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Abstract 

This research presents a new and efficient Centroidal mean derivative-based 

numerical cubature scheme which has been proposed for the accurate evaluation of 

double integrals under finite range. The proposed modification is based on the 

Trapezoidal-type quadrature and cubature rules. The approximate values can only be 

obtained for some important applications to evaluate the complex double integrals. 

Higher precision and order of accuracy could be achieved by the proposed scheme. 

The schemes, in basic and composite forms, with local and global error terms are 

presented with necessary supporting arguments with their performance evaluation 

against the conventional Trapezoid rule through some numerical experiments. The 

simultaneously observed error distributions of the proposed schemes are found to be 

lower than the conventional Trapezoidal cubature scheme in composite form. 

Keywords: Cubature, Double integrals, Centroidal mean Derivative-based scheme, 

Precision, Order of accuracy, Local and global errors, Trapezoid. 

I.    Introduction 

Quadrature and cubature are two distinct terms used for numerical 

computation. Single integrals are named by quadrature while multiple integrals are 

enlisted under the name cubature. Scientists and engineers remained interested in 

calculating the areas and volume of irregular figures that are not familiar with any 

definite shape as highlighted by Burden and Faires in [IV], as most often such 

problems are modeled in terms of integrals. To ease the process of analytical 
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evaluation, numerical integration is recommended. So far different quadrature rules 

are proposed by mathematicians to focus on single integral problems. However, the 

problem of evaluating volumes using double integrals is also important [XI]. 

A unique family of numerical integration of closed Newton-Cotes quadrature rules 

was presented in [XVIII], these quadrature rules resulted in an increase of twice the 

orders of precision over the classical closed Newton-Cotes formulas. Authors in [III] 

modified a numerical scheme and proposed a new numerical integration algorithm for 

minimizing the errors in a combined interchangeable way. Memon et al. in 2020 

[X] developed a new efficient midpoint derivative-based quadrature scheme of 

trapezoid-type for the Riemann-Stieltjes integrals which is efficient as compared to 

[XIX]. Shaikh [XV] in 2019, experimented and compared the polynomial collocation 

method with uniformly-spaced quadrature rules for the solution of integral equations. 

Contribution in the field of computation of numerical integration using arithmetic, 

geometric and harmonic means derivative-based closed Newton-Cotes rules and 

comparison of the results with the existing closed Newton-Cotes quadrature (CNC) 

rules was conducted by Ramachandran et al. in 2016 [XIII]. Shaikh et al. in 2016 

[XVI] proposed a modified four-point quadrature rule for numerical integration by 

using double derivative instead of 4th order derivative and successfully met an 

efficient end for modification of a method in Zhao et al. [XVIII]. 

Uncountable old methods and their modifications are present to approximate 

integrals, for example [V], [II] and [I] by Burg in 2012, Bailey and Borwein in 2011 

and Babolian et al. in 2005, respectively. Zafar et al in 2013 [XVII] presented some 

new inter-connected identities of open Newton-Cotes rules which also involve 

derivatives with higher accuracy than the classical formulas. Other related work is 

due to Dehghan and colleagues  [VI], [VII], [VIII] in 2005-06, Jain in 2007 [IX], Pal 

in 2007 [XI], Sastry in 1997 [XIV] and Petrovskaya in 2011 [XII]. Single integrals 

were exposed to numerous improvements that are shown by the literature, however, 

negligible work has been done with regards to multiple integrals. The only classical 

and basic rules the closed Newton-Cotes cubature schemes for double integrals, as 

discussed in [XI].  

An efficient alternation of conventional closed Newton-Cotes Trapezoidal cubature 

rule (CNCT) by incorporating partial derivatives besides the usual functional 

evaluations is suggested in this paper. The proposed rule is higher-order accurate and 

contains higher precision while the errors are comparatively lesser than the existing 

CNCT schemes. 

II.   General Formulation and Existing Closed Newton-Cotes Cubature 

Scheme for Double Integrals 

A closer view of numerical formulation of the double integrals over finite 

rectangles is explained in this portion and the basic form of the Trapezoidal rule 

extension for cubature in two dimensions with the help of [XI]. This material will 

help in a comprehensive understanding of the proposed schemes and the main 

contributions through this research work.  
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The general form of the double integrals defined over rectangles in two dimensions is 

defined as 

      𝑉 = ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥
𝑏

𝑎
𝑑𝑦

𝑑

𝑐
              (1) 

where V is the volume of the surface defined by the integrand over the area element 

Here, we carry-out evaluation of the double integral over a rectangle x=a, x=b, y=c, 

y=d with all limits being finite. 

