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Abstract

Grassmannian bi-complex contains two types of differential maps d and d'.
This complex is related to the Tangent complex by Siddiqui for the differential map.
In this article, we try to find morphisms in tangential configuration space to relate
Grassmannian complex and first-order tangent complex for differential map d'.

Keywords : Grassmannian complex, Configuration, Vector Space, Cross-Ratio,
Tangent Complex.

I. Introduction

A.A.Suslin defined the Grassmannian complex over geometric configurations
[XIV] whereas A.B. Goncharove related this complex to the famous Bloch-Suslin
complex [V], [VI] as well as to his own motivic complexes. After that Cathelineau
[11] worked on the "infinitesimal" and “Tangential” versions of Goncharov complexes
by defining vector spaces B,(F) and TB,(F). Siddiqui brings the geometry of
configuration spaces into infinitesimal and tangential settings. He computed the
cross-ratios and Goncharov’s triple-ratios for the truncated polynomial rings
F[e],and F[e]z [XI]. He connects the Grassmannian complex

d: Cm(AIZJ[s]Z) - C(m—l) (Al%“[e]z) (1.1)
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m
d: (xg, o) X)) © Z(—l)m(xl, e Xy ey X))
i=0

to the first order tangent canpIex of weight 2 .i.e.

0:TB,(F)» FQF*+ N2 F*
0 ((@:bl) » PR U-a)+=®a)+(=AD)

by introducing maps 7§ . and 7% .. Also, he gives maps 73 ., 73 . and 73 . to connect
the Grassmannian subcomplex (2) to the first order tangent complex of weight 3 .i.e.

TBy(F) 25 TB,(F) @ F* ®F @ By(F) > F @ N2 FX + A3 F
Where
0:({a; bl3) » ((a;b]; @ a +§® [a],) , and

:((x; b, ®c+xQ® [y]zb) ,
|—>(—m®aAc—a®(1—a)Ac+x®(1—y)/\y>

b b
+ < A=A x)
1—a a
He also gives proof of the commutativity of resulting diagrams (see §4 and §5 of
[XI]. What we are going to do in this work is searching for suitable morphisms
between the tangent complex and Grassmannian complex with projective differential
map d'. For this purpose, we introduce maps 7§ . and 7 . for weights 2 andng ., 73 .
and 73 . for weight 3. After that, we give proof of the commutativity of the resulting
diagrams. There should be no confusion about the maps d and d’ because both these
maps occur in the Grassmannian complex and are totally different from each other.
That’s why our work is different from that of the work in [XI] and [XII].

II.  Preliminaries:
Grassmannian Sub Complexes

For any set X, let C,,,(X) be afree abelian group generated by the elements
(X0, o) X)) € X™H1 | Then we have a simplicial complex ( C,,(X),d) , where

m
d: (xg, o) X)) = Z(—l)m(xl, e Xy weey X))
i=0

For any group G acting on X, we call elements of the quotient set G /X™
configurations of the elements of X. Let C,,,(n) be a free abelian group generated by
the configurations of m-vectors

Of an n-dimensional vector spacel},. The configuration (x;|xy, ..., X, ..., X ) IS
Called a projective configuration of m — 1 vector projected from x;. Define a
projective differential map d' as
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d: Cimyny(n+1) = Cp(n)

m
d" (Xgy voer X)) P Z(—l)m(xdxl, ey Xy ey X))
i=0

Using the above two differential maps we can form the following Complexes known
as Grassmannian complexes

d d d
- Cn+3(n) - Cn+2(n) - Cn+1(n)

a’ a’ a’
w2 Gz +2) = Cryo(n+ 1) = Gy (n)
Cathelineau’s Complex

In [11] Cathelineau introduces another version of Goncharov and Bloch groups by
using the infinitesimal procedure. He defines the infinitesimal vector spaces as

B.(F) =F
Where F is any field of characteristic 0. Also
po(F) =]
o (F)

Where F** =F —{0,1} and r,(F) is the subspace of F[F] generated by the
following

[a] - [b] + 7] + (1 - @) [:=]

And there isamap 8,: F[F*'] — F* @ F*defined as
[al,a®@a+(1-a)® (1 —a)
Such that r, (F) < kerd,. From the above setup, we have a complex
6:,(F) > F*Q F*
Called infinitesimal complex of weight 2, where 9 is induced by &,. Further,
Infinitesimal complex for weight 3 can be defined as
FIF*™]
B3(F) =

r3(F)
where r3(F) is the kernel of the map

03: F[F*'] = B,(F) @ F*® F @ B,(F)
[a] » (@), ®a+(1-a)® [al,

where (a), is a class of [a] in B, (F), we can form a complex for the map § as

B3(F) == B,(F) ® F*®(F @ B,(F)) —— F ® A F*
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Where
§:{a)y; » (a), ®a+(1—a)® [a],

and

5:(a); ®b+xQ [yl
P—(@@®arb+(1-a) QUL —-a)Ab)+xQ A —-y)Ay

where (a)5 is a class of [a] in B5(F).
Tangent complex:

