JOURNAL OF MECHANICS OF CONTINUA AND
MATHEMATICAL SCIENCES
www.journalimcms.org

ISSN (Online) : 2454 -7190 Vol.-16, No.-2, February (2021) pp 87-101 ISSN (Print) 0973-8975

MODIFIED QUADRATURE ITERATED METHODS OF
BOOLE RULE AND WEDDLE RULE FOR SOLVING NON-
LINEAR EQUATIONS

Umair Khalid Qureshi', Sanaullah Jamali?, Zubair Ahmed Kalhoro?®
Abdul Ghafoor Shaikh*

!Department of Business Administration, Shaheed Benazir Bhutto University,
Sanghar, Sindh, Pakistan

2Department of Mathematics, University of Sindh Laar, Badin, Sindh, Pakistan

3Institute of Mathematics and Computer Science, University of Sindh
Jamshoro, Sindh, Pakistan

“Department of Basic Sciences & Related Studies, QUEST, Nawabshah,
Sindh, Pakistan

Corresponding Author: Umair Khalid Qureshi
E-mail: umair.khalid_sng@sbbusba.edu.pk
https://doi.org/10.26782/jmcms.2021.02.00008
(Received: December 23, 2020; Accepted: February 7, 2021)
Abstract

This article is presented a modified quadrature iterated methods of Boole
rule and Weddle rule for solving non-linear equations which arise in applied sciences
and engineering. The proposed methods are converged quadratically and the idea of
developed research comes from Boole rule and Weddle rule. Few examples are
demonstrated to justify the proposed method as the assessment of the newton raphson
method, steffensen method, trapezoidal method, and quadrature method. Numerical
results and graphical representations of modified quadrature iterated methods are
examined with C++ and EXCEL. The observation from numerical results that the
proposed modified quadrature iterated methods are performance good and well
executed as the comparison of existing methods for solving non-linear equations.

Keywords: Boole Rule and Weddle Rule, convergence criteria, existing methods,
graph, results

. Introduction

Numerical integration is a powerful tool for solving areas under the curve in
numerical analysis, which arises in many fields of applied sciences and engineering.
Quadrature rule is a process of computing the numerical integration with the help of
the newton—Cotes formula. Newton—Cotes formula is developed by Isaac
Newton and Roger Cotes. There are five basic quadrature rules, which are commonly
used for solving numerical integration such as a trapezoidal rule, Simson 1/3 rule,
Simson 3/8 rule, Boole rule and Weddle rule. Recently, many researchers and
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scientists have taken an interest and developed many techniques for solving
numerical integration with the help of quadrature rules [IX], [I], [XI], [X] and
[XI11]. Furthermore, now a day’s estimating a single root of nonlinear application
equations is also an important topic in the research field, therefore numerous iterated
method has been developed for estimating a single root of nonlinear equations by
using newton Raphson method and quadrature rule in reference [VII] the method
developed by trapezoidal rule and newton Raphson method,
_fOm)

[ (xn)

_ _ 2f (xn)
Xt = Xn T m G S o)

Yn zxn

Likewise, in reference [IV] the method developed by Simson rule and newton
Raphson method, such as
_ _f(xn)
In = Xn fxn)
6f(yn)
£ On)+ar (2R )+ £ (o)

Xn+1 = Yn —

Similarly, this research is developed a modified quadrature iterated method to find a
root of the nonlinear equations with the help of quadrature rule and numerical
technique. These proposed methods are based on Boole's rule and Weddle's rule, and
which are converged quadratically. The idea of modified quadrature iterated methods
comes from [VII] and [VI1I1]. Modified quadrature iterated methods compare with the
newton Raphson method, Steffensen method, quadrature method and trapezoidal
method [I], [IN], [VN] and [VII]. From, numerical fallouts and graphical
representation are shown to justify the proposed methods as the assessment of
existing methods for estimating a single root of nonlinear equations.