The existing closed Newton-Cotes cubature scheme for double integrals (CNCT 

double integral scheme) was discussed in [XI] to approximate volume in (1) in the 

form: 

      𝐶𝑁𝐶𝑇 = ∫ ∫ 𝑓(𝑥, 𝑦)
𝑏

𝑎
𝑑𝑥

𝑑

𝑐
𝑑𝑦 ≈

(𝑏−𝑎)(𝑑−𝑐)

4
[𝑓(𝑎, 𝑐) + 𝑓(𝑎, 𝑑) + 𝑓(𝑏, 𝑐) + 𝑓(𝑏, 𝑑)]     (2) 

CNCT scheme defined by (2) has a precision degree of one. The composite form of 

CNCT schemes was not discussed in [XI]. In this work, however, we shall present the 

composite form in the following section and then present the new and efficient 

improvements to (2) in basic and composite form. 

 

III. Present Work and Proposed Centroidal mean Derivative-based 

Trapezoidal Numerical Cubature Scheme PCMT 

First, we highlight that the composite form of CNCT, denoted as CNCT-Cn, with the 

global error term may be defined as the following Theorem 1, which is completed in 

a series of the present work [X], and was not discussed in [XI]. 

Theorem 1. Let a, b, c, d be finite real numbers, and f (x, y) along with its second 

order partial derivatives exist and are continuous in [a,b]⤬[c, d]. Let {xi, i=0,1,…,n} 

and {yj, j=0,1,…,n} form uniformly spaced partitions of [a, b] and [c, d] such that b-a 

= nh  and   d-c = nk then the CNCT-Cn scheme in composite form for n elements  

with the global error term is defined as: 

 𝐶𝑁𝐶𝑇 − 𝐶𝑛 = ∫ ∫ 𝑓(𝑥, 𝑦)
𝑏

𝑎
𝑑𝑥

𝑑

𝑐
𝑑𝑦 = ∑ ∑ ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝑥𝑖+1

𝑥𝑖

𝑦𝑗+1

𝑦𝑗

𝑛−1
𝑖=0

𝑛−1
𝑗=0  

= ∑ ∑
ℎ𝑘

4
[𝑓(𝑥𝑖 , 𝑦𝑗) + 𝑓(𝑥𝑖, 𝑦𝑗+1) + 𝑓(𝑥𝑖+1, 𝑦𝑗) + 𝑓(𝑥𝑖+1, 𝑦𝑗+1)]

𝑛−1

𝑖=0

𝑛−1

𝑗=0

 

−
ℎ2(𝑏−𝑎)(𝑑−𝑐)

12
𝑓𝑥𝑥 (𝜉, 𝜂) −

𝑘2(𝑏−𝑎)(𝑑−𝑐)

12
𝑓𝑦𝑦 (𝜉, 𝜂)       (3) 

𝑤ℎ𝑒𝑟𝑒  𝜉 ∈ (𝑎, 𝑏)  𝑎𝑛𝑑  𝜂 ∈ (𝑐, 𝑑) 

Modifications of CNCT rule in a basic form involving derivatives acquires the form: 

𝑃𝐶𝑀𝑇(𝑎: 𝑏, 𝑐: 𝑑) = ∫ ∫ 𝑓(𝑥, 𝑦)
𝑏

𝑎
𝑑𝑥

𝑑

𝑐
𝑑𝑦 = 𝐶𝑁𝐶𝑇 + ∑ 𝐷𝑖𝛼𝑖

𝑖=3
𝑖=1           (4) 

The coefficients 𝐷𝑖 = ℎ𝑖(𝑏 − 𝑎, 𝑑 − 𝑐) depends upon limits, we define derivative 

terms as : 

𝛼1 = ∑ 𝑓𝑥𝑥(𝜇𝑥 , 𝑦)

∀𝑦

, 𝛼2 = ∑ 𝑓𝑦𝑦(𝑥, 𝜇𝑦)

∀𝑥

 𝑎𝑛𝑑 𝛼3 = 𝑓𝑥𝑥𝑦𝑦(𝜇𝑥, 𝜇𝑦). 
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The notation CNCT stands for the existing closed Newton-Cotes cubature scheme 

and PCMT for the proposed Centroidal mean derivative-based cubature scheme of 

Trapezoidal-type. In (4), by using centroidal mean CM, we get a new derivative-

based scheme, namely PCMT for efficient evaluation of numerical cubature. The 

coefficients Di’s in the basic forms, and the averages concerning x and y in the 

existing CNCT as well as proposed PCMT cubature schemes are summarized in 

Table 1. 

