in 

compared with the other optimization methods then the implementation of this 

algorithm is so easy. 

In this section, the fractional-order Lorenz system as an example is given to verify the 

effectiveness of the system identification method for fractional-order systems with the 

BBO algorithm. 

Discretization of fractional-order systems is based on the generalization of the Adams-

Bashforth Moulton method [XVI]. 

. Fractional-order Lorenz chaotic system 

The fractional version of the Lorenz chaotic system is studied in some cases 

[III, IV]. The system is formulated as follows. 

  {

𝐷𝛼1𝑥 = 𝜎(𝑦 − 𝑥)

𝐷𝛼2𝑦 = 𝑝𝑥 − 𝑥𝑧 − 𝑦

𝐷𝛼3𝑧 = 𝑥𝑦 − 𝛽𝑧

         (8) 

where 0 < 𝛼𝑖 < 1 (𝑖 = 1 , 2 , 3) is the order. The integer version of the system (8) is 

chaotic with (𝜎 . 𝜌 . 𝛽) = (10 . 28 .
8

3
).  When the sum of three fractional orders is 

bigger than 2.91, the fractional-order Lorenz system is chaotic [11, 12]. For the 

simulation, we selected the parameters as (𝜎 . 𝜌 . 𝛽) = (10 . 28 .
8

3
) and the orders 

as (𝛼1 . 𝛼2 . 𝛼3) = (0.991 . 0.993 . 0.996) .Fig.1 shows the chaotic behavior of the 

fractional-order Lorenz system with the mentioned 

parameters and orders. 

Synchronization 

Synchronization problem is defined with two drive and response systems as follows. 

 𝐷𝛼𝑥𝑑 = 𝑓(𝑥𝑑)        (9) 

and 

  𝐷𝛼𝑥𝑟 = 𝑔(𝑥𝑟) + 𝑈(𝑥𝑑  . 𝑥𝑟)       (10) 

where 𝑥𝑟 , 𝑥𝑑  ∈ 𝑅𝑛are the vectors which show the states of the drive and response 

systems 

, f  is a vector that shows the nonlinear functions of the drive system and g is the same 

vector 

for the response system, 𝛼 ∈ 𝑅𝑛is the vector of fractional orders. In the definition of 

synchronization, the synchronization error is defined as: 

  𝑒 = 𝑥𝑟 − 𝑥𝑑         (11) 

The main object is t find U to achieve synchronization between the drive system (9) 

and the response system (10). We can write 

  𝐷𝛼𝑒 = 𝐷𝛼𝑥𝑟 − 𝐷𝛼𝑥𝑑         (12) 
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Put Eq.(9) and (10) into Eq.(12) leads to  

  𝐷𝛼𝑒 = (𝐵)𝑥𝑟 + 𝐺(𝑥𝑟) + 𝑈(𝑥𝑟 . 𝑥𝑑) − ((𝐴)𝑥𝑑 + 𝐹(𝑥𝑑))  (13) 

Now active control method is used to design controllers [24], then 

  𝑈(𝑥𝑑 , 𝑥𝑟) = −𝐵𝑥𝑟 − 𝐺(𝑥𝑟) + (𝐴𝑥𝑑 + 𝐹(𝑥𝑑)) + 𝐾(𝑥𝑟 − 𝑥𝑑)  (14) 

where  𝐾 = [𝑘1 ;  𝑘2 ; … . 𝑘𝑛]𝑇 ∈ 𝑅𝑛×𝑛 is a matrix for the control parameters and 𝑘𝑖 =
[𝑘𝑖1 . 𝑘𝑖2 . … . 𝑘𝑖𝑛] is the control vector in each state controller. The selection of these 

elements must be based on the stability theory of fractional-order systems. Generally, 

a diagonal matrix for simplifies the calculations is selected but we use the BBO 

algorithm to minimizing the synchronization time. Eq.(13) proves that by choosing the 

appropriate K matrix that satisfies the stability condition of Eq.(13) 

means| arg( 𝑠 𝑝𝑒𝑐(𝐾))| > 𝛼𝜋/2, the synchronization errors are converging to zero, 

and synchronization between two systems can be achieved. 
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V.   Simulation example 

Initial conditions for the states of drive and response systems are selected as 

(0:1; 0:2; 0:3)  and (0:2; 0:3; 0:4) with mentioned parameters and orders. For 

comparison, we simulate the proposed method in [XIII], which is using the Particle 

swarm optimization (PSO) method. Fig.2 shows the parameters identification of two 

methods also Fig.3 shows orders identification. The result shows that the proposed 

method identifies parameters and orders of a fractional-order chaotic system with high 

accuracy. Synchronization of two systems is done with the mentioned method and this 

method is compared with the active control method [XXIV]. The results of this 

comparison are shown in Fig.4 
 

VI.    Conclusion 

In this paper, a new method for the estimation of parameters and orders of a 

fractional-order chaotic system was proposed. This method is based on a 

Biogeography-based Optimization algorithm. The proposed method provides results 

with high accuracy compared with other methods. The result shows that the proposed 

method is a good performance in parameters and orders identification of fractional-

order chaotic systems. 
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