I1. Modified Quadrature Iterated Methods
a) Boole’s rule iterated method

This segment developed Boole’s iterated method for solving nonlinear
equations with the help of Boole’s rule and Numerical Technique. Let Boole’s rule "
rule for n=4, such as

2h

ff(x)dx = 22 [7f (o) +32f (1) +12f (02) + 32f (x3) + 7f (xa)]

Taking derivative for solving integration,
; 2h
[ Feodx = 2177 (o) + 327 (o) + 127 (o) + 32 () + 77 i)
The place?nent of certain integration, we get the following statement
FG) = F(xo) + 2 [7F (x0) + 321 (1) + 12 (x2) + 32 (x3) + 7f ()] (1)
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Where n=4 then h become,
h _ x - xO
T4

h substitute in Eq. (1), we get
FO) = f o) + E22 75 (xp) + 32 () + 12 () + 32F°(x3) + 7 ()] )

90

Using Eq. (1), then solving Eq. (2), we obtain

_ 90f (xo) 3)
7f (x0)+32f (x)+12f (x2)+32f (x3)+7f (x4)

From basic numerical technique x; = x¢ + h, x, = x, + 2h and x3 = xy + 3h using
in Eq. (3), we get

X = Xg

_ 901 (%0) (4)
7f (x0)+32f (xo+h)+12f (xg+2h)+32f (xg+3h)+7f (xo+4h)

X = Xg

To using h = f(x,) from reference [X] in Eq. (4), such as

X = xn — 90f (%0) (5)
0 75 (o) +32f (x0+ (x0)) +12 (xo +2f (x6)) +32f (o +3f (40))+7f" (xo+4f (x0))

Where x, is an initial guess, and which is near to root "x’, so finally in general Eq.
(6), we get

90f (xn) (6)

Xt = Xn S 32 (ont £ o)) 127 (om 2 Ge)) 4327 (om 37 Gen)) 471 (xm 4 o))

Hence, Eq. (6) is Boole’s iterated method for Solving Nonlinear Problems.
b) Weddle’s rule iterated method

This segment developed a Weddle's iterated method for solving nonlinear
equations with the help of Weddle's rule and Numerical Technique. Let Boole’s rule "
rule for n=4, such as

r 3h
ff(x)dx = 1o (o) + 57 (x) + f(x2) + 6f (x3) + f(xa) + 5 (x5) + f (x6)]
Taking derivative for solving integration,
; 3h
ff‘(x)dx =10/ (o) +5F°Ce) + f1(2) +6f (x3) + f1(x4) + 51 (x5) + £ (xe)]

The placement of certain integration, we get the following statement,
fG) =f(xo) + % [f (o) + 51 (x1) + £ (x2) + 6 (x3) + £ (x4) + 5 (x5) + f (xe)]  (7)

Where n=6 then h become,

h — X—Xo
6

h substitute in Eq. (7), we get
FQ) = fx0) + 72 [f (ko) + 5 Cer) + £ (x2) + 6 (x3) + £ (xa) +5F () + [ (xe)]  (8)
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Using Eq. (1.1), then solving Eg. (8), we obtain

y= 20f(xo) 9)

%o~ F o) +51 (x)+f (x2)+6 (x3)+f (x4)+5f (x5)+/ (x6)
From basic numerical technique x; = xo + h, x, = xo + 2h, x3 = xo + 3h, x4 =
Xo + 4h, x4 = x¢ + 5h and xg = x + 6h using in Eq. (9), we get

xX=x 207 (%) (10)

O 7 F (o) +5f (xo+h)+f (o +)+61 (Xo+)+f (o +h)+5 £ (xts)+/ (x6)
Tousing h = f(x,) from reference [IX] in Eqg. (10), such a

x = xo = 20f (x0)/[f (x0) + 5f (x0 + f(x0)) + £ (0 + 2f (x0)) + 6 (0 +
3f(x0)) + £ (x0 + 41 (x0)) + 51 (%0 + 5 (x0)) + £ (0 + 6f (x0)) (11)

Where x, is an initial guess, and which is near to root "x’, so finally in general Eq.
(11), we get

Xni1 = Xn = 20F () /[f (%) + 57 (xn + () + (30 + 2f () +
6f (xn + 3f () + f (2t + 4f () + 5F (30 + 5£ () + £ (on + 6f ()] (12)
Hence, Eq. (12) is Weddle's iterated method for Solving Nonlinear Problems.
I11.  Convergence Analysis
a) The convergence of Boole’s rule iterated method

This section is giving the key results of this paper. We have given here the
Mathematical proof that the proposed Method is converged quadratically.

