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Abstract

In this paper, a new efficient derivative-based quadrature scheme of Simpson’s
1/3-type is proposed using the centroidal mean for the approximation of Riemann-
Stieltjes integral (RS-integral). Theorems are proved related to the basic form,
composite form, local and global errors of the new scheme for the RS-integral. The
reduction of the new proposed scheme is verified using g(t) = t for Riemann integral.
The theoretical results of new proposed scheme have been proved by experimental
work using programming in MATLAB against existing schemes. The order of accuracy,
computational cost and average CPU time (in seconds) of the new proposed scheme
are determined. The results obtained show the effectiveness of the proposed scheme
compared to the existing schemes.

Keywords: Quadrature rule, Riemann-Stieltjes integral, Centroidal Mean, Simpson’s
1/3 rule, Composite form, Local error, Global error, Cost-effectiveness, Time-
efficiency

I. Introduction

From science and engineering, the nonlinear models arise quite frequently.
Such models demand numerical solution due to complexity of equations [XIX],[XX],
[VH],[XXI1]. The numerical computation of a definite integral is the important problem
in numerical integration and this numerical value is known as the area under the curve

which is applied in many engineering applications. Definite integral 1(f) =f: f(x)dx
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cannot be integrated analytically for integrand f(x) = e**or sin x2. These integrals can
be integrated numerically by numerical methods. The methods of numerical integration
is known as quadrature methods. The Riemann-Stieltjes RS-integral is a variation of
the Riemann integral. Let f(x) and « (X) be two bounded functions on [a, b] and « (x) is
monotonically increasing on [a, b], the RS-integral is defined [IV] as:

RS(F():a;a,b) = [, f(x)da(x) 1)
where f(x) is integrand and o(x) is an integrator.

RS-integrals have been used in various areas of mathematics. For instance, Statistics
and theory of Probability, Complex analysis, Functional analysis, the theory of the
Operator, etc.

Several works have been focused on the improvement of quadrature rules for the
Riemann integral in the literature as in [I1], [XV1I1]. Moreover, it is extended for the
approximation of integral equations in [XXI], and used to improve the reluctance
motors in [X]. However, few works have been indicated on the approximation of
guadrature rules for the RS-integral as in [XI] Hadamard inequality has been derived
for the RS-integral in Trapezoid-type. Also in [XI1], the relative convexity concept has
been used to derive some inequalities for the approximation of RS-integral using the
midpoint and Simpson rules. Authors in [XXII1] used Midpoint derivative approach in
order to improve the closed Newton-Cotes quadrature schemes for the approximation
of Riemann integral.

Many strategies have been applied to improve Newton-Cotes formulas numerically.

Authors in [XIV],[XV],[XVI],[XVII] used different means at the functional derivative
for the improvement of closed Newton-Cotes quadrature schemes. In [V],[VI] cubature
schemes using derivatives were proposed.

Initially, the midpoint derivative-based quadrature scheme of trapezoid-type was
introduced for the RS-integral in [XXV] without numerical verification. Later, the
composite form of trapezoidal rule has been presented for the RS-integral in [XXIV]
without verification of theoretical results. Recently, the new efficient derivative-based
and derivative-free quadrature schemes have been presented in [VII1],[IX] for the RS-
integral with verification of theoretical results.

In this research paper, a new efficient derivative-based Simpson’s 1/3-type scheme is
presented using the centroidal mean for the RS-integral. The basic and composite forms
with error terms are described in theorems. The theoretical results of the new scheme
have been verified by experimental work which shows cost efficiency, time efficiency
and rapid convergence.

Il. Existing Trapezoid-type Schemes for the RS-Integral

Some basic existing schemes of Trapezoid-type can be presented in T [XI],
ZT[XXV], MZT [VIII], for the RS-integral and defined in (2)-(4) as:

T~ (= gt — g(@) f@ + (9®) — = [P g@at) fB) ()
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2T ~ (3= [ g(Odt — g(@)) f(@) + (9(b) — 5= [, 9(6)dt) £ (b)
+ (17 i g@odxdt — =2 7 g(6)dt) f(czr) (3)

(-2b%+a?-ab) f;g(t)dt+6b f; f;g(x)dxdt—6f;7 fatfgg(x)dxdydt
67 [ g(odxde-3(b-a) [L g(t)dt '

MzT ~ (F |2 g(0)dt — g(@)) f(@) + (g(b) — 7= [ g(®)dt) £ (b)