The first order tangent group for weight 2 can be denoted by TB, (F) (see [X], [XI])
and defined as a Z —module generated by the elements of the form

(a; b]; € Z[F[e],] (see [11])

and quotient by the expression

1= 0507+ {2 ()]~ (2 (2) ]+ (22 (22) | a0

Where

' , b\’ p'-a'b (1-b\’ "(1-p)-b'(1-a)
@a)=la+ael-lal,(3) =52 () = Em

a

and

(a(l—b))' __ad’(1-p)b-b'(1-a)a
b(1-a)) (b(1-a))?

Using this group we can form the following complex
9:TB,(F)» FQ®F*+ A2FX
b b b b
0 ((@:bl) » (@A - +=Qa)+ (=A%) (12)
called Cathelineau’s or tangential complex.

The group TB;(F) is defined in [XI] and [XI1] as a tangent group of weight 3. In the
same paper, this group is used to obtain the cathelineau complex

TB;(F) aL»TBZ(F) R F* ®F ® B,(F) 6—8>F ® A2F*+ A3F

where 9 ((a; bls) = ((a; b], ® a + 7 ® [al,) (L3)

and

0:((a; bl ®c+x @) » (- ®anc—2@U-a)Ac+x® (L-y)Ay)+
(Zananx) (L4)
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Tangential configurations:

Let F be any field, then we can define the v*" truncated polynomial ring as

Flely =50

E'V
Also, define A?[e],, be an n-dimensional affine space over the truncated polynomial
ring F[e], .

We take = (a;,a3,as, ..., @) € AN{(0,0, ....,00}, . = (A, Aze, Az, oov) Ane) €
A% and in a similar way we can take

— n
lgv—l = (al'gv—l, Ay gv-1,03 gv-1, ..., anlsv—l) € AL,

then one can write I* = [ + lge + [ 26 + -+ + [ w171 € AR (see [1X]). Then
we can define a differential map d for the free abelian groups C,,( A’,}[g]v) generated
by the configurations of m-vectors in n-dimensional affine space over F[e],,

d: Cos1 (AR (e),) = Comy(AFpe,) (165 s b)) = B0 (D™ (Ug, o, 1, o, )

We also find another map d' called projective differential map as

d": C1 (AF(e,) = Camy (AFf],)

L) s L) = 2o (= D)™ (NG s G vy L) (1.5)
Determinants over tangential configurations:
We denote the 2 x 2 determinant by A(l;", ;") € F[e], with [; € AF ;. Then

A(li*, l]*) = A(ll’*, lj*)so + A(li*, lj*)gl
where

A(li*, lj*)so = A(ll’, l]) X A(li*, lj*)sl = A(li, lj,s) +A(ll”£, l])

In our main result we use a short notation for determinants as A(L;", ;") = (1,"1;")
that is we ignore delta and commas.

Cross-ratio:

Let (I, 13,05,13) € Aﬁ[s]z be the configuration of four points, then the cross-ratio over
the truncated polynomial ring F[e], can be defined as

— A(lOrIS)A(llrlz) E £ R £ {A(lo*:IS*)A(ll*fIZ*)}E _
ot b bs) = 3 aauy Te0r i 20 ) = 0 o
(Ao 1298 1 ))e
r(l0’ llJ l2J l3) A(lo,lz)A(ll,l3)
See [11] and [9] for more details. It is clear that the cross-ratio is well defined as it
depends neither upon the length of vectors nor upon the volume formed by these
vectors.
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I11. Results and Discussions

Our main result in this paper is to propose morphisms between the
Grassmannian sub-complex of projective differential map d' and the tangent
complex. First of all, we discuss such types of morphisms for weight 2.

Since the tangent or Cathelineau’s complex for weight 2 is
d:TB,(F)» F @ F*+ A2FX

Take the Grassmannian sub-complex of projective differential map d’ as
d": C4(Af(),) = C3(AFe,)

Here we propose morphisms 7§ . and 71 . to connect the above two complexes. Then
we have the diagram (3.1a).

where
b b

0: (@bl » (2@ 1-a) + =@ a) + (A7) (22)

n%,g(zg,zz,z;)=Z%:0(—1)f{%f>f®lﬁ+£/\@}, i mod 3 (22)

Lz 1D (w2
13 e (15,13, 15, 13) = (r(lo, 1y, 1y, 13), 72 (15, 15, 15, 13)] (2.3)

It is very simple to verify that 7§ . and 2. are both well-defined because both these
maps neither depend upon the length of the vectors nor upon the volume form of
these vectors. So we directly come to verify the following results.

