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Abstract 

Right now, investigations are rigorously carried out on modelling the 

dynamic progress of (Covid-19) pandemic around the globe. Here we introduce a 

simple mathematical model for analyzing the dynamics of Covid-19, considering only 

the number of cumulative cases. In the present work, the 5PL function is applied to 

study the Covid-19 spread in Iceland. The cumulative number of infected persons C(t) 

has been accurately fitted with the 5PL equation, giving rise to different 

epidemiological parameters. The result of the current examination reveals the 

effectiveness and efficacy of the 5PL function for exploring the Covid 19 dynamics in 

Iceland. The mathematical model is simple enough such that practitioners knowing 

algebra and non-linear regression analysis can employ it to examine the pandemic 

situation in different countries. 

 Keywords: 5PL Function, Covid-19 Pandemic, Daily Growth Rate, Iceland, 

Simulation, Tipping Point. 

I.    Introduction 

In December of 2019, a novel coronavirus disease (COVID-19) was first 

identified in Wuhan City, Hubei, China, and the virus is identified as severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2). Now it is a worldwide health 

concern affecting many different countries worldwide. By 13 April 2021, it has 

affected more than 138 million people around the globe and more than 29,77,000 

deaths have been reported due to COVID-19 [XIX]. 

The virus was first traced in Iceland in February 2020. The total number of cases 

registered was 6,258, of which 6,126 had recovered and 29 deaths had occurred till 

08 April 2021 [XIX].  

SarS-CoV-2 (Covid-19) is relatively a new virus, that has not been studied enough by 

virologists. Researchers from all disciplines such as epidemiologists, mathematicians, 

physicists, biologists, chemists, and economists are seriously associated in the 
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investigation of this pandemic for an understanding of the spread dynamics of Covid-

19. Armed with this knowledge, policymakers can decisions to battle and control this 

pandemic.  

There are three key elements for the development of an epidemic: (1) source: 

pathogens and their repositories; (2) susceptible persons with a route for the infection 

to enter the body; (3) transmission: a way or mechanism by which viruses moved to 

other susceptible persons. 

The present study focuses on using phenomenological models for modeling disease 

spread without detailed microscopic foundations [II, III, VIII]. Previous epidemics 

[VIII-XI, XXVIII] have been analyzed using the classical logistic growth model, the 

generalized logistic model (GLM), the generalized Richards model (GRM) and the 

generalized growth model (GGM). In the present study, we will demonstrate the 5PL 

growth curve and model this curve to COVID19 disease dynamics in terms of the 

cumulative number of infected people in Iceland.   

The paper is prepared as follows: in Section II, we explain the model and data in 

detail. In Section III and IV, we perform simulation, i.e., calibrate the model to the 

cumulative number of infected cases in the COVID-19 epidemics for the whole of 

Iceland, and discuss the results. We talk about several limitations of our methods in 

Section V and then conclude in Section VI. 

II.     Mathematical Model & Materials 

Generalized Logistic Function or Curve (or Richards' curve) 

Richards' curve, otherwise called the generalized logistic function or curve, 

initially created for growth modeling, is an extension of 

the logistic or sigmoid functions, taking into consideration more adaptable S-shaped 

curves (XXIV, XII): 

                                                                     (1) 

where  Y(t) = weight, height, size etc., and t = time. 

The five parameters are: 

A: the lower asymptote; 

K: the upper asymptote when C=1. If A=0 and C=1 then K is called the carrying 

capacity; 

B: the growth rate; 

ν>0 : affects near which asymptote maximum growth occurs. It rules the degree of 

asymmetry of the curve (XXII, XXIII). 

Q: is related to the value Y(0) 

C: typically takes a value of 1. Otherwise, the upper asymptote is  

https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Carrying_capacity
https://en.wikipedia.org/wiki/Carrying_capacity
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The equation can also be written: 

                                                                    (2) 

where M  can be considered as a starting time, t0 at which  

                                                                               (3) 

Counting both Q and M can be advantageous:  

                                                                 (4) 

This model is sometimes known as "Richards' curve" after F. J. Richards. When Q= ν 

=1, eq (4) attains the maximum growth rate at time M. 

The model [Eq. (4)] is illustrated as a function of time in Fig. 1. 

