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Abstract 

We propose and implement a finite difference scheme for the numerical 

solution of the Timoshenko beam model without locking phenomenon. The averaging 

concept is used in approximating the function, and thus developing the scheme for 

elements. Finally, the system is discretized into the algebraic system using the 

proposed scheme and the numerical solution is attained. The numerical solutions are 

attained for a constant load and a variable load comprising linear and exponential 

functions. The mathematical model of the Timoshenko beam (TB) problem in the form 

of a boundary-value problem has been solved successfully for the rotation and 

displacement parameters. The results agree with other schemes in the literature for 

various values of the parameter and step size.  

Keywords: Timoshenko beam, Finite-difference solution, Rotation, Displacement, 

Constant load, Variable load, Interpolation. 

I.    Introduction 

There are various engineers, scientists etc who had a long history in the 

development of numerical schemes, they performed different approaches subjected to 

loads to examine the performance and important characteristics of the beam [IV], VI]. 

At the beginning of the 20th century, a new beam theory was developed by a 

Ukrainian-born scientist named Stephen Timoshenko [XII]. The theory was named as 

Timoshenko beam (TB) theory due to his name. Here. both shear deformation and 

rotational inertia effects were taken into account, in the TB model. The other beams' 

behavior is also described by the TB model, which includes short beams, composite 

sandwiched beams or the beams which can be excited by high frequency so that the 

wavelength of excitation becomes shorter. 
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For the solution of more complex Reissner-Mindlin problem, as a starting point, TB 

model was used for the numerical approximation for better understanding. Sometimes 

locking phenomenon [III], [XIII] arises when the problems were solved using the 

finite difference method or standard Galerkin methods. To overcome the problem of 

the locking phenomenon, researchers proposed different schemes which are uniform 

concerning the small parameters. A formulation linked to Petrov-Galerkin was 

proposed in [IX], due to the use of the reduced integrations mixed formulations were 

proposed in [I], [II], [III], [X].  Finite difference schemes were proposed by authors 

[III], [XIII] which were for the TB model. In [V], the authors discussed the use of the 

least-squares finite element method. In [VII] authors tested the p and h-p versions of 

the finite element method for the TB model. In [XI], a second-order accurate 

difference scheme was derived by the method of the reduction of order on non-

uniform meshes and proves the stability and second-order convergence with the 

theoretical results. A linearized three-level difference scheme of the TB equations on 

uniform meshes was derived in [XV] by the method of reduction of order and 

obtained convergence order in maximum norm is of order two in both space and time. 

In [XVI] generalized eigenvector system of a Timoshenko beam with some linear 

boundary feedback concluded that the closed-loop system exhibits exponential 

stability. A finite-difference for a Timoshenko beam was derived in [XVII] by the 

method of reduction of order on uniform meshes. [XVII] established the efficiency 

and accuracy of the finite element method for calculating the eigenvalues and 

eigenmodes and created interesting phenomena concerning the damped vibration 

spectrum and the associated eigenmodes. [VIII] derived linearized three-level 

difference scheme of the Timoshenko beam equations on uniform meshes by the 

method of reduction of order on uniform meshes and proved unique solvability, 

unconditional stability and convergence of the difference scheme by the discrete 

energy method. 

In terms of analytical solutions, the TB problem with the discussed approaches does 

not provide an exact profile as these are numerical. To have reduced processing time 

to achieve a bit of accuracy in the results the numerical schemes should be concise 

with parameters and small step sizes. The numerical results should be validated 

through analytical results as the stability of the numerical schemes are not always 

unconditional. In this research work, the focus is on the computations from a 

proposed numerical scheme, referred to as scheme-III ahead, and two previously 

existing schemes referred to as Schemes I and II. Also, the exact results are obtained 

from the analytical solution of TB model [XIV], [XV] when the beam is subjected to 

different loads which are uniform as well as variable loads, analyzing exactly the 

rotation and displacement profiles on the structure of the TB model. The approximate 

results obtained from the existing schemes as well as proposed scheme III were 

compared with the exact results, to examine the performance of the proposed scheme. 