+ (17 f; g@dxdt — =2 [ g(6)dt ) f"(Cuzr) (4)
(—2b%*+a?+ab) f;g(t)dt+6b f; f;g(x)dxdlf—6f(i7 f;fgg(x)dxdydt
67 L g(ndxdt-3(b-a) [} g(t)at '
The composite forms of the CT, ZCT and MZCT schemes are described in (5)-(7) as:
CT ~ [;2= [ g(0)dt — g(@)| f(@) + 7= Tit [ [74 g ()t —
[ g®adt| fea) +[a) == 1, g@®adt| £(b) (5)
ZCT ~ [~ [ g()dt — g(@)] f (@) + = TRzt [ [+ g (t)t -
[ g(oadt| faa) +|a) == 1, g®)dt] f(b) +
[ S, gCodxdt =3 [ g(®)dt] £ (czri) (6)
[, f(t)ydg ~ MZCT = [ [ g(t)dt — g(a)| f (@) +
SR gde — [1F g(Odt| f) +[a) == S, g@®adt] f(b) +

where, c;r =

where, Cyyzr =

a2 gGodxdt =3 [ g(6)dt] f () )
Where,
Czrk =
(-2xf+x%_1—xp_1xK) f;,f_l g(t)dt+6b f;,f_l f:k_lg(x)dxdt—6f;:_1 fxtk_l fxyk_l g(x)dxdydt
6 f;,f_l fxtk_l H(X)dxdt—wgf_l g®dt
CmzTk =

9.2 2 Xk Xk t _ X t y
(—2xp+xj_q+Xp—1XK) ka_lg(t)dt+6b ka—1 ka_lg(x)dxdt 6ka_1 ka—1 ka_lg(x)dxdydt

t 3(xp—xp—
6k [i_ guodrar-2tet) e giar

I11. Proposed Scheme using Centroidal Mean for the Riemann-Stieltjes Integral

The basic centroidal mean derivative-based Simpson’s 1/3-type (CMS13)
rule for the Riemann integral is defined in (8) as:

Kashif Memon et al

71



J. Mech. Cont. & Math. Sci., Vol.-16, No.-3, March (2021) pp 69-85

[} f@dx ~ cMS13 = =2 [f(a) + 4f (22) + £ (b) | -

(b=a)5 (4 (2(a*+ab+b?) b a) ©
f ( 3(a+b) )+17280(a+b)f 92 (8)

The precision of this rule is 4.

The proposed scheme i.e. CMS13 is described in its basic form for the RS-integral on
the basis of (8) in Theorem 1.

Theorem 1. Let f’(t)and g(t) be continuous on [a, b] and g(t) be increasing there.
Then the proposed derivative-based Simpson’s 1/3 scheme using the centroidal mean
for the RS-integral with local error term Rcmsi3[f] can be described as:

0 [ g(odxde
[ f(©dg = CMS13 + Reysislf] = | 7% f(@)

——J; 9(®)dt — g(a)
+ (=00 90O - I, g(x)dxdt)f(a+b)

+(9®) 325 I, 9@at + 52 [ f, g(dxa) £ (b)

—(b- a)2(3a+5b) f

17b%-10ab-7a? (b (t
g()adt ++Ia Jq 9()dxdt @ (2(a2+ab+b2))

—b fa fa fayg(x)dxdydt + f: fat faZ f;g(x)dxdydz dt 3(a+b)
(a-b)?(39a3+91a%b+61ab?+49b%) b

2880(a+b) J, g@®dt
_ (=19a*-44a3b+30a*b*+4ab?+29p*

bt
288(a+b) Jo J 9(x)dxdt

DA 00 08 Y g o)yt fO©OIm. O

(b2+ab-2a?)?

b ot
Tb))fa fa faZ fg g(x)dxdydzdt
b S7 S 9Godxdydz dwdt
whereé,n € (a,b).

Proof of Theorem 1.