Theorem 3.i.a. The following diagram

-

-

Cy(A}y,,) ——= TBy(F)

d' a,

-

-;T_:._F-
Cy(AL,)—=FoF e \’F

is commutative. i.e.
ng.od = 0.0mi,
Proof: Take the left-hand side and use the definition of d’, we get
m§e0d (I, 15,15, 13) = (2.4)

6, (510, 15, 13) =1 e (13105, 15, 1) 475 (5115, 13, 13) — w5 . (U5115, 13, 15)

Now using (2.2) on each term. The last term will become
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DUo'l3)e o (b)) D('L)e (o ls) D17,
(Lo, 13) £l1;l3) *(1*1'13) ) glz.ls) . *(12'13)* .
(13, 13) + 'ls) (i) ) () (Bls)
(lg,lg) UL G LY WD) W'D
(o'l3)
CNY)
Similarly, we can easily calculate the value of the remaining three terms. Substitution
of these values in (2.4) we get

mgeU3115, 13, 15) =

' D(lp"11" lo,l I lo,l D(lp"13" lo,l
ng‘god(lf;,l{,l;,l;)= (o"l1)e o (oulz)  DUo"1x7)e o (lol1) Uo"l37)e o Uoil2)

(lo,11) (lo,l2) (lo.12) (lo,13) (lo.13) (lol1)
D(p"i e o Uilz) | DU "12)e o Uod1)  DU"13"e o (Uilz) | DUo"e o (Uzlz)  DUi"L")e
(lo,l1) (lnl2) (l1.l2) (l1.l3) (l1.l3) (lo,l1) (lo,l2) (l1.l2) (l1.l2)
(lo,l2)
(12,13)

D" o (k) DUo"l3)e o Upls) DY)  (ols) D15,
(U2, 13) (o) (o 13) (1) (1) (o, l3) (I 13)
® (ll'l3) _ (lO*l3*) (11*13*) (11*13*) (12*13*) _ (12*13*)
(olz) (W'Y (LY L) ) U'ls)
(10*13*) (10*12*) (ll*lz*) _ (ll*lz*) (12*l3*) (12*13*)
(ll*l3*) (ll*lz*) (12*13*) (12*13*) (lo*lz*) (lo*lz*)
(o'L)  U'lh) Wl k) G) (')
UL QLY QWD Gl) WL 'l
Uh) Gh) L) L) ') ()
L'L) LY WL LY L) Gh)
(o'l
(L")
Now we come to calculate d.0 7%, . Here we use (2.1) and (2.3)
0c0 i (1o, 11, 15, 13) = 0.4 (Lo, Ly, L, 13), e (15, 11, 13, 15)1}

_ (1)
T(lo, ll' l2' l3)

(o, 1,13, 13)
1—-r(, 1,11
® ( T( ot 3)) * 1- r(l()! ll!lz' l3)
( re(la; l;;l;;l;,) Ars(la' lI'l;ﬁ l;))
1=r(lo bl l3)  rle by, 1o 15)
Te(15,11.15.13) Te(15,11,15,13)

) r(lo,l1,12,03) 1-1(lp,l1,12,13)
can write above as

® r(lOl lll 121 l3)>

The values of

are given in [XI] and [XII], therefore we
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{D(lo*lg*)g N DL Do lL7)e D(ll*ZS*)e} Ay, L)AL, 13)
(Lo, 13) (L, 12) (o, 12) (L1, 13) Al 1)A(L, 13)
{D(lo*lz*)s D(ll*l3*)e _ D(lo*ll*)e _ D(lz*l3*)£}
(ZOJ lZ) (llv l3) (l0' ll) (l2r 13)
A(ly, 13)A(y, 1)
A(ly, [)A(ly, 13)
{D(lo*lz*)g D '13)e Do L) D(lz*l3*)g}

(Lo, 12) (L, 13) (Lo, 11) (L2, 1)
{D(lo*ls*)s DL Dol D(l1*l3*)g}

Uoly) | Ul Gol) (ol

Expansion of this expression will give a value identical to that of 7§,
od (I, 11,15, 13).