Proof:

By using the Taylor series, we are expanding

fGen), £ Gend, £ (2t + £ (), £ (e + 2f (), £ (3n + 3 () and f~(x, + 4f (x)) an
only second-order term about "a’, such as

) = enf (@1 + cey) (13)
£ @) = F @)1+ 2ce,) (14)
and
(ot + F)) = £@) [(en + F@)) + (en + FGa)) ]
Or

f'Gtn + ) = F@[(1+ £/ Ce)) + 2(en + f ) (L + f(xn))c]
Eq. (13) and Eq. (14) substitute in above Equation, we get
f (o + f(x)) = £@[1 + £ (@) + 2ce, + 6cenf(a) + 2cenf?(a)] (15)

Now,

F (G + 21 () = @[ (en + 2 () + c(en + 2f (%)) °]
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Taking derivative,

f (e +2f () = F@I(1 + 2 (x0)) + 2¢(en + 2 () (1 + 2 ()]

Using Eqg. (13) and Eqg. (14) in above, we get
f(xn +2f () = F(@[1 + 2f (@) + 2ce, + 12ce,f (a)] (16)
and

£ (n +3f () = £ @I[(en +3f () + c(en + 3 (x))°]
Taking derivative,

£l +3F0) = F@I(1 + 3 (x,)) + 2¢(en + 3f () (1 + 3 (x))]
Using Eq. (13) and Eq. (14) in above, we get
£t + 3 () = f(@[(1 + 3 (a)(1 + 2cey) )
+ 2c(e, +3e,f (@)1 +ce,))(1 +3f (a)(1 + 2cey) )]
or

f\(xn + 3f(xn)) = f(a)[1+3f (a) + 6ce, f (a)) + 2ce, + 6¢ce,f (a)(1 + 3f (a)
+ 6¢ce,f (a) + ce, + 3ce,f (a) + 6¢ce,ce,f (a)]

or

f\(xn + 3f(xn)) = f(a)[1+3f (a) + 6ce, f (a)) + 2ce, + 6¢ce,f (a)(1+ 3f (a)
+ ce,(1+9f(a))]
or
f(xn +3f(x) = £ (@[1 +3f (@) + 2ce, (1
+ (6 (@) + 9f (@)f (a) + 3cenf (@) (1 + 9f ()]
or
f‘(xn + 3f(xn)) = f(a)[1+3f (a) + 2ce, (1 + (6f‘(a) + 3cenf‘(a)(1 + 9f‘(a))]
or
f(xn +3f () = £ (@[1 + 31 (@) + 2ce, + 12ce, [ (a)] (17)
Finally,
F(xn + 4 () = (@[ (en + 4f (1)) + c(en + 4£ (1)) ]
Taking derivative,
O +4f () = @1+ 4 () + 2¢(en + 4 (x,)) (1 + 4 (x))]
Using Eqg. (13) and Eq. (14) in above, we get

f(xn +4f () = @[+ 4f (@1 + 2cey) )
+ 2c(e, + 4e,f (a)(1 + ce,))(1 + 4f (a)(1 + 2cey) )]

or

f‘(xn + 4-f(xn)) = f (a)[1 + 4f (a) + 8ce, f (a) + 2ce,, + 8ce,f (a)(1 + 4f (a)
+ 8ce, f (a) + ce, + 4ce,f (a) + 8ceyce,f (a)]

or

f‘(xn + 4-f(xn)) = f (a)[1 + 4f (a) + 8ce, f (a) + 2ce, + 8ce,f (a)(1 + 4f (a)
+ce,(1+12f(a))]
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For solving above eq. and ignoring second-order term, we obtain
f(xn +4f () = (@[ +4f (@) + 2ce, + 16ce,f (a)] (18)
For solving Eq. (14), Eq. (15), Eq. (16), Eq. (17) and Eq. (18), such as
7 (xn) + 321 (xn + f(xn)) + 121 (xn + 2f () + 32 (x, + 3f (x))
+ 7f‘(xn + 4f(xn))
= f (@)[7 + 14ce, + 32 + 64f (a) + 64ce, + 384ce, f (a)
+ 256¢ce, f 2(a) + 12 + 241 (a) + 24ce, + 144ce,f (a) + 32

