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Abstract

In this research paper, a new harmonic mean derivative-based Simpson’s 1/3
scheme has been presented for the Riemann-Stieltjes integral (RS-integral). The basic
and composite forms of the proposed scheme with local and global error terms have
been derived for the RS-integral. The proposed scheme has been reduced using g(t) =
t for Riemann integral. Experimental work has been discussed to verify the theoretical
results of the new proposed scheme against existing schemes using MATLAB. The
order of accuracy, computational cost and average CPU time (in seconds) of the new
proposed scheme have been computed. Finally, it is observed from computational
results that the proposed scheme is better than existing schemes.

Keywords : Quadrature rule, Riemann-Stieltjes, Harmonic Mean, Simpson’s 1/3 rule,
Composite form, Local error, Global error, Cost-effectiveness, Time-efficiency

I. Introduction

Numerical integration is the study of algorithms that finds an approximate
solution for problems. Numerical integration is used to find the area under a curve, the
surface area of a solid, the volume of the solid figure, the arc length of a graph, central

points, moment of inertia and many useful things. Unfortunately for a definite integral
b = - - - - -
I(f)= _[ f (x)dx, some functions f(x) = ¥ or sin x have no simple antiderivatives in
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such cases if the value of a definite integral is needed it will have to be
approximated. Such definite integrals can be evaluated by numerical methods. The
process of finding the approximate value of a definite integral is known as quadrature.
The Riemann-Stieltjes integral is a modification of the Riemann integral. Suppose f(x)
and « (x) be two bounded functions on [a, b] in which « (x) is monotonically increasing
in [a, b], the RS-integral can be defined in [I11] as:

RS(F(x):a;a,b) = [, f(x)da(x) 1)
where f(x) is integrand and o(x) is an integrator.

RS-integrals can be applied in Statistics and theory of Probability, Complex analysis,
Functional analysis, the theory of the Operator, and other fields. Numerical quadrature
is widely used for the Riemann integral in literature as in [XVII] introduced a new
family of closed Newton-Cotes quadrature schemes with Midpoint derivative for the
Riemann integral. Authors in [XIII], [XIV], [XV], [XVI] derived derivative-based
closed Newton-Cotes quadrature schemes using different means such as geometric,
harmonic, heronian and centroidal at the evaluation of function derivative.

Quadrature schemes have been extended for cubature. Authors in [IV], proposed some
new and efficient derivative-based schemes for numerical cubature. Also in [V],
derived error of closed Newton-Cotes cubature schemes for double integrals.

In the past, however, only a few works have been focused on the numerical
approximation for the RS-integrals. At first in [X], Hadamard inequality can be
described in the approximation of Trapezoid-type for the RS-integral. Also, in [XI],
some important inequalities were proposed for the approximation of the RS-integral
using the midpoint and Simpson rules, based on the relative convexity concept.

The midpoint derivative-based quadrature scheme of trapezoid-type for the RS-integral
was first proposed in [XVIII]. After that, without numerical verifications, the authors
proposed the composite form of trapezoidal rule for the RS-integral in [XIX]. New
efficient derivative-based and derivative-free quadrature schemes for the RS-integral
have recently been proposed in [VI], [VI1], [VII], [IX] with numerical verifications.

In this study, a new harmonic mean derivative-based Simpson’s 1/3-type scheme is
developed for the RS-integral. The derivations of the proposed scheme are derived in
basic and composite forms with error terms. The performance of the proposed scheme
is checked by numerical experiments in terms of cost efficiency, time efficiency and
rapid convergence.

Il. Existing Quadrature Schemes for the RS-Integral

Some existing quadrature schemes: T [X], ZT [XVIII], MZT [VI], HeMS13
[VI1], CMS13 [1X], can be described for the RS-integral in basic form in (2)-(6) as:

T ~ (ﬁ f:g(t)dt - g(a)) f(a) + (g(b) - bflaf:g(t)dt)f(b) 2

27 ~ (= 2 gt — (@) f (@ + (g(b) — = [ g(©)dt) £(b)
+ (17 i g@odxdt — =2 7 g(6)dt) f(czr) 3)
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where
(- 2b2+a2—ab)f g(t)dt+6bf fg(x)dxdt 6f, ffyg(x)dxdydt
6f fg(x)dxdt 3(b— a)f g(t)dt

