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Abstract 
Finding the single root of nonlinear equations is a classical problem that 

arises in a practical application in Engineering, Physics, Chemistry, Biosciences, etc. 

For this purpose, this study traces the development of a novel numerical iterative 

method of an open method for solving nonlinear algebraic and transcendental 

application equations. The proposed numerical technique has been founded from 

Secant Method and Newton Raphson Method, and the proposed method is compared 

with the Modified Newton Method and Variant Newton Method. From the results, it is 

pragmatic that the developed numerical iterative method is improving iteration 

number and accuracy with the assessment of the existing cubic method for estimating 

a single root nonlinear application equation.  
 

Keywords: applications equations, cubic methods, open methods, convergence, 

results. 
 

I.   Introduction 
 

During many years, various scientists and researchers have taken interest and 

given countless techniques to estimate nonlinear problems, which rises in a huge 

number of application problems in Applied Science and engineering [IV], [V], [VI] 

for example Distance, rate, time problems, population change, Trajectory of a ball, 

such as nonlinear equation form as 

𝑓(𝑥) = 0 
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In fact, solutions of this nonlinear equation mostly can`t be found in Analytic 

analysis. For that reason, Numerical analysis is most commonly used. Numerical 

analysis is a significant branch of Mathematics and involves the study of procedures 

to calculate numerical data. Numerical analysis is also practical to estimating 

optimization examples. As most commonly used numerical technique includes the 

secant method [III]. This method is a useful open technique that requires two initial 

guesses. The secant method is superlinear order of convergence, while in some cases, 

the secant method struggles due to sluggish convergence. Besides, one of the useful 

open technique is Newton Raphson Method but it is also not reliable because in some 

cases it is keeping pitfall, but it is the most useful and second-order convergence 

method [II], [XIV], 

𝑥𝑛+1 = 𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
 

Where n=0,1,2, … 

However, this is the most valuable and modest numerical technique. In recent years, 

several improvements had been done in literature by Adomian’s Decomposition 

Technique, difference operator and Taylor series in Newton Technique to resolve 

nonlinear problems [VIII], [XIII], [XV]. Furthermore, increasing computational 

competence and convergence analysis by using Newton Raphson Method [IX], [XI], 

[XIII], [XVI]. Correspondingly, in this paper, a numerical iterative method has been 

recommended. The proposed method is an assortment of secant methods and the 

Newton Raphson Method. The numerical method has been compared with Variant of 

Newton Raphson Method [XVI],  

𝑦𝑛 = 𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
 

𝑥𝑛+1 = 𝑥𝑛 −
2𝑓(𝑥𝑛)

𝑓`(𝑥𝑛) + 𝑓`(𝑦𝑛)
 

and Modified Newton Raphson Method [VI], 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)𝑓`(𝑥𝑛)

𝑓`2(𝑥𝑛) − 𝑓(𝑥𝑛)𝑓``(𝑥𝑛)
 

From the comparison of existing methods with the proposed method of application 

problems in result Table-1, it can be experiential that the proposed method is 

executed well, more effectual and easier to employ with the judgement of variant of 

newton raphson method and modified newton raphson method. 
 

II.   Numerical Iterative Method 
 

This segment has developed a third-order iterated method for estimating 

nonlinear application equations, such as 

𝑓(𝑥) =  0 

A developed numerical iterative method is established with the help of Secant 

Method and Newton Raphson Method, such as 
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 𝑥𝑛+2 = 𝑥𝑛+1 −
𝑥𝑛+1−𝑥𝑛  

𝑓(𝑥𝑛+1)−𝑓(𝑥𝑛)
𝑓(𝑥𝑛+1)                                                            (1) 

and 

 𝑥𝑛+1 = 𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
                                                                                                  (2) 

By using 𝐸𝑞: (2) 𝑖𝑛 𝐸𝑞: (1), generally we get 

 𝑥𝑛+1 = 𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
−

𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
−𝑥𝑛  

𝑓(𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
)−𝑓(𝑥𝑛)

𝑓 (𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
) 

 𝑥𝑛+1 = 𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
+

𝑓(𝑥𝑛)𝑓(𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
) 

𝑓(𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
)𝑓`(𝑥𝑛)−𝑓(𝑥𝑛)𝑓`(𝑥𝑛)

 

 𝑥𝑛+1 = 𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
+

𝑓(𝑥𝑛)𝑓(𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
) 

𝑓`(𝑥𝑛)[𝑓(𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
)−𝑓(𝑥𝑛)]

 

Finally, we get 

 𝑥𝑛+1 = 𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
[1 +

𝑓(𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
) 

𝑓(𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
)−𝑓(𝑥𝑛)

]                                                         (3) 

Hence Eq: (3) is a numerical iterative method for estimating a single root of nonlinear 

application equations.  
 