+96f (a) + 64ce, + 384ce,f (a) + 7 + 28f (a) + 14ce,
+ 112ce, f (a)]

or

7 (xn) + 321 (% + f(xn)) + 12 (3 + 2f (%)) + 32 (2, + 3f (x)) +
7 (xn + 4 (%)) = 90F (@)[1 + 2.4f (a) + 2ce, + 14.2ce, f (a)] (19)
Now using Eg. (13) and Eg. (19) in the developed method, we get

_ _ 90e, f (a)(1+cey)
en+1 = €n 90f (a)[14+2.4f (a)+2ce,+14.2ce, f (a)]

e —e en(l+cey)
n+l = =n [1+2.4f (a)+2cep+14.2ce,f (a)]

ens1 = en —en(1+cey)[1+ 241 (a) + 2ce, + 14.2ce,f (a)]™!
ens1 =en—en(1+cey)[1—2.4f(a) — 2ce, — 14.2ce,f (a)]
ens1 = €n —enll —2.4f (a) — ce, — 16.6ce, f (a)]
eni1 = €n — en + 2.4e,f (a) + ce?, (1 + 16.6f (a))
ent1 = 2.4e,f (@) + ce?, (1 + 16.6f(a)) (20)
Finally, f(x) = 0 using in Eq. (13) then put in Eq. (20), we get
ens1 = —2.4e%,(a) + ce?, (1 + 16.6f(a))

or
ent1 = €2,[—2.4f"(a) + c(1 + 16.6f(a)) (21)

Hence, Eqg. (21) has been proven that the proposed Boole method converges
quadratically.
b) The convergence of Weddle’s rule iterated method

This section is giving the key results of this paper. We have given here the
Mathematical proof that the proposed Method is converged quadratically.

Proof:
By using the Taylor series, we are expanding

F ), £, (o + £ ), £ (3 + 2 (), £ (2 + 3 (20)),
f(xn + 4f (), f (o + 5f ()
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and
f (2 + 6f (x))
only second-order term about "a’, such as
fn) = enf (@1 + cep) (22)
f ) = f(a)(A + 2cep) (23)
and
fln + £O0) = £(@) [(en + FGen)) + (en + F ) c]
Or

f'n + f) = F@[(1+ f'(xn) +2(en + f ) (1 + f'(xn))c]
Eq. (22) and Eq. (23) substitute in above Equation, we get

f (3 + f(n)) = £ @1 + f (@) + 2cen + 6ce, f () + 2ce, 2 (a)] (24)

Now,
(2 +2f () = £ @I (en +2f () + c(en +2f ()]
Taking derivative,
F G +2f () = F@I(1 + 2 (x1)) + 2¢(en + 2 () (1 + 21 (x))]
Using Eq. (22) and Eq. (23) in above, we get

f‘(xn + Zf(xn)) = f (@)[1+2f (a) + 2ce, + 12ce,, f (a)] (25)

and

£ (n + 3F () = F(@I(en + 3F (i) + c(en + 37 ()]
Taking derivative,
£ +3f () = F@[(1 + 3 (%)) + 2¢(ep + 3 () ) (1 + 3£ (xn))]
Using Eq. (22) and Eq. (23) in above, we get

f (2 +3f () = £(@[(1 +3f (@)1 + 2cey) )
+ 2c(e, +3e,f (@)1 +cey))(1 +3f (a)(1 + 2cey) )]

or
f‘(xn + 3f(xn)) = f(a)[1+3f (a) + 6ce, f (a)) + 2ce, + 6¢ce,f (a)(1 + 3f (a)
+ 6¢ce,f (a) + ce, + 3ce,f (a) + 6¢ce,ce,f (a)]
or
f‘(xn + 3f(xn)) = f(a)[1+3f (a) + 6ce, f (a)) + 2ce, + 6¢ce,f (a)(1 + 3f (a)
+ce,(1+9f (a))]