Mzt ~ (= 2 g(0dt - g(@) f(@ + (gb) — 2= [ g(®)dt) £ (b)

Czr =

+ (17 Jz 9Coydxde — =2 [7 g(6)dt ) f*(cuzr) (4)
where
(—2b%+a? +ab)f g(t)dt+6bf fg(x)dxdt 6[ Is fyg(x)dxdydt
Cmzr = 67 L g(x)dxdt-3(b-a) [* g(t)at
HeMSBz((b 50, Jy 9Codxde == [ g(t)dt—g(a))f(a)

+ (=00 90O - 1, f ! g(odudr) f (£2)
+(9®) =325 I, 9@at + 52 [ f, g(dxa) £ (b)
+<(b S g (Ode + PR [ [ g(x)dxdt>f<4> (=57) ®
3

—b fa fa fayg(x)dxdydt + f: fat faZ fayg(x)dxdydz dt

CHStS = <<b P godxdt 3 [P g(0)dt - 9“”) f@

+(=y 90Ol - ), g(x)dxdr)f(““’)
+(9) = 32217 90t + 2 I, f, 9 Gdxat) £(b)

N —(b- a):£3a+5b)f (t)dt+17b —10ab-7a? f J- g(x)dxdt f(4) (2(a2+ab+b2))
—b [} [} [2 geo)dxdydt + [ [ fa 2 g(x)dxdydz dt 3(a+b)

The composite forms of the CT, ZCT, MZCT, HeMCS13 and CMCS13 schemes are
described in (7)-(11) as:

~ [ 02 9(Ode - 9(@)] f(@) + 7= Thzt [+ g (e -
[ g@at] feao) +[g®) == 7 g@)dt] £b) @)

ZCT ~ [ [ g()dt — g(@)] f (@) + 7= Zpct[ 2 g(t)at -
[ g®dt| fea) +|ab) 3= 1, g(®dt] f(b) +
ra [ L gGodxdt =3 [T g(©)dt| £ (car) (8)

[, ft)ydg ~ MzCT = [~ f’“g(t)dt—g(a)]f(aHb -yt | gyt -
ka g(t)dt| f(a) + [g(b) — 7= f, g(dt| f(b) +
[ L g@dxde =3 1 g(tydt| F(e) (©)

Xk—1

(6)
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Where,
CzTk =

_ 2 2 _ Xk X[ t _ Xk t y
(-2xftaf g —xcan) [iX g(Odereb (K [ gGodxdt-6 % [l [} gdxdydt

xp ot 30— r—1) (*k
6 12k Ji_ gCodrar-2Tet) Xk gy

CMzT Kk =

_ 2 2 Xk X[ t _ Xk t y
(—2xp+xj_q+XK—1XK) ka_l gt)dt+6b ka_l ka_l g(x)dxdt—6 ka-1 ka-1 ka-1 g(x)dxdydt

xp ot _3(rg—xg—1) [k
6 ka—l ka—l g(x)dxdt - ka_lg(t)dt

4n?

b t
[, f(©)dg ~ HeMCS13 = [ [ [ g(o)dxdt = 722 [ g (D)t = g(@)] f (@)
4n Xk 2n  rxg t Xg—1+tXg
oS [ gde = Z [ g(odxde] £ (R
n —1] 4n Xk t X t Xk
+-—¥ko1 [E (ka_1 ka_1 g(x)dxdt + ka i kag(x)dxdt) - (3 ka_l g(®dt +

[ g(oyat)| f(x)
[ B+ 510 [ gt

17xk2—10xk_1xk—7xk_12 ka

t
+ X7 + 48 Xk-1 ka—l g(x)dxdt f(4) Xko1 [ Xe—1 X+ Xk .
et Xk t y :
—Xk ka—l ka_l ka—l g(x)dxdy dt
[2 glodxdy dzdt

+ ka ft fz

Xk—1 "Xk—1 " Xk—1

l9®) = 2=, g®de+ [0 [;  gGodxdt] £(b) (10)

I f()dg ~ €MCS13 = [0 (7 [ gGoydude — 2 [X g(0)dt - g(@)] £ (a)
a g (b_a)Z a ag b—-a‘a g g
4n Xk 2n  rxg t Xg—1+tXg
oS [ g(de = 2 [ gQodxd] £ (B
n — 4in X t X t X
+ T [ (X S, gGodxde + [ [0 g(oydxdt) — (3 7 g(e)de +

