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Abstract 
          The present study shows that a simple epidemiological model can reproduce 

the real data accurately. It demonstrates indisputably that the dynamics of the 

COVID-19 outbreak can be explained by the modified version of the compartmental 

epidemiological framework Susceptible-Infected-Recovered-Dead (SIRD) model. The 

parameters of this model can be standardized using prior knowledge. However, out of 

several time-series data available on several websites, only the number of dead 

individuals (D(t)) can be regarded as a more reliable representation of the course of 

the epidemic. Therefore it is wise to convert all the equations of the SIRD Model into 

a single one in terms of D(t). This modified SIRD model is now able to give reliable 

forecasts and conveys relevant information compared to more complex models. 

Keywords: COVID-19, Epidemic Disease, Modified SIRD Model, Parameter 

Estimation. 

I.     Introduction 

          A model is an element that takes after a framework or article in specific 

perspectives, however is simpler to work with when contrasted with the first 

framework. A mathematical model uses the language of arithmetic to convey a more 

refined and accurate depiction of the structure. The aim of utilizing models are 1) 

better comprehension of frameworks, 2) reproduction of a framework's conduct, 3) 

expectation of its future conduct, and at last 4) framework control. Nonetheless, we 

need to recollect two things for this situation: i) Models are not special and various 

models can coincide for a single framework, ii) A model is just a replica of the real-

world case and all models have their domain of applications, outside of which, they 

are invalid. Models for epidemic diseases gauge things, for example, the size of the 

initial pool of the susceptible individuals, the disease progression, the total number 

infected, the span of the outbreak, the peak incidence and to appraise different 

epidemiological parameters, for example, the reproductive number.  
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Since the remarkable work published in 1927 by W. O. Kermack and A. G. 

McKendrick [XX], the epidemiological models are taken to capture the essential 

features of the course of an epidemic. According to the study of Daley and Gani [V], 

the epidemiological models have three main aims: (i) to recognize better the 

mechanism by which diseases spread, (ii) to anticipate the future course of the 

pandemic, and (iii) to suggest strategies which permit us to control the spread of the 

sickness. However, to achieve these three goals, first of all, our model must be able to 

describe the real data from the past [V]. 

Modeling pandemic with compartmental models of Kermack and McKendrick (for an 

introduction see [XI, XV, X]) has been one of the most active problems in recent 

times [XVII, I, III, IV, VI, XIII, VII]. 

According to Kermack and McKendrick's compartmental models, an individual in an 

overall population has a spot with one of the M compartments and the number of 

people in various compartments keeps on changing with time. If we address each 

stage during a pandemic with a compartment and monitor the number of people in 

every compartment then we can easily model the dynamics of the epidemic. 

Identifying the compartments as the nodes of a graph, the communication between 

different compartments, represented by a set of rate equations, can be viewed as the 

edges of the graph. Some of the nodes may have multiple edges and some of the 

edges could be bi-directional also [examples: Figs. 1, 2]. The primary test of 

demonstrating a pandemic like Covid-19 isn't the shortage of numerical models 

however it is of the solid information for the compartments being thought of. 

The entire modeling framework will be justifiable if the associated parameters are 

physically interpretable and hence predictions from it match the real-world data. 

II.    Mathematical Models & Materials  

          As per the simplest epidemiological model, denoted as the SIR model of 

Kermack and McKendrick (1927), which is the acronym of Susceptible, Infected and 

Recovered individuals, the entire population is comprising of susceptible, infective 

and recovered individuals, with the functions S(t), I(t) and R(t) at time t (measured, 

for example, in days). In this model, the possible transitions between the 

compartments are as follows: susceptible individuals may become infected, and 

infected individuals may recover. There is for example no chance for recovered 

individuals to become susceptible or infected again. A compartmental  

 
Fig. 1. The Basic SIR Model 

model for the propagation of disease is shown in Fig. 1, and is equivalent to the 

following set of differential equations [II]: 
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𝑑𝑆

𝑑𝑡
= −𝛽

𝑆𝐼

𝑆0
                                                                                                       (1) 

 

  
𝑑𝐼

𝑑𝑡
= 𝛽

𝑆𝐼

𝑆0
− 𝛾𝐼                                                                                                 (2) 

                                                                                                             (3) 

where S0 is the size of the initial pool of the susceptible individuals, ꞵ the infection 

rate (ꞵ>0) and γ the removal rate of infectives (γ> 0). The mean duration of 

infectiousness and the average period of infectivity is represented by 1/ꞵ and 1/ γ (see 

[VIII, XII]), respectively. The above system of equations is now fully specified by the 

infection and removal rates ꞵ and γ and by a set of initial conditions. Usually, one 

takes R(0) = 0 since no one has yet had the chance to recover or die. We consider the 

initial moment t = 0 when I0 = 1 if the epidemic is set off by a single infected 

individual. The numerical computation will give us the number of susceptible, 

infected and recovered individuals as a function of time.  