or
f(xn +3f () = £ (@[1 + 3f (@) + 2ce,(1
+(6f (@) + 91 (@)f (@) + 3cenf (@) (1 + 9f (@)]
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or

f‘(xn + 3f(xn)) =f(a)[1+3f (a) + 2ce, (1 + (6f‘(a) + 3cenf‘(a)(1 + 9f‘(a))]
or

f‘(xn + 3f(xn)) = f (@)[1 +3f (a) + 2ce, + 12ce,, f (a)] (26)
Further,

f(tn + 4£ () = £ (@) (en + 4 (6)) + c(en + 4£ ()]
Taking derivative,
f (o +4f () = F@[(1+4f (%)) + 2¢(ey + 4f (x) ) (1 + 41 (x))]
Using Eq. (22) and Eq. (23) in above, we get

f(xn +4f () = f(@[(L +4f (@) (1 + 2cep))
+ 2c(e, + 4e,f (@)1 +ce,))(1 + 4f (a)(1 + 2cey) )]

or

f\(xn + 4f(xn)) = f(a)[1+ 4f (a) + 8ce, f (a) + 2ce,, + 8ce,f (a)(1 + 4f (a)
+ 8ce,f (a) + ce, + 4ce, f (a) + 8ce,ce,f (a)]

or

f‘(xn + 4f(xn)) = f(a)[1+ 4f (a) + 8ce,f (a) + 2ce,, + 8ce,f (a)(1 + 4f (a)
+ce,(1+12f(a))]

For solving above eq. and ignoring second order term, we obtain
£ + 4 (x) = f(@)[1 + 4 (a) + 2ce,, + 16ce,f(a)] (27)
Now,

f(n + 5FCen)) = F(@I(en + 5F(en) + c(en + 57 ()]
Taking derivative,
£ +5F () = F@[(1+5F (xn)) + 2¢(ep + 57 () ) (1 + 5 (xn))]
Using Eq. (22) and Eq. (23) in above, we get
£ +50) = F@[(1 +5F (@) + 2cey) )

+ 2c(e, +5f (a)(1 + ce,))(1 +5f (a)(1 + 2cep) )]
or

f‘(xn + Sf(xn)) = f (@)[1+5f (a) + 10ce,f (a) + 2ce, + 10ce,f (a)(1 + 5f (a)
+ 10ce,f (a) + ce, + 5ce, f (a) + 10ce,ce, f (a)]
or
f‘(xn + 5f(xn)) = f‘(a)[l + 5f'(a) + 10ce, f (a) + 2ce,
+10ce, f (@) (1 + 5f(a) + ce, + 25ce,f (a))]

Or
f‘(xn + 5f(xn)) = f (@)[1 +5f (a) + 2ce, + 20ce, f (a)] (28)
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Finally,

f(tn + 6 (i) = £ (@[ (en + 6 (xa)) + c(en + 6/ ()]
Taking derivative,
f (o + 6f(xn)) = f(@I(1 + 6f () + 2¢((en + 6f () (1 + 61 ()]
Using Eq. (21) and Eq. (22) in above, we get

f(xn +6f () = £ (@[ +6f (@)1 + 2cey))
+ 2c(e, +6f (a)(1 +cep))(1 +6f (a)(1 + 2cey) )]

or

f‘(xn + 6f(xn)) =f(@)[1+6f (a) + 12ce,f (a) + 4ce, + 10cf (a)(1 + 6f (a)
+ 12ce,f (a) + ce, + 6ce, f (a) + 12ce,ce, f (a)]
or
f‘(xn + 6f(xn)) =f(a)[1+6f(a) +12ce,f (a) + 4ce, + 10cf (a)(1 + 6f (a) + ce,
+ 18ce, f (a)]
For solving above eq. and ignoring second-order term, we obtain
F(xn +6f(x) = @[+ 6f(a) + 12ce,f(a) + 4cey] (29)
For solving Eq. (23), Eq. (24), Eq. (25), Eq. (26), Eq. (27), Eq. (28) and Eq. (29), such as
£ ) +5F (xn + f(n)) + (o + 2f (1)) + 6f (2 + 3 () + £ (20 + 4 (x0))
+ 51 (% + 5F () + £ (30 + 6f (x0))
=f(a)[1+ 2ce, + 5+ 5f (a) + 10ce, + 30ce,f (a) + 1 + 2f (a)
+ 2ce, + 12ce, f (a) + 6 + 18f (a) + 12ce, + 72ce,f (a) + 1
+ 4f"(a) + 2ce, + 16ce, f (a) + 5+ 25f (a) + 10ce, + 100ce,f (a)