III. Convergence Analysis 
 

 The following segment will be shown that the proposed numerical iterative 

method is keeping third order of convergence, such as 

 𝑒𝑛+1 = 𝑐2𝑒𝑛
3 + 𝑜(𝑒𝑛

4) 

Proof: 

Using the relation  𝑒𝑛 = 𝑥𝑛 − a  in Taylor series, therefore from Taylor series to 

estimate 𝑓(𝑥𝑛), 𝑓`(𝑥𝑛) 𝑎𝑛𝑑 𝑓 (𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
) with c =  

𝑓``(𝑎)

2𝑓`(𝑎)
 and ignoring higher-order 

term for easy to solve, such as 

𝑓(𝑥𝑛) = 𝑓`(𝑎)(𝑒𝑛  + 𝑐𝑒𝑛
2)                                                                                   (𝑖)  

 

𝑓`(𝑥𝑛) = 𝑓`(𝑎)(1 + 2𝑐𝑒𝑛)                                                                                    (𝑖𝑖) 

By using (𝑖) 𝑎𝑛𝑑 (𝑖𝑖) 𝑖𝑛 (2), we get 

𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
= 𝑒𝑛 −

𝑒𝑛𝑓`(𝑎) +
𝑒2

𝑛𝑓``(𝑎)
2

 𝑓`(𝑎) + 2𝑒𝑛  
𝑓``(𝑎)

2

 

 𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
= 𝑒𝑛−𝑒𝑛(1 + 𝑐𝑒𝑛)(1 + 2𝑐𝑒𝑛)−1 

 𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
= 𝑒𝑛−𝑒𝑛(1 + 𝑐𝑒𝑛)(1 − 2𝑐𝑒𝑛) 

 𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
= 𝑒𝑛−𝑒𝑛(1 − 𝑐𝑒𝑛) 
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𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
= c𝑒2

𝑛 

Thus, 

𝑓 (𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
) = 𝑓`(𝑎)(c𝑒2

𝑛  + 𝑐3𝑒𝑛
4)  

𝑓 (𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
) = c𝑒2

𝑛𝑓`(𝑎)(1 + 𝑐2𝑒𝑛
2)                                                       (𝑖𝑖𝑖) 

By using (𝑖), (𝑖𝑖)𝑎𝑛𝑑 (𝑖𝑖𝑖) 𝑖𝑛 (3), we get 

 𝑒𝑛+1 = 𝑒𝑛−𝑒𝑛(1 − 𝑐𝑒𝑛)[1 +
c𝑒2

𝑛𝑓`(𝑎)(1+𝑐2𝑒𝑛
2) 

c𝑒2
𝑛𝑓`(𝑎)(1+𝑐2𝑒𝑛

2)−𝑓`(𝑎)(𝑒𝑛 +𝑐𝑒𝑛
2)

] 

 𝑒𝑛+1 = 𝑒𝑛−𝑒𝑛(1 − 𝑐𝑒𝑛)[1 +
c𝑒𝑛(1−𝑐2𝑒𝑛

2) 

(1−𝑐3𝑒𝑛
3)

] 

𝑒𝑛+1 = 𝑒𝑛−𝑒𝑛(1 − 𝑐𝑒𝑛)[1 + c𝑒𝑛(1 − 𝑐2𝑒𝑛
2)(1 − 𝑐3𝑒𝑛

3)−1 ] 

 𝑒𝑛+1 = 𝑒𝑛−𝑒𝑛(1 − 𝑐𝑒𝑛)[1 + c𝑒𝑛(1 − 𝑐2𝑒𝑛
2 + 𝑐3𝑒𝑛

3 ] 

 𝑒𝑛+1 = 𝑒𝑛−𝑒𝑛(1 − 𝑐𝑒𝑛)[1 + c𝑒𝑛 − 𝑐3𝑒𝑛
3 ] 

 𝑒𝑛+1 = 𝑒𝑛−𝑒𝑛[1 + c𝑒𝑛 − 𝑐3𝑒𝑛
3 − c𝑒𝑛 − 𝑐2𝑒𝑛

2] 

 𝑒𝑛+1 = 𝑒𝑛−𝑒𝑛 + 𝑐3𝑒𝑛
4 + 𝑐2𝑒𝑛

3 

 𝑒𝑛+1 = 𝑐2𝑒𝑛
3 + 𝑜(𝑒𝑛

4) 

Hence this has proven that the (3) is converge cubically. 
 