 
The above formulation of the SIR model is free from any demographic realization 

(natural births, deaths, migrations), this guarantees the entire population under study 

is completely closed. This is reasonable for some acute diseases (influenza, measles 

etc.) where the disease generation time is faster than that of the demographic process. 

 

One of the genuine disadvantages of the SIR model is that individuals who recover 

and who die are is treated similarly - there are no different compartments for the dead 

and recovered individuals. This drawback can be addressed by separating the 

compartments for the dead and recovered population as is done in the SIRD model  

 

 
Fig. 2. SIRD Model 

 

[Fig. 2]. The following set of equations describes the disease dynamics ([I, XIX]): 
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𝑑𝑅

𝑑𝑡
= 𝛾𝐼                                                                                                        (6) 

 

  
𝑑𝐷

𝑑𝑡
= 𝑑𝐼                                                                                                       (7) 

 
The particular model is now fully specified by three rates and by a set of initial 

conditions S0, I0, R0 and D0. These are nonlinear first-order ordinary differential 

equations. Accordingly, numerical methods are applied for the solution of this set, 

considering them as initial value problems.  

 

The compartmental models predict that how the population in different compartments 

changes with time. In the SIR model, the population in S and R compartments can 

only diminish and increase respectively, however, in the I compartment it can 

increase as well as decrease. At the beginning of the epidemic, almost everybody is in 

the S compartment with a very small fraction in I and nobody in the R compartment. 

Toward the finish of the pandemic, everybody is in the R compartment with nobody 

in S or I compartment. The same happens for the SIRD model also where the 

decrease in I compartment happens due to recovery (R) and deaths (D). 

 

In the SIRD model, a new transmission coefficient has been introduced which is the 

death rate or mortality rate, d. In this model, d/γ indicates the number of deaths to the 

number of infected people and hence it is named as fatality rate [XVIII]. In the 

websites, the time series data are available for confirmed case C(t), recovered case 

R(t) and dead case D(t). The time series I(t) for the population in compartment I can 

be acquired by taking away R and D from C: I(t) = C(t) - R(t) - D(t). One of the 

advantages of the SIRD model is that it has three transmission coefficients and we 

have the data for three-time series I(t); R(t) and D(t) available so it is possible to 

compute the time dependency of all the three coefficients as well as the reproduction 

number R.  

 

One important disadvantage of this model is that does not consider the characteristic 

latency of this disease, biologically the incubation of the SARS-CoV-2 [XVI]. 

However, as previously mentioned, SIRD considered this subpopulation as part of the 

Susceptible, and this setting is reasonable because there isn't a report of the exposed 

population, making this model useful for the particular available data. 

 

Usually, one takes R0 = D0 = 0 since none has yet had the chance to recover or die. 

The initial value of infected individuals, I0, defines the system of equations fully, as 

then S0 = N - 10. We consider the initial moment t = 0 when I0 = 1 if the epidemic is 

set off by a single infected individual. With these initial values, most of the authors 

solved these equations. But there is a big question regarding the choice of S0. It is 

chosen as S0 = total population – initial infection. But this choice is somewhat 

arbitrary, as the true value of S0 can be estimated only a posteriori.  

 

The basic reproduction number, R0, is an important index for quantifying the 

transmission of pathogens. It is defined as the average number of people infected by 
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an individual over the disease infectivity period in a totally susceptible population 

and reveals the transmissibility of the outbreak at the initial phase. For the SIRD 

model, it is given by R0=ꞵ/(γ+ d) [I].  

 

Out of several time-series data available on several websites, only D(t) can be 

regarded as a reliable representation of the epidemic course. Therefore we convert all 

the above-mentioned equations into a single one in terms of D(t). 

 

From eqs (4) and (7), we get  

 

  
𝑑𝑆

𝑑𝐷
=

𝑑𝑆

𝑑𝑡
𝑑𝐷
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−𝛽
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= −

𝛽𝑆
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𝑑𝑆

𝑆
= −

𝛽𝑑𝐷

𝑑𝑆0
  

 

  ∫
𝑑𝑆

𝑆

𝑆

𝑆0
= −

𝛽

𝑑𝑆0
∫ 𝑑𝐷

𝐷

𝐷0
  

 

  𝑙𝑛
𝑆

𝑆0
= −

𝛽

𝑑𝑆0
(𝐷 − 𝐷0) = −

𝛽𝐷

𝑑𝑆0
    (initial condition D (0)=0) 

  𝑆(𝑡) = 𝑆0𝑒
−

𝛽𝐷

𝑑𝑆0                                                                                              (8) 

 

Similarly, from eqs (6) and (7), we can write 

 

  
𝑑𝑅

𝑑𝐷
=

𝑑𝑅

𝑑𝑡
𝑑𝐷

𝑑𝑡

=
𝛾𝐼

𝑑𝐼
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𝛾

𝑑
  

 

