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Abstract 

In this research work, we consider the mathematical model of the 

Timoshenko beam (TB) problem in the form of a boundary-value problem of a system 

of ordinary differential equations. Instead of numerical solutions using finite 

difference and finite volume methods, an attempt is made to derive the exact 

analytical solutions of the model with boundary feedback for a better and more 

explicit description of the rotation and displacement parameters of the TB structure 

model. The explicit analytical solutions have been successfully found for uniform and 

real-time variable load cases. The rotation and displacement profiles obtained 

through the analytical solutions accurately picture the structure of the beam under 

uniform and variable loads. 

Keywords : Timoshenko beam, Analytical solution, Rotation, Displacement, 

Uniform load, Variable load. 

I.    Introduction 

Beam theory has a long history and various engineers, scientists, etc have 

developed numerical schemes and tested different approaches to knowing important 

characteristics about the structure and performance of the beams subjected to loads 

[II]. At the beginning of the 20th century, a new beam theory was developed by a 

Ukrainian-born scientist named Stephen Timoshenko [X]. Due to his name, this 

theory was named as Timoshenko beam (TB) theory. In the TB model, both shear 

deformation and rotational inertia effects were taken into account. Thus the TB 

describes the behavior of various beams such as short beams, composite sandwiched 
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beams or the beams which can be excited by high frequency so that the wavelength of 

excitation becomes shorter and thus approaches the thickness of the beam.   

To solve the Reissner-Mindlin problem which is more complex, researchers 

frequently use a numerical approximation of the TB model as a starting point so that a 

better understanding can be developed. Some bad behavior called locking 

phenomenon [III] arises when these problems are solved with finite difference 

method or standard Galerkin finite methods. This locking phenomenon is due to small 

parameters, and researchers have proposed different schemes which should be 

uniform concerning the small parameters. For example, [VIII], proposed a 

formulation that is linked to Petrov-Galerkin, and [III], [IV], [V], [IX] proposed a 

mixed formulation which results in approximations due to the use of the reduced 

integration. In [I], the authors proposed finite difference schemes for the TB model. 

The use of the least-squares finite element method was discussed by [VI]. The p and 

h-p versions of the finite element method have also been tested for the TB model by 

[VII].    

The problem with the discussed approaches is that these are numerical, and do not 

provide an exact profile of the problem in terms of the analytical solutions. The 

numerical schemes need more precise values perturbation parameter and strictly 

lesser step sizes and a considerable processing time to reach a bit of accuracy in the 

results. The stability regimes of the numerical schemes are not always unconditional, 

and the numerical results should be validated through analytical results, if available. 

In this research study, we focus the computation of exact analytical solutions of the 

TB model [X] in explicit form for better understanding the structure of the model and 

analyzing exactly the rotation and displacement profiles when the beam is subjected 

to different loads. We consider uniform as well as variable loads with boundary 

conditions to derive analytical solutions and observe the effect of such loadings on 

the structure of the TB model causing displacements and rotations. The obtained 

results can help in accurately understanding the TB behavior while subjected to 

different loads. 

II.     Mathematical Model of the Timoshenko Beam Problem  

Consider a Timoshenko beam clamped at both ends. When a load 𝑝(𝑥̄ ) is 

applied, which is distributed along the beam at different points. Due to this 

distribution of load, the moment m(𝑥̄ ) is also distributed along the beam i.e. at each 

point of the TB where the load is applied, there will be different moments. So, the 

beam will bend within the plane as a result of this distribution. We take the length of 

the beam as ‘L’ and its area of cross-section ‘A’. We use ‘E’ for Young’s modulus, 

‘G’ for modulus of rigidity. The terms M(𝑥̄ ), Q(𝑥̄ ) and θ(𝑥̄ ) are also used for bending 

moment, shear force and rotation of cross-section, respectively. W(𝑥̄ ) stands for 

displacement as transversed by the beam and ĸ is the correction factor for shear. For 

the TB problem, the mathematical model in the form of a system of ordinary 

differential equations, for 𝑥̄ ∈ (0, 𝐿), can be described as in equations (1)-(3). 