IV. Results and Discussions 
 

In this segment, all calculations have been completed by MATLAB/C++ with 

stopping criteria for computer programs are: 

|𝑥𝑛+1 − 𝑥𝑛| < ε, where ε > 𝑒−10 

The developed numerical method is comparing by Variant of Newton Raphson 

Method [XVI], 

𝑦𝑛 = 𝑥𝑛 –
𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
 

𝑥𝑛+1 = 𝑥𝑛 −
2𝑓(𝑥𝑛)

𝑓`(𝑥𝑛) + 𝑓`(𝑦𝑛)
 

and Modified Newton Raphson Method [VII], 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)𝑓`(𝑥𝑛)

𝑓`2(𝑥𝑛) − 𝑓(𝑥𝑛)𝑓``(𝑥𝑛)
 

From application functions in Table-1 to exemplify the competence of developed 

numerical iterative technique by Variant of Newton Raphson Method and Modified 
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Newton Raphson Method. The functions belonging from the mass of the jumper, the 

volume of the gas depends on the temperatures, anti-symmetric buckling of a beam, 

projectile motion of any system and (pollutant bacteria concentration) such as  

i. 𝑓(𝑥) = 𝑆𝑖𝑛𝑥 − 𝑥 + 1 𝑤𝑖𝑡ℎ 𝑥 = 2 
ii. 𝑓(𝑥) = 2𝑥 − 𝑙𝑛𝑥 − 7 𝑤𝑖𝑡ℎ 𝑥 = 4 

iii. 𝑓(𝑥) = 𝑥𝒆𝒙– 2 𝑤𝑖𝑡ℎ 𝑥 = 3 

iv. 𝑓(𝑥) = 𝒙𝟑  − 9𝑥 + 1 𝑤𝑖𝑡ℎ 𝑥 = 0 

v. 𝑓(𝑥) = 𝒆𝒙– 5𝑥 𝑤𝑖𝑡ℎ 𝑥 = 2 
vi. 𝑓(𝑥) = 𝑐𝑜𝑠𝑥 − 𝒙𝟑 𝑤𝑖𝑡ℎ 𝑥 = 1 

vii. 𝑓(𝑥) = 𝒙𝟐 − 𝒆𝒙 − 𝟑𝒙 + 𝟐 𝑤𝑖𝑡ℎ 𝑥 = 1.5 

From Table-1, it has perceived that the developed numerical iterative method is 

taking good accuracy as well as iteration perception with the judgment of existing 

cubic methods, such as 

Numerical Table No. 1 

 

 

FUNCTION METHODS ITERATIONS X A E% 

Sinx-x+1 

x=2 

Modified Newton Method 

Variant Newton Method 

Numerical Iterative 

Method 

4 

3 

2 

 

1.93456 

1.67012e-4 

1.19209e-7 

3.01600e-5 

𝑥2 − 𝑒𝑥

− 3𝑥 + 2 

x=1.5 

Modified Newton Method 

Variant Newton Method 

Numerical Iterative 

Method 

6 

4 

3 

 

0.25753 

5.96046e-8 

1.49012e-7 

2.86102e-6 

xex–2 

x=3 

Modified Newton Method 

Variant Newton Method 

Numerical Iterative 

Method 

19 

10 

5 

 

0.852605 

5.96046e-8 

5.96046e-8 

2.98023e-7 

x3  − 9x
+ 1 

x = 0 

Modified Newton Method 

Variant Newton Method 

Numerical Iterative 

Method 

4 

3 

2 

 

2.94284 

1.78814e-7 

1.17209e-5 

1.21027e-5 

ex– 5x 

x = 2 

Modified Newton Method 

Variant Newton Method 

Numerical Iterative 

Method 

5 

4 

3 

 

2.54264 

2.21729e-5 

1.45435e-5 

5.10421e-7 

Cosx-x3 

x=1 

Modified Newton Method 

Variant Newton Method 

Numerical Iterative 

Method 

4 

6 

2 

 

0.865474 

5.96046e-8 

1.78814e-7 

1.76102e-3 

2x-lnx-7 

x=4 

Modified Newton Method 

Variant Newton Method 

Numerical Iterative 

Method 

3 

2 

2 

 

4.21991 

4.76837e-6 

1.19209e-5 

2.86102e-6 
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V.    Conclusions 

This research describes a numerical iterative method for estimating nonlinear 

application equations that have been proposed. The proposed method is converging 

cubically and is derived from Secant Method and Newton Raphson Method. We can 

conclude from numerical outcomes that the developed Numerical Iterative Method 

finds a good accuracy as well as iteration perception in the judgement of variant of 

the newton raphson method and modified newton raphson method. Hence, the novel 

numerical method is moderately modest, stable and more efficient in the estimating of 

nonlinear application equations. 
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