[ g(tyat)| F()
[ By + 510 [ g0t

17x3 2 =10 )1 X =7 X} —12 ka

t
+ 22 + 48 Xk—1 ka—1 g(x)dxdt f(4) (Z(xk—12+xk—1xk+xk2)) N
=1 " 1 =
Xk f;kk_l ka_l f,?:c_l g(x)dxdy dt (xg—1+xK)

| M

y
xk—l xk—l xk_l ka_lg(x)dXddedt

9y =217 g+ [0 [ gGoddt] £(b) (11)
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I11. Proposed a new Harmonic Mean Derivative-Based Simpson’s 1/3-type
Scheme for the Riemann-Stieltjes Integral

The basic form of harmonic mean derivative-based Simpson’s 1/3-type
(HMS13) scheme for the Riemann integral is described in (12) as:
b _ __ a+b (b—a)® (4) 2ab
[y fedx = HMS13 = 22 [f(@) + 4f (S2) + £ (b)| - oo £ @ (353 -
b—
A (12)

5760(a+b)
The precision of this rule is 4.

Based on (12), the proposed scheme, i.e. HMSL13 for the RS-integral, in basic form is
derived in Theorem 1.

Theorem 1. Let f’(t)and g(t) be continuous on [a, b] and g(t) be increasing there. Then
the proposed harmonic mean derivative-based Simpson’s 1/3 scheme for the RS-
integral with local error term Ruwms13[f] can be described as:

b b b
I, f(ydg = HMS13 + Rysi3[f] = (ﬁ [y J; 9Godxdt — == [ g(t)dt —

g (a)> f(a)

+ (=l 9®dt - == [, g(x)dxdr)f(““’)
+(90) =35 17 9(Odt + 57 [ [, gGodxdt ) f(b)
—(b—a)? (3a+5b)f (t)dt+17b —10ab-7a? f f;g(x)dxdt " (Zab)

+ 96 48
—b 7 [1 7 gQoydxdyde + [7 [ 7 [ g(x)dxdydz dt

(a-b)?(-7a3+37a*b+67ab?-17b3)
960(a+b) f g(t)dt

13b*+20a3b+30a?b%-60ab3-3a* t
+ fa J, g(x)dxdt

1 IR e b FOEg (), (13)
3a- t -a t rz
+ 2(a+b) fa fa f;g(x)dxdydt t < arn) fa fa fa f;/g(x)dxdydzdt
—f: fat LY I7 1Y g(0)dxdydz dwdt

where &,77 €(a,b).

a+b

Proof of Theorem 1.

To derive the harmonic mean derivative-based Simpson’s 1/3 scheme for the RS-
integral we search numbers: ao, bo, Co, do SO that:

[} f(©)dg ~ aof (@) + bof (2) + cof (b) + dof @ (22) (14)

is exact for f(t) = 1, t, t3,3, t*. That is,

f:ldg=a0+b0+co
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f: tdg = aga + by (ﬂ) + cob
f t?dg = aga® + b, (a+b) + ¢ob?
f t3dg = aga® + b, (a+b) + ¢ob3

f t4dg = aoa + bO (a+b) + C0b4 + 24‘d0

By using integration by parts of the RS-integral, as in [XV1I1], we have the following
system of equations (15)-(19).

a, +b, +¢, =g(b)—g(a) (15)
aga + by (a+b) + ¢cob = bg(b) — ag(a) — f g®)dt (16)
aya? + by (* ”’) +¢cob? = b2g(b) — a2g(a) — 2b [7 g(t)dt + 2 7 [  g(x)dxde  (17)

apa® + by (““’) +cob? = b3g(b) — a*g(a) — 3b% [} g(t)dt
+6b [7 [L geoydxdt — 6 [7 [ [¥ g(x)dxdt (18)

agat + by (““’) + cob* + 24dy = b*g(b) — a*g(a) — 4b% [} g(t)de

+12b2 [7 £ g(x)dxdt — 24b [ [1 [7 g(x)dxdydt

+24 7 [1 [2 [7 g(x)dxdydz dt (19)
The system of linear equations (15)-(19) can be described with the coefficient matrix as:
1 1 1 0

aﬂbo
2

2 (atb Z
(0 o
3 (atb 33
a ( > ) b> 0
4 ﬂ4 4
ot (£2) b* 24 |
The reduced row echelon form of M is:
1 000