To derive the centroidal mean derivative-based Simpson’s 1/3 scheme for the RS-
integral, we search numbers: ao, bo, Co, do SO that:

[} F(©)dg ~ aof (@) + bof (22) + cof (b) + dof @ (

is exact for f(t) = 1, t, t3,3, t*. That is,

2(a2+ab+b2))

3(a+b) (10)

ffldg:a0+b0+C0
f: tdg = aga + by (a+b) + cob
f t?dg = aga® + by (a+b) + cob?
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f t3dg = aga® + by (a+b) + cob3
f t4dg = aoa + bo (CH'b) + C0b4 + 24d0

By using integration by parts of the RS-integral, as in [XXV], we have the following
system of equations (11)-(15).

ag + by +co =g(b) —g(a) (11)
aoa + by (22) + cob = bg(b) — ag(a) — [, g()at (12)

aga? + by (a;b) + cob? = b%2g(b) — a’g(a)

—2b [ gyt +2 [ [} g(x)dx dt (13)
aga® + by (a;b) + cob® = b3g(b) — a3g(a) — 3b? f:g(t)dt
b rt ry
+6bf f g(x)dxdt — 6[ f f g(x)dxdt (14)
a a a a
agat + by (“;b) +cob* + 24dy = b*g(b) — a*g(a) — 4b° [* g(t)de

+12b2 [ [* g(x)dxdt — 24b [7 [ [¥ g(x)dxdydt
+24 [0 [1[7 [¥ g(x)dxdydz dt (15)

The system of linear equations (11)-(15) can be described with the coefficient matrix
as:

1 1 1 01
a+b
“
(a+b)2 2 o
M= 2
3
@ (557) v o
a+ h?
ot () bt 28
The reduced row echelon form of M is:
1000
R 0100
M~Mp,=|0 010
0001
0000
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As in Mg, rank(M) = 4. To check the linearly independent rows, takea=-1andb=1
in matrix M then

M=

|
[ e o S
= =

0
0
0
0

o oo

10124

This shows that the first three and fifth are linearly independent rows whereas fourth
row is linearly dependent. To find the coefficients ao, bo, Coand do, we solve equations
(12), (12), (13) and (15) simultaneously, to have:

4

b b
@ = Gz fa fatg(x)dxdt - ﬁfa g@®dt — g(a),

4 b 8 b rt
bo =35 J, 9Odt — 5= [, [, 9(x)dxdt,

b b
co = 9(b) — 5= J, 9Dt + 57 [ [, g(x)dxdt,

__ (a-b)?(3a+5b) b (17b%-10ab-7a?) (b ot
dy = —Tfa g)dt + 4—8fa fag(x)dxdt

b b
—b [ L [2 geodxdydt + [ [ 7 [7 g(x) dxdy dzdt

Putting the values of coefficients ao, bo, Coand doin (10),we have:

4 b rt
[P f(t)dg ~ cMs13 = | ©72° Jo Jo 9G0)dxdt
a

— = [; g(t)dt — g(a)
+ (l:_a f; g®dt — (b—sa)z f; fatg(x)dxdt) f (a+b)

2
3 b 4 b ct
+(9) — 5217 9(Odt + == [ [ g(r)dxdt) £ (b)
—(b-a)*(3a+5b) b 17b2-10ab—-7a? b [t
a a a+ fa g()dt ++Ia fa g(x)dxdt f(4) (2(a2+ab+b2))
b Jj J; [ 9Gydxdydt + [, [, [7 [ g(x)dxdydz dt 3(a+b)

Now we derive the local error term of the proposed CMS13 scheme.

5
Since the precision of the proposed CMS13 scheme is 4, we takef (t) = % to find the
leading error term defined as:

Remsislf] = 5 [, t°dg — CMS13(t%; g; a, b) (16)
We learn, from [XXV], that:
1 b 1 b* (b b3 b (t
22 t5dg = —(b%g(b) — a®g(@) — 2 [} g(Odt + 2 [V [* g(x)dxdt
bZ b rt ;Y btz ry
—7bfa J, o geodxdydt +b [ [ [, [ g(x)dxdydzdt
t
=1L 17 Y 9(x) dxdydzdwat (17)
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By Theorem 1 and scheme (9), we have:

b b 5
CMS13(t>%; g;a,b) = ((bja)z I, fatg(x)dxdt - ﬁfa g)dt — g(a))%

4 b 8 b ot (a+b)®
+ (55 0y 9(0dt — 55 [ [, 9 (odxdt ) S

3 b 4 b rt b5

+(9®) = 5= 1, 9®dt + 52 [ [ g(oydxdt) 5

—(a—b)2(3a+5b)fb

+ 96 a
bt bt

-b[ [, fayg(x)dxdydt +J, [, faZ fayg(x)dxdydz dt

We use (17) and (18) in (16) to get:

17b2-10ab-7a? b t
g()dt ++Ia J, 9(0)dxdt (2(a2+ab+b2)) 18
3(a+b) ( )

(a-b)?(39a3+91a%b+61ab?+49b3) b
Remsizlfl = ( ( 2880(a+h) )fa g(t)dt
(-19a*-44a3b+30a%b?+4ab3+29b* b (t
N 288(a+b) Jo Jo 9()dxdt
DU RO) 10 14 3 o oy + SR (B 12 oy rdydzae
6(a+b) a-“a-‘a g(x) X y 3(a+b) a YaJa Ya g(x) X y Z
b ot .
=b f; [} 1Y [2 S 9(x)dxdydz dwdt ) f© (£)g (), (19)

which is the same as (9), and the precision of this scheme is 4.

Theorem 2. When g(t) = t, the proposed CMS13 scheme with the error term (9) for the
RS-integrals is reduced to the corresponding CMS13 scheme [XVII], i.e. (8) for the
Riemann integrals.

Proof of Theorem 2.

By Theorem 1, we have:

fbf(t)dg=fbf(t)dt=<(b 5 I, J, xdxdt — = ] tdt—g(a))f(a)

(b af tdt _(b a)2f f xdxdt)f(a;b)

+(gb) == [ tdt + (b 1, [ xdxdt) £ (b)

P Carh) B gy 4 LT (B vt (Rerabeod)

_bf f fdeXdydt+f f f fyxdxdydzdt 3(a+b)
" ((a b)?(39a3+91a b+61ab2+4-9b3)f tdt

, 32880(&;2) . ,
( 19a*-44a :;—83((211:) +4ab°+29b f; f; xdxdt
—b(4iz(zzz;b2)ff f; fz xdxdydt +—(b2?(l:;2;2)2 ff fat faz f; xdxdydzdt
=b f; [ [V [2 2 xdxdydz dwdt) £ © (§)g () (20)
Itis obviouzs to2 get:
ff tdt =2 ;“ :

bt b a’pb  ad
[P xdxdt =2 92 4 @
a Ja 6 2 3
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a’b®  adp a*

4 3 8’

fbftfyxdxdydt=b—4—

[P L7 2 x dxdydz dt _750—“;_’#%_%#;_;
y _ a’b  a*p?  a3pd c12b4 a6
fa fa fa fa f XdXddedet m + an 16 + 18 - 18 144

And, finally using these in (20) we get:
[ f@de =22 (@) + 4f (52) + £ (b)) - L2 0 (A |

(b—a)” (6)
17280(a+b) sy € (2D

where ¢ € (a, b).

This illustrates that the proposed CMS13 rule is reducible to the classical Riemann
integral form (8) in terms of the centroidal mean.

Now, the proposed composite centroidal mean derivative-based Simpson’s 1/3
scheme for the RS-integral is derived by dividing the interval into small subintervals
and applying integration rule to each subinterval, and the results are showcased in
Theorem 3.

Theorem 3. Let ’(t) and g(t) be continuous on [a, b] and g(t) be increasing there. Let
the interval [a, b] be subdivided into 2n subintervals [Xk, Xk+1] with width h = b%a by

using the equally spaced nodes xx = a+kh, where k =0, 1, ..., n. The composite
Centroidal mean Simpson’s 1/3 scheme to 2n subintervals for the RS-integral can be
described as

I, f(©dg ~ cMCS13 = ‘”‘2)2 [ Jy gGdxdt =37 [ g(®)dt — g(@)| f (@)
+o s | gde = [ g(x)dxdt]f(’”‘%m‘)

+ oy [ (f;k" L, g(x)dxdt+ 2 [y geodxdt) — (37 g(o)de +
f""“g(t)dt)]f(xk)

—(3xk 1+ Sxk)f © 9dt

+17xk —10%)—1 Xk —7Xk—1° [ f g(x)dxdt

2(xp—1 * X1 X H X P)
+ ZZ=1 48 Xg-1 f(4)
Xk f;kk ka f ! g(x)dxdy dt ( 3(Xp—1+xk) )
1 1

ka It f fy 9(x)dxdy dzdt

o) -2 g+ a)zf Jy g@dxdt| F(b) (22)

Proof of Theorem 3.