II.    Mathematics of the TB Model  

In a TB model with clamping on both ends, consider a uniformly distributed 

load 𝑝(𝑥̄ ). Consequently, at each point of the beam the moment m(𝑥̄ ) is apparent due 

to load 𝑝(𝑥̄ ). Hence, the beam bends within the plane as a result of load and moment. 

Further, we assume ‘L’ and ‘A’ are the length and area of the cross-section of the 
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beam, ‘E’ is Young’s modulus and ‘G’ is the modulus of rigidity. Let M(𝑥̄ ), Q(𝑥̄ ) 
and θ(𝑥̄ ) denote the bending moment, shear force and rotation of cross-section, 

respectively. Let W(𝑥̄ ) stands for displacement as transversed by the beam and ĸ is 

the correction factor for shear. For the TB problem, the mathematical model in the 

form of a system of ordinary differential equations, for 𝑥̄ ∈ (0, 𝐿), can be described as 

in equations (1)-(3). 

– 
𝑑𝑄

𝑑𝑥̄ 
 = p         (1) 

– EI
 𝑑²𝜃

𝑑𝑥̄ ²
 – Q = 0                     (2) 

– 
𝑄

𝑘𝐺𝐴
 + 

𝑑𝑊

𝑑𝑥̄ 
 – θ = 0                     (3) 

Due to static condition of both end points, the conditions at the boundary are:  

𝑊(0) = 𝑊(𝐿) = 0; θ(0) = θ(𝐿) = 0 

The non-dimensionalized problem for (1)-(3) can be described as: 

– 𝜎´ = 𝑓                      (4) 

– θ ″–  𝜎 = 0                      (5)                                                                     
   

–  𝜀²𝜎 + 𝑤´– θ = 0                       (6) 

The problem (4)-(6) demands to find w, θ and 𝜎 such that in x lies in (0,1). The 

model (4)-(6) can further be simplified to get (7)-(8):  

– θ ” + 𝜀¯2(𝜃 –𝑤´) = 0                                             (7) 

𝜀¯²(𝜃´ –  𝑤”) = 𝑓       (8) 

subject to:  𝑤(0) = 𝑤(1) = 0;     θ(0) = θ(1) = 0.  

The parameter 𝜀² = 𝐸𝐼 𝑘𝐺𝐴𝐿²⁄  is a constant proportional to the ratio of the thickness 

to the length of the beam. In most realistic applications 𝜀 << 1. 

 III.     Existing and Proposed Finite Difference Schemes for TB model 

There exist two finite difference schemes in literature [I] described as 

follows: 

Existing Scheme I  

In element ∆𝑖 = (𝑥̄𝑖–1,𝑥̄𝑖), we let 𝑓 ≈ 𝑓
𝑖–

1

 2

 = 𝑓 (𝑥̄𝑖– 1
2
) be a constant. Then,  solving 

(4)-(6) and (7)-(8) in ∆𝑖, one has:  

  – 𝜎´= 𝑓
𝑖–

1

 2

                  (9)  

      – θ ”–  𝜎 = 0                                (10)
               

–  𝜀² 𝜎 + 𝑤´– θ  = 0                              (11) 
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From (9), (10) and (11), we have the linear system, for 𝑖 = 1,2,…,N-1,          

   
12

12𝜀²+ℎ²
{
𝜃𝑖–1+ 2𝜃𝑖 + 𝜃𝑖+1

4
 – 

 𝑤𝑖+1– 𝑤𝑖–1

2ℎ
} – 

𝜃𝑖–1– 2𝜃𝑖 + 𝜃𝑖+1

ℎ²
 = 

1

12
h(𝑓

𝑖+ 
1

2

 – 𝑓
𝑖– 

1

2

) 