1 0
010
001
0 0
As in Mg, rank(M) = 4. To check the linearly independent rows, takea=-1landb =1
in matrix M then
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1110
-1 010
1010
10
101 24J

This shows that the first three and fifth are linearly independent rows whereas the fourth
row is linearly dependent. To find the coefficients ao, bo, Coand do, we solve equations
(15), (16), (17) and (19) simultaneously, to have:

4 bt 1 b
Qo = gy Ja Ja 90Xt =52 [ g (Dt — g (),

4 b 8 b rt
by == J, 9)dt — o= [, [, 9(x)dxdt,

4

3 b b t
co = g(b) == J; 9(®)dt + =" [ [ g(x)dxat,

(a—b)%2(3a+5b) (b (17b?-10ab-7a?) b ,t
dy = ———— [, g(®)dt + o J, J, 9(x)dxdt

b b
—b [ [1 [T gydxdydt + [ [T [7[7 g(x) dxdy dzdt

Putting the values of coefficients ao, bo, Coand doin (14),we have:

b 4 bt 1 b
J, f(®)dg =~ HMS13 = (U)_—a)zfa J, 9()dxdt — ﬂfa g(t)dt —

g (a)> f(a)
8

+ (b4Ta [7 g(tyde e [N g(X)dxdt) f (azﬂ)

+(9) == I, 9(Odt + 2= [ [ g(x)dxdt ) f (b)

—(b—a)?(3a+5b) (b 17b%-10ab—7a? (b  t
e Jp gOdt + ———— [ [, g(x)dxdt

b b
—b [ [1[7 g()dxdydt + [ [ [7 [ g(x)dxdydz dt

Now we derive the local error term of the proposed HMS13 scheme.

oG

5
Since the precision of the proposed HMS13 scheme is 4, we take f (t) = %to find the

leading error term defined as:

b
Rumsislf] = 3 [, t5dg — HMS13(¢t%; g; a, b) (20)
We learn, from [XVIII], that:

b b* b b3 b
éf% t5dg = — (b3g(b) — a®g(@) — = [, g(t)dt + == [ [ g(x)dxdt
b* b b
== 0 o Y gGodxdydt +b [ [ [7 [7 g(x)dxdydzdt
b
=LY 2 9(x) dxdydzdwdt (21)

Kashif Memon et al

34



J. Mech. Cont. & Math. Sci., Vol.-16, No.-3, April (2021) pp 28-46
By Theorem 1 and scheme (13), we have:

5. . _ 4 bt 1 b _ a®
HMS13(t5% g;a,b) = <(b_a)2 J, [ g()dxdt — J, g®dt g(a)> o

(a+b)>

4 b 8 b t
+ (E fa g®dt - (h—a)? fa fa g(x)dxdt) 2551
3 b 4 b rt b°
+(9) =5 I, 9(dt + 2= [ [ g(x)dxdt ) 3
. <(a b)923a+5b)f g(t)dt +17b —1f8ab—7a f: f;g(x)dxdt> (2ab)

b y b ot oz py 7 (22)
b [} [, [} gGdxdyde + [ [} [7 [7 g (o)dxdydz de

a+b
We use (21) and (22) in (20) to get:
(a-b)?(-7a%+37a?b+67ab?-17b%)
Rymsislf] = ( 960(a+b) f

13b*+20a3b+30a?b?-60ab3—-3a*

b ot
+ 96(a+b) Jo Ja 900dxdt

b2(3a-b) ;b (t b(b—a) b  t
a2 0 J gdxdydt +5 =2 [ [ 7 7 9 (odxdydzat

= o 2 S2 S 9Godxdydz dwdt ) £©(£)g'(n), (23)

which is same as (13), and the precision of this scheme is 4.