   – 
𝑑𝑄

𝑑𝑥̄ 
 = p         (1) 
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  – EI
 𝑑²𝜃

𝑑𝑥̄ ²
 – Q = 0                    (2) 

      – 
𝑄

𝑘𝐺𝐴
 + 

𝑑𝑊

𝑑𝑥̄ 
 – θ = 0                     (3) 

Due to  no motion at the two ends, the conditions at the boundary can be specified as:

  𝑊(0) = 𝑊(𝐿) = 0; θ(0) = θ(𝐿) = 0 

The non-dimensionalized problem for (1)-(3) can be obtained by introducing the 

following change of variables: 

x = 
𝑥̄ 

𝐿
,   𝑤 = 

𝑊

𝐿
,   𝜎 = 

𝑄𝐿²

𝐸𝐼
,   𝑓= 

𝑝𝐿³

𝐸𝐼
,   x𝐿 = x̄,   𝑤L = 𝑊,   Q = 

𝜎𝐸𝐼

𝐿²
 

Thus, from (1), we have: 

    – 
𝑑𝑄

𝑑𝑥̄ 
 = p       ⇒ – 

𝑑(
𝜎 EI

𝐿²
)

𝑑(𝑥̄𝐿)
 = p        ⇒ – 

𝑑𝜎(
EI

L²
)

𝑑𝑥̄(𝐿)
 = p 

OR 

 – 
𝑑𝜎

𝑑𝑥̄

𝐸𝐼

𝐿³
 = p  ⇒ – 

𝑑𝜎

𝑑𝑥̄
 = 

𝑝𝐿³

𝐸𝐼
 

Finally,  – 𝜎´=𝑓                                                                      

From (2), we have:  

– EI
𝑑²𝜃

𝑑(𝑥̄𝐿)²
 = Q 

            ⇒ – 
𝑑²𝜃

𝑑𝑥̄²

1

𝐿²
 = 

Q

𝐸𝐼
 

⇒ – 
𝑑²𝜃

𝑑𝑥̄²
 = 

𝑄𝐿²

𝐸𝐼
 

⇒ – θ″ = 𝜎 

⇒ – θ″ – 𝜎 = 0                         

From (3) 

– 
𝑄

𝑘𝐺𝐴
 + 

𝑑𝑊

𝑑𝑥̄ 
 – θ = 0 

⇒ – 

𝜎𝐸𝐼

𝐿²

𝑘𝐺𝐴
 + 

𝑑(𝑤𝐿)

𝑑(𝑥̄𝐿)
 –θ =0 

⇒ – 𝜎𝜀² + 𝑤´ – θ = 0                                                          

where  

𝜀² = 
𝐸𝐼

𝑘𝐺𝐴𝐿²
 

The original problem can now be transformed to the following non-dimensionanlized 

model problem in (4)-(6).  

– 𝜎´ = 𝑓                      (4) 

– θ ″–  𝜎 = 0                       (5)                                                                      
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–  𝜀²𝜎 + 𝑤´– θ = 0                       (6) 

 The problem (4)-(6) demands to find w, θ and 𝜎 such that in x lies in (0,1). 

The system of three differential equations can be further reduced into a system of two 

differential equations. For this, we use (6), as:  

– 𝜀²𝜎 = θ – 𝑤´ 

⇒ 𝜎= – 𝜀¯²(𝜃 –  𝑤´) 

Putting the above in  (4) and  (5) gives the final form of non-dimensionanlized TB 

model is:  

– θ ” + 𝜀¯2(𝜃 –𝑤´) = 0                                                        (7𝑎) 

𝜀¯²(𝜃´ –  𝑤”) = 𝑓                   (7b) 

together with the boundary conditions  

 𝑤(0) = 𝑤(1) = 0;     θ(0) = θ(1) = 0     (8) 

The parameter 𝜀² = 𝐸𝐼 𝑘𝐺𝐴𝐿²⁄  is a constant proportional to the ratio of the thickness 

to the length of the beam. In most realistic applications 𝜀 << 1. 

 III.       Exact Analytical Solutions of TB Model 

First, for the uniform load case 𝑓 = 1;  0<𝑥̄< 1, we have derived exact 

solution analytically with this load for Timoshenko beam model. Considering the 

model of the TB problem (9)-(11) as: 

– 𝜎´ = 𝑓                                                                     (9) 

– θ″ –  𝜎 = 0                  (10) 

–  𝜀² 𝜎 + 𝑤´ – θ = 0                                                                 (11) 

Subject to the conditions: 

 𝑤(0) =  𝑤(1) = 0;     θ(0) = θ(1) = 0  

From (9)              

𝜎´ = – 𝑓 

⇒ 𝜎´ = – 1      ∵ 𝑓 = 1 

Integrating 

                     𝜎 = – 𝑥̄ + 𝑐1                                  (12) 