12

12𝜀²+ℎ²
{
𝜃𝑖+1– 𝜃𝑖–1

2ℎ
 – 

 𝑤𝑖–1 – 2𝑤𝑖 + 𝑤𝑖+1

ℎ²
} = 

1

2
(𝑓

𝑖+ 
1

2

 + 𝑓
𝑖– 

1

2

)            (12)  

and with the boundary conditions 

𝜃0 =  𝜃𝑁 = 0,          𝑤0 = 𝑤𝑁 =0                (13) 

Existing Scheme II 

Let ∆𝑖 = (𝑥̄𝑖–1,𝑥̄𝑖+1), we let 𝑓 ≈ 𝑓𝑖̅= 
1

2
(𝑓 (𝑥̄𝑖– 1

2
) + 𝑓 (𝑥̄𝑖+ 1

2
)) be a constant. Then, 

using these in (4)-(8), the other scheme was attained in the element ∆𝑖 as in (17) using 

(14)-(16):  

– 𝜎´ = 𝑓𝑖̅                  (14) 

– θ″ –  𝜎 = 0                             (15)  

–  𝜀² 𝜎 + 𝑤´– θ = 0                            (16)                                                                 

3

3𝜀² + ℎ²
{
𝜃𝑖–1+ 𝜃𝑖+1

2
 –

 𝑤𝑖+1 –  𝑤𝑖–1

2ℎ
} – 

𝜃𝑖–1 – 2𝜃𝑖 + 𝜃𝑖+1

ℎ²
 = 0   

12

12𝜀² +ℎ²
{
𝜃𝑖+1 – 𝜃𝑖–1

2ℎ
 –

 𝑤𝑖–1 – 2𝑤𝑖 + 𝑤𝑖+1

ℎ²
} = 𝑓𝑖̅                  (17)       

We have the linear system, for 𝑖 = 1,2,…,N-1 in (17) for the final numerical solution.   

The boundary conditions are:  

    𝜃0 =  𝜃𝑁 = 0,          𝑤0 = 𝑤𝑁 =0                                                          (18) 

Proposed Scheme III        

 In this research work, we are analyzing a new scheme whose pattern is parallel to 

[X]. Here both rotation and transverse displacement are converted into linear finite 

elements. For both, these variables' error is of optimal order. By comparing this error 

with a thickness of the beam, we obtain a uniformity. 

Let ∆𝑖𝑖 = (𝑥̄𝑖–2,𝑥̄𝑖+2), we let 𝑓 ≈ 𝑓𝑖̅ = 
1

2
(𝑓(𝑥̄𝑖–1) +  𝑓(𝑥̄𝑖+1))  be a constant.  

Then we solve (4)-(8) in ∆𝑖𝑖. 

– 𝜎´ =  𝑓𝑖̅                             (19) 

– θ″ –  𝜎 = 0                                (20)                                                                  
–  𝜀² 𝜎 + 𝑤´ – θ = 0                               (21) 

From (19), (20) and (21) the equations for numerical computations are  

               
6

3𝜀²+4ℎ²
{(𝜃𝑖–2 + 𝜃𝑖+2) –

( 𝑤𝑖+2 – 𝑤𝑖–2)

2ℎ
} – 

(𝜃𝑖–2 – 2𝜃𝑖 + 𝜃𝑖+2)

ℎ²
 = 0  
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3

3𝜀²+ℎ²
{
𝜃𝑖+2 – 𝜃𝑖–2

4ℎ
 –

 𝑤𝑖–2– 2𝑤𝑖+ 𝑤𝑖+2

4ℎ²
}=𝑓𝑖̅                                 (22) 

with the boundary conditions      

 𝜃0 =  𝜃𝑁 = 0,          𝑤0 = 𝑤𝑁 =0                           (23) 

It is important to verify the sensitivity of the numerical solutions by existing schemes 

and the proposed ones. For this, we theoretically establish the norm expression (24) 

using numerical approximations. 

If the pair (𝜃, 𝑤) represent solution of (4)- (8), then there exists a constant C 

independent of 𝜀 such that 

‖𝜃‖   +  ‖𝑤‖  ≤C‖𝑓‖                                                                  (24) 

where ‖∙‖  is the uniform norm on the interval (0,1).  