The proposed basic form CMS13 scheme for the RS-integral is given in (9). Applying
the proposed CMS13 rule over each subinterval, we have:

[} f(®dg ~ gf [} g@odxdt — 5= [ g(t)dt — g(a)| f (@)
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(5 )Z
900) = w2z [y 9Ot + = [ [ g(x)dxdt] fOx2)

+

+

4
= (n)z

3 4
9(x1) — Ef(flg(t)dt to=

8
b=a Jx,_, (b—a)z
L n n
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X1

I, g(x)dxdt]f (=)

(%)
_C>a);§a+5x1)f (t)dt4—17x1 lfax1—7a fxlf g

—xy [ LY gQoydxdy dt + [ [L 2 [7 g(x)dxdy

9(x2) — 5=z [, g(t)dt +

(”n“)z
2, g(x)dxdt] f(22)

(9

—(b a) (3x1+5x3)

96 X1 48

P gdxdt — 55 [ g(0dt — g ()| £ )

221} gt f(xz)+

17x,%-10 —7x,2 t
fxz g(t)dt + X2 X1X2—=7% f;lZ fx1 g(x)dth f(4) (

o fjg(x)dxdt] fxr)

(x)dxdt f(4) (2(a2+ax1+x12))

3(a+x4)

dzdt

t t
=%, [17 o [y 9@dxdy dt + [ [ [7 [ g(odxdy dzde

| o =

4

kg (t)dt

t
Lk T, g(0)dxde

g(xk)—,ff " g@®at + f;;" ka g(x)dxd

(= )2
—( ) (?;Zk 1+SXk)f g()dt

17Xk —10Xk—1Xk—7Xf— 1 Xk
+ ) f

g(x)dxdt f(4) (

48 Xp—1
wl o 1) g(x)dxdy dt

fx"f N fy g(x)dxdy dzdt

Xk—1 “Xk—1 " Xk—1
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t]f(xk)

Z(xk_12+xk_1xk+xk2)

3(xg—1+xk)

)

f L2 g(e)de —

2(x1 242122 +2x,2)

3(x1+x3)

)
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+

= )2 [ g(x)dxdt—éfx”n_lga)dt—g(xn_l)]f(xn_o

|z fy g(tydt—

Lo Ji g(x)dxdt]f(x"'z—”b)

(b a)2 Xn—1

+|9®) - =, g®dt+= [ [ g(x)dxdt] fb)

(59

n—1b—7%p_
fo g(®ydt+ 10"481 Zin-1” o i g()dxdt @ (Z(xn_12+xn_1b+b2))
3(xp—1+b)

I g(x)dxdydt+ g P g@dxdy dzdt

Xn—-1"Xn-1

—( ) (3%p—1+5b)
+ 96

b Lo S
= [ 2 f; g odxde = 7 [ g (Ot - 9(@)] £ ()
[ g(ode — 2 [ [ goydude| £ (£2)
L2 gde — 5 a)zfxzf gGo)dxde] f (2222)
bt [T g(oyde— 2 [ [E godude] f (Rt
)

[ (0 L gydxde + [ [} g@oydrdr) =52 (3 [ g(6)dt +

172 g(0dt)| f )

+ [(b P (f;lzf g(x)dxdt + fx3f g(x)dxdt) ——(3 fng(t)dt +

fxs g(t)dt)] flxy) +...+ [(b a)Z( xn 1f g(x)dxdt + f;:_l fxn_l g(x)dxdt) _

Xn-2

b":(3 [t g(de + [ g(tyat)| PGt
+low -1 (t)dt+(,, a)zf J;,., 9Cdxdt| £ (b)

—h2(3xp_1+5b) —10Xp_1b—7xp_
( = 1 f g(t)dt + 481 12 fxn 1fxn 1g(x)dxdt )f(4) (Z(xn_12+xn_1b+b2))

+...+[;T”afxb g()dt—(b a)zf I _ g(x)dxdt]|

Xn-1

> [t fy 9(xX)dxdy dt + f f I fy _9(x)dxdy dzdt 3(¥n-1+D)

Xn-1+"Xn-1 Xn-1"Xn-1

= [ [ g odade = 32 [ g (9t = g(@)] (@
+ 2R [ g(oyde — 2[5 [° gQodude] f (BLt)

+ T (2 Sy g@odxde + [74 [) g(rdxdt) — (3 [7* g(t)dt +
f;‘k"“g(t)dt)]f(xk)
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oy -7 g@de+ o[l [l gGodxde] F(b)

Xn-1

Xk—1

—x [ [ fy gCdxdyde+ [ [0 [ [ g(x)dxdydzdt

Xg—1 " Xk-1 Xk—1 " Xf—1 “Xg-1 " Xg—-1

3(xp-1+b)

—h?(Bxp_1+5xk) Xk 17x2=10X)_1 Xk —7Xp_12 (XK
- (— [ g+ v [ 0 gGdxde ) e

So the proposed composite derivative-based Simpson’s 1/3 scheme using the centroidal
mean for the RS-integral is proved.