 

Fig. 1. A typical plot of model [Eq. (4)] for A=M=0, B=3, C=K=1, Q= 0.5, ν=2 
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Modeling Covid19 Infection Trajectory 

Richards growth curve (or so-called the generalized logistic curve) is useful 

especially for population studies with asymmetrical growth about the point of 

inflection [XXV, I]. The curve also describes various biological processes [XXVI]. It 

is now extensively used in epidemiology for real-time prediction of an outbreak of 
diseases like SARS [XIV, XV], dengue fever [XVI, XVII], pandemic influenza H1N1 

[XVIII], and COVID-19 outbreak [XXVII]. 

In the literature [IV-VI, XX], there is a variety of parametrized forms of the Richards 

curve, and we use the following 5PL function for modeling COVID-19 infection 

trajectories [XXI]:  

                                                   (5) 

where Cmin, Cmax and rare real numbers, and g is a positive real number. The 

parameter g controls the flexibility of the curve: (i) the curve becomes the logistic 

function for g=1, and (ii) if g goes to zero, then the curve reduces to the Gompertz 

function.  

In the context of epidemiological modeling, each of the parameters can be interpreted 

as follows: 

C(t): number of cumulative cases of COVID-19 at the time, t. 

Cmin: initial minimum number of cases. (February 28, 2020, when the first case was 

reported in Iceland.) 

Cmax: maximum number of individuals infected during the epidemic. 

r: daily exponential growth rate. A larger number of r implies a faster spread of the 

virus around the country. 

τ: a tipping point when the number of new daily cases begins to level off and 

afterward to diminish.  

g : asymmetric parameter describing the skewness of the distribution of daily new 

cases. g =1 indicates asymmetric distribution centered at τ; g > 1 indicates faster 

increases in new cases before τ and slower after τ; and the reverse if g < 1. 

Data 

For the present study data are the daily cumulative cases of COVID-19 in Iceland 

from February 28, 2020, to April 08, 2021. Centers for Disease Control and 

Prevention (CDC) piles up this real-time data and is available on their website [VII].  

 

https://en.wikipedia.org/wiki/COVID-19
https://en.wikipedia.org/wiki/Gompertz_function
https://en.wikipedia.org/wiki/Gompertz_function
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                                    Fig. 2. Cumulative Covid 19 case 

Fig. 2 shows the daily cumulative data on COVID-19 confirmed cases nationwide. 

This data includes 406 observations covering a period from February 28, 2020, to 

April 8, 2021. The figure dictates two pandemic waves. The first wave occurs from 

the 1st week of March 2020 to the 1st week of April 2020. The figure confirms a 

second pandemic wave where a sharp rise occurs in the number of infections in mid 

to late September 2020.  

III.     Simulations 

Nonlinear least-squares parametric and interval estimations [XIII] 

Assume that a set of data xi, yi, i = 1, 2, · · ·, N is available satisfying a given 

model y(x) = f(a, x), where a is the vector describing undetermined coefficients. As 

the measured data is corrupted with noises, we write the original function as y(x) = 

f(a, x) + ε, , where ε represents the residual error. The undetermined parameters a can 

be estimated by minimizing the following function I: 

                                     (6) 

Substituting back the estimated values of the parameters a in the objective function, 

the residue error εi = yi − f(a, xi) can be obtained. The Matlab command nlinfit(), 

based on non-linear least-squares fitting with Gauss-Newton’s algorithm, is used to 

find the least square fitting. We can estimate the confidence interval (95%) with the 

help of function nlparci(). The syntax of the function is: 

[a, r, J] = nlinfit(x, y, fun, a0) % least squares estimation 

ci = nlparci(a, r, J) % confidence interval with 95% confidence 
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where x and y contain the measured data. “fun” indicates the objective function. a0 is 

initial guess value of the undetermined parameters. a gives the estimated parameters, 

r returns the residue error vector for the estimation and matrix J is the Jacobian. ci 

provides 95% confidence intervals of the parameters, a. 

The statistical measure for goodness of fit between the data and model is the 

regression coefficient, R2, and is estimated as  

             (7) 

Cumulative data C(t) fitting to 5PL model [Eq (5)] 

We fit the 5PL growth model to the cumulative case for Covid 19 pandemic 1st wave 

and 2nd wave in Iceland separately and using the above-mentioned Matlab command 

nlinfit(), get the best fit values of the parameters a of the model. The command 

nlparci() provides a 95% confidence interval. Table 1a and Table 1b show the best-fit 

values of the parameters and their confidence intervals (CIs). 

 

Table 1a. Parameter estimation for 1st wave (1st week of March to 1st week of 

April 2020). 