Theorem 2. When g(t) = t, the proposed HMS13 scheme with the error term (13) for
the RS-integrals is reduced to the corresponding HMS13 scheme [XI1V], i.e. (12) for
the Riemann integrals.

g(t)dt

Proof of Theorem 2.
By Theorem 1, we have:

[, f(®ydg = [, f(Ddt = (Lﬂf | [ dxde — = [ tdt - g(a)>f(a)

AL ~Grarle xdxdt)f ()
+(g(b)—E N wlt+W o xdxdt) £(b)

—(b-a)?(3a+5b) fb tdt 4+ 17b?
96 a
bty b y
=b [ [ | xdxdydt+ [ fa fa J; xdxdydz dt
N ((a—b)z(—7a3+37a2b+67ab2—17b

1P gyt
960(a+b) a
13b*+4+20a3b+30a%b%2-60ab3-3a*

b rt
96(a+b) J, [, g()dxdt
b (ab) y bb-a) (b (t (2 (¥
t @y 2(a+D) f f J; 9(x)dxdydt + 7 +b)f J, LI g(x)dxdydzdt

=[P L0 S2 S gGodxdydz dwdt ) £©)(§)g'() (24)

—10ab-7a?

ff xdxdt f(4)(ﬂ)

a+b
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It is obvious to get:
[7 tdt = bi-a”
12 [ xdx dt_b——?#‘;,
f f fyxdxdydt = b—4— a’b? @b _a

4 3 8’

N fyxdxdydzdt—TSO—a;—b+$—aisg z
[P SER S22 xdxdydzdwde = 24 £0 OV 0T o e
aJa’a “Ja“Ja y 720 16 18 48 14-4

And, finally using these in (24) we get:

i@ =222 (1@ + 4 () + £ 0) -G (35) -
(b—a)’? f(6)(f) o5

5760(a+b)
where & e (a,b).

This shows that the proposed HMS13 rule is reducible to the classical Riemann integral
form (12) in terms of harmonic mean.

Now, the proposed harmonic mean derivative-based Simpson’s 1/3 scheme for the RS-
integral is derived in composite form by dividing the interval into small subintervals
and applying integration rule to each subinterval, the composite of the proposed scheme
is described in Theorem 3.

Theorem 3. Let f°(t) and g(t) be continuous on [a, b] and g(t) be increasing there. Let
the interval [a, b] be subdivided into 2n subintervals [Xk, Xk+1] with width h =? by

using the equally spaced nodes xx = a+kh, where k = 0, 1, ..., n. The composite
Harmonic mean Simpson’s 1/3 scheme to 2n subintervals for the RS-integral can be
described as

J2 £y = HMCS13 = [G205 [ g(dxde —522 " g0 = 9 (@) (@
+_ k= 1[f gtdt — ka f g(x)dxdt]f(x"‘;”")

Xk—1

t
P P (e glodude + 1 gdndt) - (35 g0+
) ""“g(t)dt)]f(xk)
(3xk 1t 5xk)f g(t)dt
17Xk —10Xk Xg—7Xp— X
+Zn + 481 v ka 1f (x)dxdt f(4) (Zxk_lxk)
k=1 Xk y dxdvd Xr_1+%k
—xc[p* [ Jr gGodxdydt
[ g fLJY g(x)dxdy dzdt

AHOE=—1" g(t)dt+(,, e JE gGdxdt] f(b) (26)

b—-a Xn-1
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Proof of Theorem 3.

The proposed basic form HMS13 scheme for the RS-integral is given in (13). Applying
the proposed HMS13 rule over each subinterval, we have:

4

INIGLIE @Lj‘l [} g@)dxdt — 5= [ g(O)dt — g(a)| f ()
+ | o J g ()t — (,,;i)z [Ty g(odde | f (222)
+|g() — e [ g(B)dt + gf N g(x)dxdtl )

2
b—a
_(T) (Ba+5x1) x 17x1%-10ax,—7a?