It is noted that the global error terms of the proposed CMCS13 scheme cannot be
defined in classical form.

IV. Results and Discussion

Theoretical results did not verify in [XI],[X],[XXV], by experimental works
on quadrature schemes for RS-integral. In this research paper, experimental works have
been performed on quadrature schemes for RS-integral to verify the theoretical results.
Three different numerical problems have been tested using MATLAB software for
each scheme taken from [VIII], [IX], [I11], [XI], [1] etc. All the results are observed
in Intel (R) Core (TM) Laptop with RAM 8.00GB and a processing speed of 1.00GHz-
1.61GHz.. Double-precision arithmetic is used for numerical results.

Example 1. [ sin 5 xd(cos x) = 0.227676016130689
Example 2. [ sin x d(x*) = -59.655908136641912

Example 3. [ e*d sin x = 187.4269314248657

The absolute error and computational order of accuracy (COC) formulae have been
obtained from [IX].

In Table 1, the error plots of the proposed CMCS13 scheme have been matched with
other existing schemes: CT, ZCT and MZCT under similar conditions, and it is noted
that the proposed CMCS13 scheme has the smallest error for all examples. When the
number of strips is increased, it is noticed from Figs. 1-3 through the line plots that
errors in the proposed scheme are reduced rapidly as compared to other schemes.

The observed COC has been verified for all discussed methods for the RS-integral
except the ZCT scheme due to errors highlighted in [VII11], the order oscillates and

did not converge to 4, as in Tables 2-4.

In Table 5, the total evaluation of functions, derivatives and integrations are used per
strip are mentioned for the discussed methods, which are required to compute the
computational costs. Figs. 4-9 represent the total computational cost and the average
CPU time in seconds for three different integrals using CT, ZCT, MZCT and CMCS13
schemes. The numerical results show that the proposed scheme computed less cost and
smaller average CPU time to achieve the error 10°° as compared to existing schemes
for all test problems.
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Table 1: Absolute error comparison by CMCS13 and others for Examples 1-3.
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Fig 1. Comparison of error drops by all methods for Example 1
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Fig 2. Comparison of error drops by all methods for Example 2
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Fig 3. Comparison of error drops by all methods for Example 3

Kashif Memon et al

80



J. Mech. Cont. & Math. Sci., Vol.-16, No.-3, March (2021) pp 69-85

Table 2: Comparison of COC in all methods for Example 1

Table 3: Comparison of COC in all methods for Example 2

Table 4: Comparison of COC in all methods for Example 3

Table 5: Computational cost in quadrature variants for m strips.
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Figs. 4-6 represent a computational cost to achieve at most 1E-05 absolute error in
quadrature variants for Examples 1-3.
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Fig 4. Total computational cost by quadrature variants for Example 1
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Fig 5. Total computational cost by quadrature variants for Example 2
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Fig 6. Total computational cost by quadrature variants for Example 3

Figs. 7-9 represent average CPU time to achieve at most 1E-05 absolute error in
guadrature variants for Examples 1-3.
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Fig 7. Average CPU usage time by quadrature variants for Example 1

Kashif Memon et al

82



J. Mech. Cont. & Math. Sci., Vol.-16, No.-3, March (2021) pp 69-85

200

[y
(%]
o

CPU time (in
seconds)
(=Y
[=]
o

(9]
o

o

CT ZCT MZCT CMCS13
Methods

Fig 8. Average CPU usage time by quadrature variants for Example 2
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Fig 9. Average CPU usage time by quadrature variants for Example 3

V. Conclusion

A new efficient derivative-based quadrature scheme of Simpson’s 1/3-type
was derived using the centroidal mean for the RS-integral. The local and global error
terms were derived in theorems. Three different numerical problems were analyzed
from the literature to check the performance of the proposed scheme against few other
existing schemes. The error drops, observed orders of accuracy and computations
performance in terms of evaluations and CPU usage show the dominance of the
proposed scheme over other discussed schemes for the evaluation for the RS-integral
numerically.
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