Table 1: Coefficients and means used in CNCT and PCMT cubature schemes 

T 

schemes 
D1 D2 D3 𝜇𝑥 𝜇𝑦 

CNCT Derivative free Derivative free Derivative free 
Derivative 

free 

Derivative 

free 

PCMT −
(𝑏−𝑎)(𝑑−𝑐)3

24
   −

(𝑏−𝑎)3(𝑑−𝑐)

24
  

(𝑏−𝑎)3(𝑑−𝑐)3

144
  

2(𝑎2+𝑎𝑏+𝑏2)

3(𝑎+𝑏)
  

2(𝑐2+𝑐𝑑+𝑑2)

3(𝑐+𝑑)
  

  

The local error terms of the existing CNCT and proposed PCMT scheme along with 

the precision are summarized in Table 2. 

Table 2: Local error terms and degrees of precision of CNCT and PCMT cubature 

schemes 

T 

schemes 

Local  Error terms Precision 

CNCT −
(𝑏−𝑎)3(𝑑−𝑐)

12
𝑓𝑥𝑥(𝜉, 𝜂) −

(𝑏−𝑎)(𝑑−𝑐)3

12
𝑓𝑦𝑦(𝜉, 𝜂)  1 

PCMT −
(𝑏−𝑎)5(𝑑−𝑐)

72(𝑎+𝑏)
𝑓𝑥𝑥𝑥(𝜉, 𝜂) −

(𝑏−𝑎)(𝑑−𝑐)5

72(𝑐+𝑑)
𝑓𝑦𝑦𝑦(𝜉, 𝜂)  2 

 

Theorems 2-3 shows the proof of precision degree and local error term of the 

proposed PCMT cubature scheme respectively 

Definition 1. The largest positive integer n for which the exact and approximate 

results of 𝑓(𝑥, 𝑦) = (𝑥𝑦)𝑛 are same, is defined as the degree of precision of the 

cubature scheme. 

Theorem 2. Let a, b, c, d be finite real numbers, and f (x, y) along with its third order 

partial derivatives exist and are continuous in [a, b]⤬[c, d], then the PCMT scheme 

in basic form defined in (4) with coefficients in Table 1 has a degree of precision 

equal to two. 

Proof of Theorem 2. 

Over the rectangle [a, b]⤬[c, d], the exact results of the 𝑓(𝑥, 𝑦) = (𝑥𝑦)𝑛 with n = 0, 

1, 2 and 3 are given as:  
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∫ ∫ 𝑥0𝑦0𝑏

𝑎
𝑑𝑥

𝑑

𝑐
𝑑𝑦 = (𝑏 − 𝑎)(𝑑 − 𝑐)     (5) 

∫ ∫ (𝑥𝑦)
𝑏

𝑎
𝑑𝑥

𝑑

𝑐
𝑑𝑦 =

(𝑏2−𝑎2)(𝑑2−𝑐2)

4
     (6)  

∫ ∫ (𝑥2𝑦2)
𝑏

𝑎
𝑑𝑥

𝑑

𝑐
𝑑𝑦 =

(𝑏3−𝑎3)(𝑑3−𝑐3)

9
     (7)  

∫ ∫ (𝑥3𝑦3)
𝑏

𝑎
𝑑𝑥

𝑑

𝑐
𝑑𝑦 =

(𝑏4−𝑎4)(𝑑4−𝑐4)

16
     (8)  

The approximate evaluation of the integral with same values of n using the proposed 

PCMT scheme with coefficient in Table 1 and general expression (4) is: 

𝑃𝐶𝑀𝑇(𝑥0𝑦0) = (𝑏 − 𝑎)(𝑑 − 𝑐)     (9)  

𝑃𝐶𝑀𝑇(𝑥𝑦) =
(𝑏2−𝑎2)(𝑑2−𝑐2)

4
                 (10)  

𝑃𝐶𝑀𝑇(𝑥2𝑦2) =
(𝑏3−𝑎3)(𝑑3−𝑐3)

9
                 (11)  