+14+6f(a) +4ce, + 12ce,f (a)
Or

£0) +5F (o + £ ) + £ (n + 2f () + 6 (20 + 3£ (x)) +
f‘(xn + 4f(xn)) + Sf‘(xn + 5f(xn)) + f‘(xn + 6f(xn)) =20f"(a)[1 + 3f (a) + 2ce, +
12ce, f (a)] (30)

Now using Eg. (22) and Eg. (30) in the developed method, we get

20e,f (@)(1 + cey)

1 = e T o0 F @I + 31 (@) + 2ce, + 12¢ce,f (@]
e,(1+cey)

nt1 = En Ty 3f (a) + 2ce, + 12ce, f ()]

eni1 = en — e (1+ cey)[1+ 31 (a) + 2ce,, + 12ce, f (a)] !

ens1 =6en —ex(1+cey)[1 —3f (a) — 2ce, — 12ce,f (a)]

ent1 = €n — €x[1 — 3f (a) — ce, — 15ce, f (a)]

ens1 = 3epf(a) + ce?, + 15ce?,f (a)

ent1 = 3e,f (@) + ce?, (1 + 15 (a))b (31)
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Finally, f(x) = 0 using in Eq. (22) then put in Eq. (31), we get
ens1 = —3e%,f () + ce?, (1 + 15f (a))
Or
ent1 = e2,[-31 (@) + c(1 + 15F (a))] (32)

Hence, Eq. (32) has been proven that the proposed Weddle's iterated method is
converged quadratically.

IV. Numerical Results

To justify the numerical results of proposed modified quadrature iterated methods
by using C++ and EXCEL. In this section, Modified Quadrature Iterated Methods are
applied on few nonlinear application problems i.e.

i.  Mass of the jumper (sinx —x — 1 = 0)

ii.  The diameter of the pipe (2x?> — 5x — 2 = 0)
iii.  The volume of the gas depends on the temperatures (x> — e* = 0)
iv.  Anti-symmetric buckling of a beam (e ™* — cosx = 0)

The proposed Modified Quadrature Iterated Methods compared with Newton
Raphson Method, Steffensen method, trapezoidal method and Quadrature Method,
such as

Table 1. Results Table
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Table 2. Error Table

ERROR GRAPH 1

——=NR Method =—=S Method ===T Method
——=(QMethod =—=P B Method =P W Method
10
5 M
0
1 2 3 4 5 6 7 8 9 10

Table 3. Results Table
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Table 4. Error Table

ERROR GRAPH 2

—=NR Method ==S Method =T Method
—=QMethod =P B Method =P W Method

5

4

3

2

1

0

1 2 3 4 5 6 7 8 9 10

Table 5. Results Table
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Table 6. Error Table

ERROR GRAPH 3

——=NR Method ==S Method =T Method
——=QMethod =—=P B Method =P W Method
1
0.8
0.6
0.4
0.2
0
1 2 3 4 5 6 7

Table 7. Results Table
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Table 8. Error Table

ERROR GRAPH 4

——=NR Method =——=S Method =—==T Method

=——=(QMethod =—=P B Method =P W Method

0.5
0.4
0.3
0.2
0.1

V. Conclusion

This article has been proposed modified quadrature iterated methods for solving
nonlinear application equations, which are derived from the Boole rule and Weddle
rule, and they are converged quadratically. Modified quadrature iterated methods
have compared with Newton Raphson Method, Steffensen method, trapezoidal
method and quadrature method. From graphical representation and tables, it has been
confirmed that the present modified quadrature iterated methods seem to be an
imperious improvement and better execution compared with existing methods for
solving nonlinear application equations.
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