LT gde + e [ [y 9(x)dxdt F@® (ﬂ)
\—x, [ [} 2 gCodxdy de + 7 [ 2 7 gGoydxdy dzde “m

4

(5%9)

1

27 J) g(n)dxdt — 52 [ g(6)dt — 9(’61)] Y

3 4
+19(x2) — 5=z [, 9(©)dt +

" (=)

) f,flg(x)dxdtlf(xz) + | J,” g ()de —

8 t
e L2, g(x)dxdtl f (=)
3
+[902) = J,7 g (D)t + (;)2 2 g(x)dxdtl fx2)
_(%)2(3"14'5’{2) X2 17x22=10x1%=7%1% %2 (t
o T Lo T L 9GdxdL ) i (2rana)
X1+Xxp

t t rz
~xp [, [ Jy gGodxdyde+ 72 [ [ [} g(x)dxdy dzde

4 Xk t 1 rxg
+..+ [ﬂ ot Sy 80Ot 5= [1 9Ot~ g(xk_l)] f (1)
4 Xk 8 Xk t Xg—1+Xp
|kl s0% - ka_lka_lg(X)dxdt]f(—; )
3 4 t
+ |90 — g [, 9(0de + gf ka_lg(x)dxdtl f e
—(b_Ta)z(3xk—1+5xk) X d 17x3 2 =10Xp_1 X —=7Xk—12 (XK [t dod
LT gt + v RO Py
Xg—11Xk

t t
—x [¢ [ Jo g@dedyde+ [7F [ [0 [7 g(x)dxdy dzde

Xk—1 Xk—1 " Xk—1 " Xk—1
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f(xn—l)

+

)zfx“f g()dxdt — 5=z [, g(t)dt — g(xn_1)

( .
+lo [0 g(tdt -

— “Xn-1 (
| n

gt)dt +

Ll 1 s (52)

+|g(b

b-aJx, 4

t
(ﬂ)z o g(x)dxdt] £(b)
—(b ) (B3xn— 1+5b)f Adt 17b2=10xp_1b—7xp_12 f f dxdt
([, g Tty (L gednde ) snt

2 g(x)dxdydt+f TP g@dxdydzde)
[ 17 f7 gGodxdt = 5= [ g(®)dt - g(@)] f(@

+ [ g0 - G [ L gtodnde] £ (5°)

+ [ 2 g@de — s 22, gGodxde] £ (252)

e f;‘k"lg@)dt—(bfa)zf"" [f gCodxdt] f (2=L)

b [y g@de = [ [) gGodxdt] £ (222)

+ [ (f"lf g@dxde + [ [ g@rydude) - (3 7 g(0yde +

12 gt )] £ éx)

+ [(b a)z (f’“Zf g(x)dxdt+fx3f g(x)dxdt) ——(3 172 g(tydt +
122 g@dt)| FOe) +oo 4 [ (0 ) gCoydde+ [ f! gGodxdt) -
S (3 gt + [ g(t)dt)] f @)
o)~y ot +grsfe fr | 9(dxdt] £(b)
—h? (3xgn6 1+5b)f (t)dt + 10xn481b TXp_1? J-xn lf g(x)dxdt f(4) (2xn-1b)
-bf, f; fy g@dxdydt+[] [ [7 [T g(x)dxdydzdt Fn-1th

[(b o2 e L [7 g(odxdt — L [ g(t)de — g(a)] (@)
FASRL [ g@de =2 [T [ g(odudt] £ (it
ot [ (L 9Gdxde + [ [0 g(oydxdt) — (3 [7* g(0yde+
f,jjf“ (t)dt)]f(xk)
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3 b 4n? b t
+o®) - =0, g@dt+ T [, [p  g(x)dxdt|f(b)

. WLX{ 1g(t)dt " 17xk2—10x;;;1xk—7xk—12 f;ckk 1 fxtk 1g(x)dxdt @ (Zx b)
+ . ~ _ _ n-—1
N gt 2 g@dxdydt+ [ oy I 9(0)dxdy dzdt Hnoath

Xk—1 " Xk-1 X—1 " Xk—1

Xn—-1

So the proposed harmonic mean derivative-based Simpson’s 1/3 scheme for the RS-
integral in composite form is proved.

It is noted that the global error terms of the proposed HMCS13 scheme cannot be
defined in classical form.

IV. Results and Discussion

Some authors were not conducted experimental works on quadrature schemes
for RS-integral in [X],[XI], [XVII]. However in [VI], [VII], [VIHI], [IX], experimental
works have been conducted on quadrature schemes for RS-integral. Also in this
research paper, experimental works have been performed on quadrature schemes for
RS-integral and compared with existing schemes. Three numerical problems have been
taken for each scheme taken from [V1], [VI1], [IX], etc, which were determined using
MATLAB software. All the results are noted in Intel (R) Core (TM) Laptop with RAM
8.00GB and a processing speed of 1.00GHz-1.61GHz.. Double-precision arithmetic is
used for numerical results.