𝑃𝐶𝑀𝑇(𝑥3𝑦3) =
(𝑏−𝑎)(𝑑−𝑐)

36(𝑏+𝑎)(𝑑+𝑐)
[
{3(𝑏3 + 𝑎3)(𝑏 + 𝑎) − 2(𝑏 − 𝑎)2(𝑎2 + 𝑎𝑏 + 𝑏2)}

. {3(𝑑3 + 𝑐3)(𝑑 + 𝑐) − 2(𝑑 − 𝑐)2(𝑐2 + 𝑐𝑑 + 𝑑2)}
]             (12) 

Comparison of (5)-(8) with (9)-(12) gives: 

For    

 𝑛 ≤ 2,  ∫ (∫ (𝑥𝑦)𝑛𝑑𝑥
𝑏

𝑎
) 𝑑𝑦 − 𝑃𝐶𝑀𝑇(𝑥𝑦)𝑛𝑑

𝑐
= 0.               (13) 

But if 

𝑛 ≥ 3,  then   ∫ (∫ 𝑥4𝑦4𝑑𝑥
𝑏

𝑎
) 𝑑𝑦 − 𝑃𝐶𝑀𝑇(𝑥4𝑦4) ≠

𝑑

𝑐
0.          (14) 

Hence by using Definition 1 and (13)-(14), the degree of precision of the 

PCMT double integral scheme is two.   
 
Definition 2. For precision degree M of a cubature scheme, the leading local error 

term is defined as the difference between exact and approximate results of an integral 

in the neighborhood of (xo, y0) for the (M+1)th order term in Taylor’s series 

development of f (x, y). 

Theorem 3. Let a, b, c, d be finite real numbers, and f (x, y) along with its third-order 

partial derivatives exist and are continuous in [a, b]⤬[c, d], then the local error term 

of the proposed PCMT scheme in basic form defined in (4) with coefficients in Table 

1 is given as: 

𝐿𝐸𝑃𝐶𝑀𝑇 = −
(𝑏−𝑎)5(𝑑−𝑐)

72(𝑎+𝑏)
𝑓𝑥𝑥𝑥(𝜉, 𝜂) −

(𝑏−𝑎)(𝑑−𝑐)5

72(𝑐+𝑑)
𝑓𝑦𝑦𝑦(𝜉, 𝜂)  (15) 

𝑤ℎ𝑒𝑟𝑒  𝜉 ∈ (𝑎, 𝑏)  𝑎𝑛𝑑  𝜂 ∈ (𝑐, 𝑑)                     

Proof of Theorem 3. 

Equations (13)-(14), confirm that the degree of precision of the proposed PCMT 

cubature scheme is 2. To obtain leading local error terms, the third-order term in 

Taylor’s series expression [XIV] is selected: 
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1

3!
[
(𝑥 − 𝑥0)3 𝜕3𝑓

𝜕𝑥3
(𝑥0, 𝑦0) + 3(𝑥 − 𝑥0)2(𝑦 − 𝑦0)

𝜕3𝑓

𝜕𝑥2𝜕𝑦
(𝑥0, 𝑦0)

+3(𝑥 − 𝑥0)(𝑦 − 𝑦0)2 𝜕3𝑓

𝜕𝑥𝜕𝑦2
(𝑥0, 𝑦0) + (𝑦 − 𝑦0)3 𝜕3𝑓

𝜕𝑦3
(𝑥0, 𝑦0)

]         (16) 

The shape for some   𝜉 ∈ (𝑎, 𝑏) and 𝜂 ∈ (𝑐, 𝑑) in the local error term of proposed 

PCMT scheme is: 

𝐿𝐸𝑃𝐶𝑀𝑇 =
1

3!
[∫ ∫ 𝑥3𝑑𝑥

𝑏

𝑎
𝑑𝑦 − 𝑃𝐶𝑀𝑇(𝑥3)

𝑑

𝑐
] 𝑓𝑥𝑥𝑥(𝜉, 𝜂) +

1

2
[∫ ∫ 𝑥2𝑦𝑑𝑥

𝑏

𝑎
𝑑𝑦 −

𝑑

𝑐

𝑃𝐶𝑀𝑇(𝑥2𝑦)] 𝑓𝑦𝑥𝑥(𝜉, 𝜂)  

+
1

2
[∫ ∫ 𝑥𝑦2𝑑𝑥

𝑏

𝑎
𝑑𝑦 − 𝑃𝐶𝑀𝑇(𝑥𝑦2)