From (10)       

𝜃″= –  𝜎 

⇒ 𝜃″ = 𝑥̄ – 𝑐1 

Integrating,       

𝜃´= 
 𝑥̄ ²

2
– 𝑐1𝑥̄ + 𝑐2 

Integrating again, 

𝜃 = 
𝑥̄ ³

6
 –
𝑐1𝑥̄ ²

2
 + 𝑐2𝑥̄+ 𝑐3                              (13) 
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𝜃(0) = 0      ⇒ 𝑥̄ = 0,    𝜃= 0,     Equation (13) becomes 

                 0 = 𝑐3             {⇒  𝑐3  =  0} 

 Also,  𝜃(1) = 0      ⇒ 𝑥̄ = 1,    𝜃 = 0,     Equation (13) becomes  

0 = 
1

6
 – 

𝑐1

2
 + 𝑐2 + 0      ⇒ 1 – 3𝑐1 + 6 𝑐2 = 0       {⇒  3𝑐1 – 6 𝑐2 = 1}          (14) 

From (11)    𝑤´= 𝜃 + 𝜀² 𝜎 

                 𝑤´ = 
𝑥̄ ³

6
 – 

𝑐1𝑥̄ ²

2
 + 𝑐2𝑥̄ + 𝑐3 + 𝜀² (– 𝑥̄) + 𝜀² 𝑐1 

                 𝑤´ = 
𝑥̄ ³

6
 – 

1

2
 𝑥̄ ²𝑐1+ 𝜀² 𝑐1+ 𝑐2𝑥̄ – 𝜀²𝑥̄               ∵ 𝑐3 = 0 

Integrating     

               𝑤 = 
𝑥̄ ⁴

24
 – 

𝑥̄ ³

6
𝑐1+ 𝜀² 𝑐1𝑥̄ + 

𝑐2𝑥̄ ²

2
  – 

𝜀²𝑥̄ ²

2
 + 𝑐4                     (15) 

               𝑤(0) = 0         ⇒ 𝑥̄ = 0,     𝑤 = 0,    Equation (15) becomes 

                      0 = 0 – 0 + 0 + 0 – 0 + 𝑐4                {⇒ 𝑐4  =  0} 

                𝑤(1) = 0        ⇒ 𝑥̄ = 1,     𝑤 = 0,    Equation (15) becomes  

                       0 = 
1

24
 –  

1

6
𝑐1 + 𝜀² 𝑐1  +  

1

2
𝑐2 – 

1

2
𝜀²  

               ⇒1 – 4𝑐1 + 24 𝜀² 𝑐1 + 12𝑐2 – 12 𝜀² = 0 

               ⇒ – 4 (1–6 𝜀²)𝑐1 + 12𝑐2 = 12 𝜀² – 1           (16) 

Multiplying (14) by 2 and adding (16) in it, we have 

 (2 + 24 𝜀²)𝑐1 = 1 + 12 𝜀² 

        ⇒ 2(1 + 12𝜀²)𝑐1 = 1 + 12 𝜀²     ⇒ 𝑐1 = 
1

2
  , putting in (14)  

        ⇒ 𝑐2 =
1

12
  

Hence,    

𝜃 = 
𝑥̄ ³

6
 – 

𝑥̄ ²

4
 + 

𝑥̄

12
 + 0 

           ⇒ 𝜃 = 
𝑥̄

12
(2𝑥̄ ²– 3𝑥̄ + 1) 

           ⇒ 𝜃 = 
𝑥̄

12
(2𝑥̄– 1)(𝑥̄– 1)                          

and         

𝑤 = 
𝑥̄ ⁴

24
 –  

𝑥̄ ³

12
  + 

1

2
𝜀²𝑥̄ +  

𝑥̄ ²

24
  – 

1

2
𝜀²𝑥̄ ² + 0 

     = 
𝑥̄ ⁴

24
 –  

𝑥̄ ³

12
 +  

𝑥̄ ²

24
 + 

1

2
𝜀²𝑥̄– 

1

2
𝜀²𝑥̄ ² 

     = 
𝑥̄²

24
(𝑥̄ ²– 2𝑥̄ + 1) + 

1

2
𝜀²𝑥̄(1– 𝑥̄) 

= 
𝑥̄²

24
(𝑥̄– 1)² + 

1

2
𝜀²𝑥̄(1– 𝑥̄) 

w = 
1

24
𝑥̄ ²(1– 𝑥̄)² + 

1

2
𝜀²𝑥̄(1– 𝑥̄) 
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Finally, for the uniform load case, The exact solutions of the TB model  are  

𝜃(𝑥̄) = 
1

12
𝑥̄(1– 𝑥̄)(1– 2𝑥̄)      (17) 

𝑤(𝑥̄) = 
1

24
𝑥̄ ²(1– 𝑥̄)² + 

1

2
𝜀²𝑥̄(1– 𝑥̄)     (18) 

Now, for the variable load case, say, 𝑓(𝑥̄) = 100( 𝑒𝑥̄ + 𝑥̄);  0< 𝑥̄<1, we have derived 

the exact solution analytically with this load for the Timoshenko beam model. 