 
Parameter Best-fit value Lower 95% CI Upper 95% CI 

Cmin 1 -3 2 

Cmax 1803 1794 1811 

r 0.176 0.165 0.187 

τ 29.5 28.0 31.0 

g 0.96 0.77 1.10 

R2                                         0.9995 

 
Table 1b. Parameter estimation for 2nd wave (mid to late September 2020). 

 
Parameter Best-fit value Lower 95% CI Upper 95% CI 

Cmin 1940 1915 1965 

Cmax 5260 5064 5456 

r 0.114 0.087 0.140 

τ 86.2 83.4 89.0 

g 0.610 0.392 0.828 

R2                                         0.9976 

 
With the best fit values of the parameters of the model, we have reconstructed the 

cumulative case for the two pandemic waves and are shown in figures (Fig. 3a and 

Fig. 3b).  
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Fig. 3a. Observed and model–estimated cumulative case for 1st wave 

 

 

Fig. 3b. Observed and model–the estimated cumulative case for 2nd wave 

IV.    Discussions 

For the 1st pandemic wave, our model predicts the maximum number of 

people infected at the end of the 1st wave (Cmax) as 1803 which matches well with 

1801 on 07 May 2020. The estimated tipping point (τ) for the new daily cases is on 

28 March 2020, 30 days from the beginning of the epidemic on 28 Feb 2020. This 

indicates that the epidemic flattens on 28 March 2020. The daily exponentially 

growth rate of the Covid-19 spread is about 17.6%. Accordingly, the number of total 
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COVID-19 cases in Iceland doubles every four days in the absence of any anti-

epidemic measure (see appendix). The estimated asymmetric parameter g is 0.96, 

which is statistically close to g = 1.0. This result indicates that the pattern is 

symmetrically distributed on 28 March 2020. The regression coefficient (R2) between 

the data and model is 0.9995, which indicates excellent goodness of fit. 

The value of Cmax for the 2nd pandemic wave is 5260, as predicted by our model. It 

happens around 21 Nov 2020.  After this day, we observe a rise in the number of 

infections. The estimated tipping point (τ) for the new daily cases is on 21 October 

2020, 236 days from the beginning of the epidemic on 28 Feb 2020. This indicates 

that the 2nd wave flattens on 21 October 2020. The daily exponentially growth rate of 

the Covid-19 spread is about 11.4%, lower than that of the 1st wave, accordingly, total 

cases double every 6 and half days (see appendix). The estimated asymmetric 

parameter g is 0.61, which is statistically away from g = 1.0. So the pattern is not 

symmetrically distributed on 21 October 2020; indicating slower increases in new 

cases before 21 October 2020 and faster after 21 October 2020. The regression 

coefficient (R2) between the data and model is 0.9976, which again indicates 

excellent goodness of fit for the 2nd wave. 

V.    Limitations 

It is vital to specify that the data on confirmed cases are those that were 

successfully recognized and announced, accordingly, the genuine total confirmed 

cases of COVID-19 are probably much higher. The parameters of the Model Cmin, the 

minimum number of cases at the beginning of an epidemic, are highly defective due 

to a lack of testing protocols and perhaps a lack of knowledge at the initial stage of 

the epidemic. During the study, we have not considered the differences in population 

density, the existing capacity of the health systems, the current level of interventions 

and socio-demographic and economic situation across and within the states and 

districts of the entire country. Accordingly, the predicted results from the model 

could also fluctuate in a significant way from the observed ones. 

VI.     Conclusions 

In this report, a numerical investigation is carried out on Covid-19 in Iceland. 

We use a mathematical model, the 5PL function, robustly used in different fields, 

namely, biology, chemistry, physics, and economics, to model the Covid-19 spread in 

Iceland. A solid match between the estimated and the observed data on total 

confirmed cases is observed. Our study presents a simple mathematical model, 5PL 

curve, for describing the dynamics of the Covid-19 pandemic in Iceland. It provides 

specific information regarding the exponential growth rate, the doubling time for the 

epidemic, and the tipping point when daily new cases will level off. Despite some 

limitations as mentioned before, researchers can conduct their study on the Covid-19 

pandemic using this model for different countries/regions. 
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Appendix A. Calculation of doubling time for the total cases.  

Formula:          

A=2P, in doubling time, n days 

 

 

For 1st wave: r=17.6% 

 

 

 

For 2nd wave: r=17.6% 
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