From (4), we have 

– 𝜎(𝑥̄) = – F(𝑥̄) + 𝐶1,   F(𝑥̄) = ∫ 𝑓
𝑥̄

0
(𝑡)dt   

From (5) and the boundary conditions, we get 

𝜃(𝑥̄)= – 
1

2
𝐶1𝑥̄² + 𝐶2𝑥̄  + G(𝑥̄) 

with 

G(𝑥̄) =∫ (∫ 𝐹(𝑡)
𝑠

0
𝑑𝑡 )

𝑥̄

0
ds – 𝑥̄ ∫ (∫ 𝐹(𝑡)

𝑠

0
𝑑𝑡)

1

0
ds     

From (6), we obtain 

 𝑤(𝑥̄) = – 
1

6
𝐶1𝑥̄³ + 

1

4
𝐶2𝑥̄² + 𝜀² 𝐶3𝑥̄ – 𝜀²∫ 𝐹(𝑡)

𝑥̄

0
𝑑𝑡 + ∫ 𝐺(𝑡)

𝑥̄

0
𝑑𝑡 

Applying the conditions 𝑤(0) = 𝑤(1) = 0, we can derive 

𝐶1 = 
𝜀² ∫ 𝐹(𝑡)

1

0
𝑑𝑡 – ∫ 𝐺(𝑡)

1

0
𝑑𝑡

𝜀²+ 1
12

 

Thus for 0 < 𝜀 < 1, we can verify 

‖𝐹‖  ≤C‖𝑓‖  ,   ‖𝐺‖  ≤C‖𝑓‖  , |𝐶1| ≤C‖𝑓‖   

Thus (24) is established. 

Finally, denoting the piecewise constant function 𝑓ℎ(𝑥̄) from 𝑓(𝑥̄) by 𝑓ℎ(𝑥̄)=(𝑥̄𝑖–1
2
), 

𝑥̄𝑖–1<𝑥̄<𝑥̄𝑖, we consider the equations: 

– 𝜃̃″+ 𝜀¯²(𝜃̃ – 𝑤̃´) = 0       (25) 

 𝜀¯²(𝜃̃ – 𝑤̃´) = 𝑓ℎ                                                           (26) 

together with the boundary conditions 

𝑤̃(0) = 𝑤̃(1) = 0,    𝜃̃(0) = 𝜃̃(1) = 0                                       
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we can see that the   

𝜃̃(𝑥̄𝑖)= 𝜃̃𝑖,      𝑤̃(𝑥̄𝑖) = 𝑤̃𝑖,        𝑖 = 0,1,2,…,N 

for the solutions of(12) and (13). Therefore, as the  𝜃(𝑥̄) – 𝜃̃(𝑥̄) and 𝑤(𝑥̄) – 𝑤̃(𝑥̄) 
are the solution of (7)-(8) with the replacement 𝑓(𝑥̄) by 𝑓(𝑥̄) – 𝑓ℎ(𝑥̄), then we apply 

(24) theoretically to get: 

 
max
i |𝜃(𝑥̄𝑖)– 𝜃𝑖| + 

max
i |𝑤(𝑥̄𝑖) –𝑤i| ≤ C ‖𝑓– 𝑓ℎ‖   

It is the uniform bounds concerning the small parameter 𝜀. 

IV.    Results and Discussion 

Here, we consider two types of loads, the first one is a uniform load for 0< x 

< 1, and the second one is a combination of linear and exponential loads. To solve the 

TB model, we have performed numerical experiments by using two existing schemes: 

schemes I and II, and the proposed one scheme III. The results depend upon the 

variation in step size and dependent parameter 𝜀, also the comparison of proposed 

scheme III obtained results with existing schemes I and II are discussed. 