Consider: 

– 𝜎´ = 100( 𝑒𝑥̄ + 𝑥̄)                 (19) 

– θ″ –  𝜎 = 0                  (20) 

– 𝜀² 𝜎 + 𝑤´ – θ = 0                 (21)    

Subject to:                 

 𝑤(0) =  𝑤(1) = 0;     θ(0) = θ(1) = 0  

From (19)                    

𝜎´ = –100( 𝑒𝑥̄ + 𝑥̄) 

⇒
𝑑𝜎 

𝑑𝑥̄
 = – 100( 𝑒𝑥̄ + 𝑥̄) 

 Integrating, 

                      ∫𝑑𝜎 = –100∫( 𝑒𝑥̄ + 𝑥̄)𝑑𝑥̄ 

                      ⇒ 𝜎 = –100( 𝑒𝑥̄ +
𝑥̄²

2
) +𝑐1         {⇒  𝜎 = – 100 ( 𝑒𝑥̄ +

𝑥̄²

2
)  + 𝑐1} 

From (20)             

 θ″ = – 𝜎 

⇒ θ″=100( 𝑒𝑥̄ +
𝑥̄²

2
) – 𝑐1 

Integrating 

θ´= 100( 𝑒𝑥̄ +
𝑥̄³

6
) – 𝑐1 𝑥̄ + 𝑐2 

Integrating again 

θ(𝑥̄) = 100( 𝑒𝑥̄ +
𝑥̄⁴

24
) – 𝑐1

𝑥̄²

2
 + 𝑐2𝑥̄ + 𝑐3 

{⇒ 𝜃(𝑥̄)  =  100 ( 𝑒𝑥̄ +
𝑥̄⁴

24
) – 𝑐1

𝑥̄²

2
 + 𝑐2𝑥̄ + 𝑐3} 

 Now,     

θ(0) = 0 ;   θ(1) = 0   

        θ(0) = 0  

            0 = 100(1) + 𝑐3                                       {⇒ 𝑐3 = – 100} 

        θ(1) = 0   

            0 = 100(𝑒 + 
1

24
) – 

1

2
𝑐1 + 𝑐2 – 100 
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⇒
–𝑐1+2𝑐2

2
  = 100 – 100(𝑒 + 

1

24
) = 100(1– 𝑒– 

1

24
) = 100(

23

24
– 𝑒) 

⇒ – 𝑐1 + 2𝑐2 = 200(
23

24
– 𝑒) 

⇒ 𝑐1–2𝑐2 = 200(𝑒–
23

24
)  = 200 𝑒 – 200

23

24
  = 200 𝑒 – 

575

3
 

⇒ 𝑐1–2𝑐2 = 200 𝑒 – 
575

3
                 (22) 

From (21)       

 𝑤´ = θ + 𝜀² 𝜎 

⇒ 𝑤´ = 100( 𝑒𝑥̄ +
𝑥̄⁴

24
) – 𝑐1

𝑥̄²

2
 + 𝑐2𝑥̄ –100 – 100 𝜀² ( 𝑒𝑥̄ +

𝑥̄²

2
) + 𝜀²𝑐1 

 Integrating 

        {𝑤(𝑥̄) = 100( 𝑒𝑥̄ +
 𝑥̄⁵

120
) – 𝑐1

 𝑥̄³

6
 + 𝑐2

𝑥̄²

2
 –100𝑥̄ – 100 𝜀² ( 𝑒𝑥̄ +

 𝑥̄³

6
) + 𝜀²𝑐1𝑥̄ + 𝑐4} 

Now,     

 𝑤(0) = 0;  𝑤(1) = 0 

𝑤(0) = 0    

            0 = 100(1) – 100 𝜀²(1) + 𝑐4    ⇒ – 100 + 100 𝜀² = 𝑐4      {⇒ 𝑐4 = 100(𝜀² – 1)} 𝑤(1) = 0  