  ∫ 𝑑𝑅
𝑅

𝑅0
=

𝛾

𝑑
∫ 𝑑𝐷

𝐷

𝐷0
=

𝛾

𝑑
(𝐷 − 𝐷0)  

 

  𝑅(𝑡) =
𝛾

𝑑
𝐷                                                                                             (9) 

 

Eq (7) can be rewritten as 

  

𝐼(𝑡) =
𝐷̇

𝑑
                                                                                                               (10) 

 

Now total population 

 

  𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) + 𝐷(𝑡) =  𝑆(0) + 𝐼(0) + 𝑅(0) + 𝐷(0) = 𝑆0 + 𝐼0 ≅ 𝑆0  

 

As R(0) = D(0) = 0 and I0 is negligible compared to S0. Putting the values S, I and R  

from eqs (8), (10), (9) respectively, in the above equation, we get 
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  𝑆0𝑒
−

𝛽𝐷

𝑑𝑆0 +
𝐷̇

𝑑
+

𝛾

𝑑
𝐷 + 𝐷 = 𝑆0   

 

  𝑑𝑆0𝑒
−

𝛽𝐷

𝑑𝑆0 + 𝐷̇ + 𝛾𝐷 + 𝑑𝐷 = 𝑑𝑆0  

 

  𝑑𝑆0𝑒
−

𝛽𝐷

𝑑𝑆0 + 𝐷̇ + (𝛾 + 𝑑)𝐷 = 𝑑𝑆0  

 

  𝐷̇ = 𝑑𝑆0 (1 − 𝑒
−

𝛽𝐷

𝑑𝑆0) − (𝛾 + 𝑑)𝐷                                                   (11) 

 

The above single eq (11) is equivalent to the full set of equations (4 to 7) of the SIRD 

model. This modified SIRD model is more competent as the time series of deaths D(t) 

is regarded as the authentic representation of the epidemic's course. 

 

Database 

          In the present study, epidemiological data were collected from the website [IX]. 

It gives the number of dead individuals day-wise for various countries.  
 

III.   Calibration & Parameter Estimation of the Model with the Data  

          The data for D is centered on rolling averages performed over a window of 4 

days. The data for 𝐷̇ are centered rolling averages performed over a window of 4 

days. Then it is plotted in the (D, 𝐷̇) plane. Built-in function nlinfit [XIX] based on 

Gauss-Newton’s algorithm is used to find the least square fitting with the eq (11). It 

gives the best fit values of the parameters ꞵ, γ, d and S0. Data are taken for several 

countries and the above numerical computation is made. Results for those countries 

are shown in Table 1. 

 

Table 1. Best fit values of the parameters ꞵ, γ, d, S0, and R0.. 

 

Country ꞵ, day-1 γ, day-1 d, day-1 S0 R0 

US 
 

0.2718 0.0133 0.000177 15005000 20.133 

Spain 0.3865 0.0413 0.001312 1010000 9.073 

Austria 0.3009 0.0740 0.001020 55000 4.012 

Belgium 0.3140 0.0714 0.003685 205000 4.181 

Denmark 0.3120 0.0336 0.002400 9500 8.667 

UK 0.2846 0.0312 0.001141 1305000 8.811 

Iran 0.2675 0.0227 0.000174 1205000 11.682 

Portugal 0.2576 0.0372 0.000800 70500 6.779 

 

IV. Limitations:  

          Models have their limitations. It is difficult to construct a completely precise model: 

there exist some elements about the disease that is unknown or even unknowable. As such, 

the present study has few limitations (besides those mentioned in the Mathematical Model 
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section). In the present analysis, the following factors, having a significant role in the disease 

dynamics, have not been considered: the incubation period of the disease dynamics, the health 

profile, age-distribution and genetic makeup of the population, the heterogeneous contact 

transmission network, the nature of the diseases/virus, availability of medical infrastructure, 

social mixing, personal hygiene, geographical location etc. The current study is based on a 

mathematical modeling perspective.  

 

V.   Conclusion:  

          In the present study, compartmental epidemiological framework SIR and SIRD models 

are explained. In the websites, the time series data are available for confirmed case C(t), 

Recovered case R(t) and dead case D(t). The time series I(t) for the population in 

compartment I can be obtained by subtracting R and D from C: I(t) = C(t) - R(t) - D(t). 

However, the number of dead individuals (D(t)) can be regarded as a more reliable 

representation of the epidemic's course. Therefore, all the equations of the SIRD Model 

involving S(t), I(t), R(t) and D(t) are then converted into a single one in terms of D(t), which 

is a modified SIRD model. The current analysis shows explicitly the widespread behaviour of 

the COVID-19 in the (D, 𝐷̇) plane. The vital communication of the present examination is: 

basic models ought not to be excused from the earlier for more intricate and as far as anyone 

knows more precise plans, which certainly expound and yet depend essentially on large 

parameters that it is difficult to fix unequivocally.  
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