For the uniform load case, 𝑓 = 1;  0<𝑥̄< 1 the exact solutions of the TB model  are  

𝜃(𝑥̄) = 
1

12
𝑥̄(1– 𝑥̄)(1– 2𝑥̄)      (27) 

𝑤(𝑥̄) = 
1

24
𝑥̄ ²(1– 𝑥̄)² + 

1

2
𝜀²𝑥̄(1– 𝑥̄)     (28) 

For the variable load case, 𝑓(𝑥̄) = 100( 𝑒𝑥̄ + 𝑥̄);  0< 𝑥̄<1 

The exact solutions for the variable load considered are: 

θ(𝑥̄) = 100 ( 𝑒𝑥̄ +
𝑥̄⁴

24
) – 𝑐1

𝑥̄²

2
 + 𝑐2𝑥̄ + 𝑐3     (29) 

𝑤(𝑥̄) = 100( 𝑒𝑥̄ +
 𝑥̄⁵

120
) – 𝑐1

 𝑥̄³

6
 + 𝑐2

𝑥̄²

2
 –100𝑥̄ – 100 𝜀² ( 𝑒𝑥̄ +

 𝑥̄³

6
) + 𝜀²𝑐1𝑥̄ + 𝑐4 (30) 

Where, 

𝑐1 = 
1

1+12𝜀²
{600(2𝜀²– 1)𝑒 – 1000 𝜀² + 1815}    (31) 

𝑐2 = 
1

2(1+12𝜀²)
{– 400(2 + 3𝜀²)𝑒 – 1000 𝜀² +  1815} + 

575

6
  (32) 

𝑐3 = – 100,                (33) 

𝑐4 = 100(𝜀² – 1)       (34) 

The exact solutions have been quoted from the literature for reference, as these are 

discussed ahead to explain the approximate values obtained by the proposed as well 

as existing schemes. We may notice that in the exact solution of uniform load, the 

rotation profile is free of the parameter 𝜀, which is shown in (27), so due to this 

reason, the approximate values of rotation for 𝜀 = 0.5, 0.1,0.01 obtained by all 

schemes are same, and the graphs shown in Figs 1, 3 and 5 are same. Another 

observation while computing the approximate values by all schemes is that when the 
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n
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θ(x) at ε= 0.5

scheme III

scheme II

scheme I

only dependent parameter 𝜀 is reduced from 0.001 to 0.0001, while computing 

variable load by the schemes, as a result for both these values of 𝜀, the rotation and 

displacement values remains same. This means, when 𝜀 becomes smaller then the 

values obtained remain the same.  

Figs 1,3 and 5 shows the graphs of rotation of uniform load at 𝜀 = 0.5,0.1, 0.01, it 

can be easily noticed that all these three graphs are same, this happens because, in the 

exact solution of rotation of uniform load shown in (27), 𝜀 is not present, so the 

proposed schemes, as well as existing schemes, also give same values at                  

𝜀 = 0.5,0.1, 0.01. But the values obtained from proposed scheme III show the exact 

rotation curve of TB graphically as compared to the existing schemes I and II curves. 

Figs 2,4 and 6 show graphs of displacement of uniform load at 𝜀 = 0.5,0.1, 0.01, it 

can be easily noticed, that the curve obtained from the approximate values of 

proposed scheme III in 0<𝑥̄< 1 shows the exact displacement curve of TB, as when 

the load is placed over TB, then due to the load as well as the force of gravity of 

earth, the beam will be bent around, and as it is an especial type of beam, which has 

more elasticity as compared to an ordinary beam, so it can be bent to a large extent 

without becoming rigid, which is proved by the curve of computed values from 

proposed scheme III.  

A similar efficient performance can be seen by the proposed scheme III in variable 

load also, in Figs 7,9,11, and 13, the graphs of rotation are shown at 𝜀 = 0.1, 0.01,
0.001, 0.0001 and the curves plotted by the obtained approximate values from 

scheme III shows the perfect rotation curve of TB graphically as compared to the 

curves plotted from the obtained approximate values from existing schemes I and II. 

The same is the case with the graphs of displacement of variable load shown in Figs 

8, 10, 12 and 14, the exact displacement curve can be seen from the approximate 

obtained values from proposed scheme III as compared to the existing schemes I and 

II.  