       0 = 100(𝑒 +
 1

120
) – 

1

6
𝑐1 + 

1

2
𝑐2 –100 – 100 𝜀² (𝑒 +

 1

6
) + 𝜀²𝑐1 + 𝑐4 

⇒ – 
1

6
𝑐1+ 𝜀²𝑐1 + 

1

2
𝑐2 = 100 𝜀² (𝑒 +

 1

6
) –100(𝑒 +

 1

120
) +100 – 100(𝜀²– 1) 

⇒
– 𝑐1+ 6𝜀²𝑐1+3𝑐2

6
 = 100 𝜀²𝑒 – 100 𝑒 + 

100

6
𝜀² – 100 𝜀² – 

100

120
 + 100 +100 

⇒
(–1 + 6𝜀²)𝑐1+3𝑐2

6
 =100(𝜀²– 1)𝑒 – 

500

6
𝜀² + 

2390

12
 

⇒ (–1 + 6𝜀²)𝑐1 + 3𝑐2 = 600(𝜀²– 1)𝑒 – 500 𝜀² +1195                          (23) 

Multiplying (22) by 3 and (23) by 2 and adding gives: 

(1 + 12𝜀²)𝑐1 = 600(2𝜀²– 1)𝑒 – 1000 𝜀² + 1815 

⇒ 𝑐1 = 
1

1+12𝜀²
{600(2𝜀²– 1)𝑒 – 1000 𝜀² + 1815}    put in equation (38) 

⇒ 𝑐2 =  
1

2
 𝑐1 – 100 𝑒 + 

575

6
 

         = 
600(2𝜀²– 1)𝑒

2(1+12𝜀²)
 – 100 𝑒 + 

1

2(1+12𝜀²)
{ –  1000 𝜀² +  1815} + 

575

6
 

         = 
1200 𝜀²𝑒 − 600𝑒  – 200𝑒  – 2400 𝜀²𝑒

2(1+12𝜀²)
 + 

1

2(1+12𝜀²)
{ –  1000 𝜀² + 1815} + 

575

6
 

⇒ 𝑐2 = 
1

2(1+12𝜀²)
{– 400(2 + 3𝜀²)𝑒 – 1000 𝜀² +  1815} + 

575

6
 

{⇒ 𝑐2  =  
1

2(1 + 12𝜀²)
{– 400(2 + 3𝜀²)𝑒 – 1000 𝜀² +  1815} + 

575

6
} 
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Therefore, the exact solutions for the variable load considered are: 

θ(𝑥̄) = 100 ( 𝑒𝑥̄ +
𝑥̄⁴

24
) – 𝑐1

𝑥̄²

2
 + 𝑐2𝑥̄ + 𝑐3     (24) 

𝑤(𝑥̄) = 100( 𝑒𝑥̄ +
 𝑥̄⁵

120
) – 𝑐1

 𝑥̄³

6
 + 𝑐2

𝑥̄²

2
 –100𝑥̄ – 100 𝜀² ( 𝑒𝑥̄ +

 𝑥̄³

6
) + 𝜀²𝑐1𝑥̄ + 𝑐4 (25) 

Where, 

𝑐1 = 
1

1+12𝜀²
{600(2𝜀²– 1)𝑒 – 1000 𝜀² + 1815}    (26) 

𝑐2 = 
1

2(1+12𝜀²)
{– 400(2 + 3𝜀²)𝑒 – 1000 𝜀² +  1815} + 

575

6
  (27) 

𝑐3 = – 100,                (28) 

𝑐4 = 100(𝜀² – 1)       (29) 

IV.      Results and Discussion 

For the case of uniform load, the exact analytical solutions of the rotation and 

displacement variables for x = 0.1, 0.5 and 0.8 have been computed for reference 

through (17)-(18) and displayed in Table-1 for 𝜀 = 0.5. 0.1 and 0.01.   

Regarding rotation of the TB at 𝜀 = 0.5, the value of 𝜃(𝑥̄) up to 4 decimal places at 

the point x = 0.1 is 0.0060. At     x = 0.5, which is the mid-point of the beam, the 

value of  𝜃(𝑥̄) decrease to 0 since the load is uniform, so at equal distances to the 

right and left of x = 0.5, the rotations will be equal but in opposite direction, thus the 

net effect is 0. This shows that at this point 𝜃(𝑥̄) is zero or we can say that there will 

be no rotation at x = 0.5. At x = 0.8, the value of 𝜃(𝑥̄) is negative. The negative sign 

shows that the beam will rotate in opposite direction at this point to that of at x = 0.1. 