Example 4.1. f:'SS sin5xd(cos x) =0.227676016130689
Example 4.2. f: sinx d(x3) = -59.655908136641912

Example 4.3. [ e¥d sinx = 187.4269314248657

The absolute error and computational order of accuracy (COC) formulae are taken from
[viy.

In Table 1, the absolute error drops have been compared for the proposed HMCS13
scheme and other existing schemes: CT, ZCT, MZCT, HeMCS13 and CMCS13 under
similar conditions, and it is observed that the proposed HMCS13 scheme has the
smallest error for all examples. When the number of strips is increased, it is observed
from Figs. 1-3 through the line plots of decreasing error distributions that errors in the
proposed scheme reduce rapidly in the comparison of other schemes.

Using the COC formula, the observed COC have been determined for the used
methods, and are listed in Tables 2-4 for Examples 1-3, respectively versus several
strips. The numbers in Tables 2-4 verify the theoretical accuracy of the discussed
methods, including the proposed HMCS13 scheme for the RS-integral. The order of
accuracy of the proposed HMCS13 scheme is 4 which is the same as the MZCT
scheme, but the error reduction is rapid for the former. The CT scheme shows the order
of accuracy of 2, whereas for the ZCT scheme, due to the issues and mistakes
highlighted in [V1I1], the order oscillates and doesn’t converge to 4.

In Table 5, the total evaluations required per strip are summarized for the discussed
methods, which are necessary to compute the computational costs. In Table 6, we list
the total computational cost and the average CPU usage in seconds for the three
integrals mentioned in Examples 1-3 using CT, ZCT, MZCT, HeMCS13, CMCS13 and
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HMCS13 schemes. It is observed from numerical results that proposed scheme took
less cost to achieve the error 10-° as compared to existing schemes for all test problems,
and the similar performance is obvious from Table 6 regarding the smaller average
CPU time to achieve the error of 10 for the proposed method against others for
Examples 1-3.

Table 1: Absolute error comparison by HMCS13 and other schemes for Examples 1-3.

T

=1

oL — 1T

\ —— Mzt

3 \ —— HeliCs13
! —omes

—+ HICS13

Absolute errors

Number of strips

Fig 1. Comparison of error drops by all methods for Example 1

o T T T T T T T T T

——cr
—ICT

&L e Mt
——HeICS13
—ovesi3

o'k \ 4+ HMCSI3

Number of strips

Fig 2. Comparison of error drops by all methods for Example 2
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0
Number of stips

Fig 3. Comparison of error drops by all methods for Example 3

Table 2: Comparison of COC in all methods for Example 1

Table 3: Comparison of COC in all methods for Example 2

Table 4: Comparison of COC in all methods for Example 3
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Table 5: Computational cost in quadrature variants form strips.

Table 6: Computational cost and CPU time comparison to achieve at most 1E-05
absolute error in quadrature variants for Examples 1-3.

Figs. 4-6 represent a computational cost to achieve at most 1E-05 absolute error in
quadrature variants for Examples 1-3.
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Fig 4. Total computational cost by quadrature variants for Example 1
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Fig 5. Total computational cost by quadrature variants for Example 2
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Fig 6. Total computational cost by quadrature variants for Example 3

Figs. 7-9 represent average CPU time to achieve at most 1E-05 absolute error in
quadrature variants for Examples 1-3.
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Fig 7. Average CPU usage time by quadrature variants for Example 1
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Fig 8. Average CPU usage time by quadrature variants for Example 2
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Fig 9. Average CPU usage time by quadrature variants for Example 3

V. Conclusion

A new harmonic mean derivative-based quadrature scheme of Simpson’s 1/3
type was proposed for efficient approximations of the RS-integral and extended for
higher strips in a composite sense. The theorems regarding the local and global error
terms were proved. Three numerical problems were tested from the literature to discuss
the performance of the proposed scheme against few other existing schemes. The error
drops, observed orders of accuracy and computations performance in terms of
evaluations and CPU usage show the dominance of the proposed scheme over other
discussed schemes for the evaluation for the RS-integral numerically.
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