 

 

 

 

 

 

 

Figure 1.  Numerical solutions of rotation for the uniform load 𝑓(𝑥̄) = 1,  𝜀 = 0.5,  

0< 𝑥̄<1,    h =1/10 by schemes I-III. 
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Figure 2.  Numerical solutions of displacement for the load 𝑓(𝑥̄) = 1,  𝜀 = 0.5, 

0< 𝑥̄<1,  h =1/10 by schemes I-III. 

 

Figure 3.  Numerical solutions of rotation for the load 𝑓(𝑥̄) = 1,  𝜀 = 0.1, 0< 𝑥̄<1,       

h =1/10 by the schemes I-III. 

 

Figure 4.  Numerical solutions of displacement for the load 𝑓(𝑥̄) = 1,  𝜀 = 0.1,  

0< 𝑥̄<1,  h =1/10 by schemes I-III. 
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Figure 5.  Numerical solutions of rotation for the load 𝑓(𝑥̄) = 1,  𝜀 = 0.01,  0< 𝑥̄<1,    

h =1/10 by schemes I-III. 

 

Figure 6.  Numerical solutions of displacement for the load 𝑓(𝑥̄) = 1,  𝜀 = 0.01, 

0< 𝑥̄<1,  h =1/10 by schemes I-III. 

 

Figure 7.  Numerical solutions of rotation for the load 𝑓(𝑥̄) = 100( 𝑒𝑥̄ + 𝑥̄),  𝜀 = 0.1,  

0< 𝑥̄<1,  h =1/10 by schemes I-III. 
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Figure 8.  Numerical solutions of displacement for the load 𝑓(𝑥̄) = 100( 𝑒𝑥̄ + 𝑥̄), 

𝜀 = 0.1, 0< 𝑥̄<1,  h =1/10 by schemes I-III. 

 

Figure 9.  Numerical solutions of rotation for the load 𝑓(𝑥̄) = 100( 𝑒𝑥̄ + 𝑥̄),         

  𝜀 = 0.01,  0< 𝑥̄<1, h =1/10 by schemes I-III. 

 

Figure 10.  Numerical solutions of displacement for load 𝑓(𝑥̄) = 100( 𝑒𝑥̄ + 𝑥̄),         
 𝜀 = 0.01, 0< 𝑥̄<1, h =1/10 by schemes I-III. 
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Figure 11.  Numerical solutions of rotation for the load 𝑓(𝑥̄) = 100( 𝑒𝑥̄ + 𝑥̄),            

 𝜀 = 0.001, 0< 𝑥̄<1, h =1/10 by schemes I-III. 

 

Figure 12.  Numerical solutions of displacement for the load 𝑓(𝑥̄) = 100( 𝑒𝑥̄ + 𝑥̄),  

 𝜀 = 0.001, 0< 𝑥̄<1, h=1/10 by schemes I-III. 

 

Figure 13.  Numerical solutions of rotation for the load 𝑓(𝑥̄) = 100( 𝑒𝑥̄ + 𝑥̄),            
 𝜀 = 0.0001, 0< 𝑥̄<1, h =1/10 by schemes I-III. 
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Figure 14.  Numerical solutions of displacement for the load 𝑓(𝑥̄) = 100( 𝑒𝑥̄ + 𝑥̄),   

 𝜀 = 0.0001, 0< 𝑥̄<1, h =1/10 by schemes I-III. 

V.    Conclusion 

In this research work, non-standard finite difference schemes have been 

developed for the solution of TB. Numerical experiments were performed on two 

types of loads. One load is constant and the other is variable load. Numerical 

solutions for rotation and displacement are computed using proposed scheme III as 

well as existing schemes I and II. The rotation and displacement curves plotted by the 

obtained approximate values from the proposed scheme III are graphically more 

closer to exact values as compared to the curves plotted by the approximate values 

from the existing schemes I and II, which proves the efficient performance of the 

proposed scheme III. 

In the future, for the solution of any beam model, the proposed scheme can be 

implemented to obtain better accuracy. 
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