Thus rotation to the right and left of x = 0.5 are opposite in direction. 

Regarding displacement of the TB at 𝜀 = 0.5, we see that at x = 0.1, 𝑤(𝑥̄) = 0.0116. 

At x = 0.5,  𝑤(𝑥̄) = 0.0339 and at x = 0.8, 𝑤(𝑥̄) = 0.0211. So we see that as we go 

from x = 0.1 to x = 0.5 the value of  𝑤(𝑥̄) increases and then from x = 0.5 to x = 0.8 

again value of 𝑤(𝑥̄) decreases. At 𝜀 = 0.1, we observe the same pattern for rotation 

and displacement. Finally, for 𝜀 = 0.01, the values of rotation depict the same picture 

as for the other two cases. Generally, as the value of 𝜀 decreases from 0.5 to 0.01, the 

value of rotation remains the same at each point from top to bottom. On the other 

hand, the values of displacement decrease from top to bottom at each point, as shown 

in Table-1.  

For the case of variable load, the exact analytical solutions of the rotation and 

displacement variables for x = 0.1, 0.5 and 0.8 have been computed for reference 

through (24)-(29) and displayed in Table-2 for 𝜀 = 0.1, 0.01, 0.001 and 0.0001. For 

this load, the values of rotation and displacement are given in Table-2 for different 

values of 𝜀 at three different points of beam.  

At 𝜀 = 0.1, from Table-2 we notice that the value of 𝜃(𝑥̄) decreases from x = 0.1 to    

x = 0.5 and then increases from x = 0.5 to x = 0.8. Further the values of 𝜃(𝑥̄) will be 

negative to the right of x = 0.5 due to opposite rotation. On the other hand, the value 

of displacement increases from point x = 0.1 to point x = 0.5 and then decreases from 

x = 0.5 to x = 0.8. The maximum displacement is at x = 0.5. For 𝜀 = 0.01, 0.001 and 

0.0001 the same pattern is seen in the Table-2 for both rotation and displacement. We 
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also notice that the load will be minimum at left hand at x = 0 and increases from left 

to right. It will be maximum at x =1. But since both ends are fixed so there will be no 

rotation and displacement at x = 0 and x =1. 

Table 1: Exact solutions for the case:  𝒇(𝒙) = 1, 0< 𝒙<1 

  

Table 2: Exact solutions for the case:  𝒇(𝒙) = 100( 𝒆𝒙 + 𝒙);  0< 𝒙<1 

  

V.    Conclusion 

In this research work, we have derived exact analytical solutions of the TB 

model for two types of load. One load is fixed load, 𝑓(𝑥̄)=1 and other load is a 

variable load, 𝑓(𝑥̄) = 100( 𝑒𝑥̄ + 𝑥̄). With these loads, we have derived and computed 

exact solutions for rotation and displacement. From the analysis of these results, we 

conclude that there were no locking phenomena. These results were obtained for 

different values of 𝜀, the only dependent parameter of the problem. The results 

obtained show that the formulation can be applied to more complicated problems of 

beam deformation.  
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Exact Solutions:  

 (𝜃(𝑥̄)/𝑤(𝑥̄)) 
𝑥̄ = 0.1 𝑥̄ = 0.5 𝑥̄ = 0.8 

𝜀 = 0.5 (0.0060/0.0008)  (0.0000/0.0339)  (– 0.008/0.0019) 

𝜀 = 0.1 (0.0060/0.0003) (0.0000/0.0026) (– 0.00800.0011) 

𝜀 = 0.01 (0.0060/0.0003) (0.0000/0.0026) (– 0.008/0.0011) 

Exact Solutions:  

 (𝜃(𝑥̄)/𝑤(𝑥̄)) 
𝑥̄ = 0.1 𝑥̄ = 0.5 𝑥̄ = 0.8 

𝜀 = 0.1 (1.2209/0.1468) (0.1988/0.8397) (– 1.7744/0.4507) 

𝜀 = 0.01 (1.1997/0.0673) (0.1396/0.5695) (– 1.8122/0.2518) 

𝜀 = 0.001 (1.1994/0.0665) (0.1390/0.5668) (– 1.8126/0.2498) 

𝜀 = 0.0001 (1.1994/0.0665) (0.1390/0.5668) (– 1.8127/0.2498) 
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