We have discussed about tangent complex or weight 3 in section (2.3). Here we will
give suitable morphisms to connect this complex to the Grassmannian subcomplex
with projective differential map d’. Consider the diagram (3.1b) ,where

3 k1) = Y3 (—1)f W ) \ Qs a3 UOL s (25
T[O,S( 0 ] 3) 1—0( ) {(li) ®(li+2) (li+2) ]];(l) (lj) , L mo ( )

13 (15, s 13) = =3 Tt o (D {(r(los o T} s 1) el T s 14)] ®

j=0
Misi @D @ [r(los-- I o L)1} (2.6)
j=0
13 e (g, o 19)= = Altg(r(lo . If s 1)1 (los o 0 o )] 2.7)

Where (l,]) = A(li, lj) and A(li*, l]*) = (l*,]*)
The map d, is already defined in (1.3) and (1.4) and d' is defined in (1.5).
Theorem 3.1.2. The right square of the below diagram

4

Co(A},) Cs(AZ,,) Cy(A,

3 3 3
P e Toe
[

T83(F)—2> (TB,(F)® F*) & (F ® By(F)) —= (F& \>F*) &\ F)

is commutative. i.e.

nyeod (15, ... 13) = d.0mi, (G, ..., 13)
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Proof: First of all we split the map 7§ . into two parts as 7§ . = n*+n? .The left-
hand side can be written as

ngcod (15, ..., 13) =ntod (G, ..., 13) + w20 d' (15, ..., 13)
The first part can be written as

ntod' (g, .., 1) = w(I5ll, 15,13, 1) — w (131G, 15, 15, 1) +
w310, 1, 13, 13) — (310G, U, 15, 1) + ot G 110G, 17, 15, 13) (2.8)

The above expression has five summands and the expansion of each summand
through the map n(’;’g gives us four terms of the form (‘( J ))5 ® A . Using the
property/\%zx/\u—x/\v,x/\uv =x/\u+x/\vandx/\x = 0 we get 12
terms of the form% &® u A v. Doing the same for all summands we obtain a total
of 60 terms. We combine the terms with a common factor% ®. For example the
term with a common factor )s ® will be

(07,4,

0.5 Q {(14) A (34) + (01) A (03) — (14) A (24) + (24) A (34) — (01)

A (02) — (02) A (03)}

This complete the calculation of o d’ (13, ..., 1). We define the second part as

n20 d' (L, ., 13) = Alls {Zzio(—l)" Aj=o (ff,-*))}

i*j
Where Alts is the alternation sum. First, we expand the inner sum

Now we compute the right-hand side 9.0 73 . (15, ..., ). Using (2.6) we can write
dc0 i e (Ig, ., 13) = 0, {—§ o= {(r(lo, e )l B )] ®

Hl#}(l D+ H ;t](l N® [T(lo;... l4)]}} (29)

j=0

We split the map 9, into two parts as . = 8 + 0. The first part d*o 73 . (Ig, ..., 13)
will be

=—§Z?=o(—1)i<—7fj£'a Lt @ 1 (ly, .1 e l) ATl ) ol @ (1 -
=
T(los ooy oy 1)) AT @) + [T ) @ (1 =1, oy s 1)) AT (g, - 1 ...,14)> (2.10)
j=0 j=0

And the second part %o 73 . (Ig, ..., I3) is
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= Iyt (-t Lellondica) ) relloni- ’4)AH¢,(1 ) (2.1)

1-1(lo,divnls) (1o diens

Te(losk} la) q (Lol la)
1-1(lo,diunls) 7(loyeedivnls)
expand the sums (1.10) and (1.11) for i = 0, ...,4. After the expansion of (1.10) we

combine the terms with a common factor (‘( J ))5 ® ..... For example the terms with a

The values of are given in [11]. Using these values we

common factor )5 & will be

(07,4,
0,4)

Q {(14) A (34) + (01) A (03) — (14) A (24) + (24) A (34) — (01)
A (02) — (02) A (03)}

And so on. Similarly, the expansion of (2.11) for i = 0, ...,4 gives us the terms of the

form & J ))‘9 A x A y. After combining the expanded forms of (3.10) and (3.11) we get

the fmal value of 9.0 73, (15, ..., [3) which is identical with that of the value of
3 1 (7% *
w50 d'(ly, ..., 13).

Theorem 3.i.b. The left square of the below diagram

d d'

Co(A},) Cs(Af,) Cy(AL,)

3 3 3
e Me Me
[ A ..

TBy(F) — "> (TBy(F) ® F*) & (F ® B,(F)) — "~ (F& \>F*) & (\* F)

is commutative. i.e.
3 * *\ 3 * *
nico0d (lg, ..., 1) = 0.om; . (Ig, ..., 13)

Proof: Since there are no significant changes in the map of 73 . and this map is
defined in [XV] so we are referring to Theorem 3.11 of [XV] for the proof.

IV. Conclusion

This work shows that we can relate Grassmannian Complex to the first order
tangent complex for the projective map " d’ ".
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