𝑑

𝑐
] 𝑓𝑦𝑦𝑥(𝜉, 𝜂) +

1

3!
[∫ ∫ 𝑦3𝑑𝑥

𝑏

𝑎
𝑑𝑦 −

𝑑

𝑐

𝑃𝐶𝑀𝑇(𝑦3)] 𝑓𝑦𝑦𝑦(𝜉, 𝜂)         (17) 

Implementing required integrals in (17), as the precision of PCMT is 2 the two 

middle terms vanish, after simplification we finally have: 

𝐿𝐸𝑃𝐶𝑀𝑇 = −
(𝑏−𝑎)5(𝑑−𝑐)

72(𝑎+𝑏)
𝑓𝑥𝑥𝑥(𝜉, 𝜂) −

(𝑏−𝑎)(𝑑−𝑐)5

72(𝑐+𝑑)
𝑓𝑦𝑦𝑦(𝜉, 𝜂)  

for some   𝜉 ∈ (𝑎, 𝑏) and 𝜂 ∈ (𝑐, 𝑑).  

For the proposed PCMT scheme in general, the composite form is denoted by PCMT-

Cn which is defined in (18). 

𝑃𝐶𝑀𝑇 − 𝐶𝑛 = ∫ ∫ 𝑓(𝑥, 𝑦)
𝑏

𝑎
𝑑𝑥

𝑑

𝑐
𝑑𝑦 = ∑ ∑ 𝑃𝑇(𝑥𝑖: 𝑥𝑖+1, 𝑦𝑗: 𝑦𝑗+1)𝑛−1

𝑖=0
𝑛−1
𝑗=0  (18) 

With  b – a =  n h  and   d – c = n k partitioning the original square element, the 

averages are the means of each sub-square-element in n2 elements. 

IV.      Numerical Experiments, Results and Discussion 

To examine the performance of the proposed PCMT cubature scheme and 

existing CNCT scheme. The following two examples from the literature [XI] are 

selected. 

Example 1. 

 

Example 2.  

  

ln51

0 0

xy
xe dxdy 

23 1

111
dxdy

x y
 

+ +
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Utilizing MATLAB software, the correct decimal places’ approximations  for 

Examples 1-2 which have been used to compute absolute errors are, respectively, 

1.485339738238448 and 0.454026674722594. 

 

Absolute error distributions have been used, which are the numerical difference 

between the true value of the integrals as mentioned above through MATLAB 

software and the approximate values obtained through numerical schemes for a 

various number of elements, n = 1,2,3,….. Results up-to 40 maximum elements are 

being presented for the educated guess and sufficient understanding of the decreasing 

trend of absolute errors in different methods. 

The absolute errors of the proposed PCMT and existing CNCT scheme for Examples 

1-2 are shown in Figs. 1-2 for n = 1,2,3,…,40. The proposed scheme show 

comparatively lesser errors in both problems. The proposed scheme is an efficient 

modification of the CNCT rule in basic and composite forms.   

The computational cost in terms of several functional and partial derivative 

evaluations of the CNCT and the proposed PCMT scheme have been compared in 

Figs. 3-4 for Examples 1-2. The substantial efficiency of the proposed scheme and 

cost-saving are evident through Figs. 3-4. 

V.    Conclusion 

Through the literature and existing information CNCT scheme has been 

successfully stretched to composite form in an aforementioned research paper. The 

new and efficient numerical cubature scheme i.e. PCMT for approximating the 

double integrals is proposed in basic and generalized composite forms. The theorems 

concerning the degrees of precision and local error terms have been proved. The 

suggested scheme is found to be more efficient than the existing CNCT scheme 

through numerical experiments. The proposed PCMT scheme is valid for all double 

integral problems in all situations but does not perform better for non-trigonometric 

integrals. PCMT is very efficient than CNCT when the number of elements is 

increased for higher digit approximations. The lower absolute error distributions and 

the reduced computational cost have been the main feature of the proposed cubature 

scheme.  

 

Fig 1. Absolute error distributions versus a number of elements for Example 1. 
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Fig 2. Absolute error distributions versus a number of elements for Example 2. 

 

Fig 3. Computational cost (in logarithm scale) to achieve an absolute error of at most 

1E-06 from Example 1. 
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Fig 4. Computational cost  (in logarithm scale) to achieve an absolute error of at most 

1E-06 from Example 2. 
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