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Abstract

In this work, a new four-point quadrature scheme is proposed for efficient
approximation of the Riemann-Stieltjes integral (RS-integral). The composite form of
the proposed scheme is also derived for the RS-integral from the concept of precision.
Theoretically, the theorems related to the basic form, composite form, local and
global errors of the new scheme are proved on the RS-integral. The correctness of the
new proposed scheme is checked by g(t) = t, which reduces the proposed scheme into
the original form of Simpson’s 3/8 rule for Riemann integral. The efficiency of the
new proposed scheme is demonstrated by experimental work using programming in
MATLAB against existing schemes. The order of accuracy and computational cost of
the new proposed scheme is computed. The average CPU time is also measured in
seconds. The obtained results demonstrate the efficiency of the proposed scheme over
the existing schemes.

Keywords: Quadrature rule, Riemann-Stieltjes, Simpson’s 3/8 rule, Composite
form, Local error, Global error, Cost-effectiveness, Time-efficiency

I. Introduction

Finding the area under the regular and irregular curves when the functions or
only data is available has remained an important topic for scientists and engineers.
Such a problem can also be dealt with the methods of numerical integration in best as
well as worst cases. The worst cases consist of a definite integral whose analytical
evaluation is not possible because of mixed transcendental and nonlinear behavior of

integrands, for example: — e*“and sinx2. The methods of numerical integration of
such worst cases in one dimension are referred to as quadrature schemes. But, in most
of the past literature quadrature rules have been quite frequently used on Riemann
integrals only in one dimension. A few recent studies have focused on cubature rules

Kashif Memon et al

44


mailto:memonkashif.84@gmail.com
mailto:mujtaba.shaikh@faculty.muet.edu.pk
mailto:3saleem.chandio@usindh.edu.pk
mailto:wasim.shaikh@usindh.edu.pk
https://doi.org/00.00000/jmcms.2021.01.00004

J. Mech. Cont.& Math. Sci., Vol.-16, No.-1, January (2021) 44-61

for approximating Riemann integral in higher dimensions [V], [VI]. The derivative-
based and quadrature-based schemes have also been used for the nonlinear equations
[V, [XVIHI], [XV], [XVI]. The Riemann-Stieltjes (RS) integral, which is an
extension of the Riemann integral. For a function f(x) which is bounded in [a, b], and
another function « (x) which is monotonically increasing in [a, b], the RS-integral is
defined [1V] as:

RS(F():a; a,b) = [, f(x)da(x) 1)
where f(x) is integrand and o(x) is integrator.

Numerical evaluation of RS-integral can be applied in several areas of mathematics.
For instance, statistics and probability theory, complex analysis, functional analysis,
operator theory and others. Quadrature approximations for the Riemann integral are
enormously available in literature as in [], [XIV], extended for integral equations in
[XVI11], and applied to switched reluctance motors [X]. On the other hand, only some
works in the past focused numerical approximation for the RS-integrals. The very
first Trapezoid approximation with Hadamard inequality can be found in [XI].
Utilizing the relative convexity concept in [XII], some important inequalities were
developed for the RS-integral approximation using the midpoint and Simpson rules.
Authors in [XIX] presented a new family of closed Newton-Cotes quadrature
schemes with Midpoint derivative for the Riemann integral at first instance, then in
[XXI], the midpoint derivative-based trapezoid scheme for the RS-integral was
proposed. It was the first time that a derivative-based rule was suggested for the RS-
integrals. Later in [XX], the authors presented the composite form of trapezoidal rule
for the RS-integral, but the work lacked numerical experiments. Recently, Memon et
al. [VHI], [1X] presented efficient derivative-based and derivative-free schemes for
the RS-integral with experimental verification of the theoretical results.

In this work, a new four-point scheme of Simpson’s 3/8-type is proposed for the
approximation of the RS-integral. The derivation in basic and composite forms and
corresponding error analysis are discussed. The theoretical results have been verified
using numerical experiments from literature to demonstrate cost efficiency, time
efficiency and rapid convergence of the new scheme.

Il.  Some Existing Schemes for the RS-Integral

The RS-integral, as defined in (1) can be evaluated numerically by some
existing schemes: T [XI], ZT [XXI], MZT [VIII], which are defined in basic form in

@-4):
7= (2= [° g@dt - 9(@) f(@ + (9(b) - == 7 g()dt) £ (b) @

zr = (2 [ g(0)dt — g(@) f(@) + (g(b) === [ g(t)dt) £ (b)
+(f7 [L gGodxdt — =2 [7 g(t)dt ) f*(czr) 3)
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(-2b%+a? ab)f g(t)dt+6bf fg(x)dxdt 6/, ffyg(x)dxdydt
6f fg(x)dxdt 3(b— a)f g(dt

where, c,p =

MZT = (7= [} g(0)dt — g(@)) f(a) + (9(b) — 3= J; g(®)dt) £ (b)
+(J2 J2 gydxde — =2 [? g(©)dt ) £ (cuzr) (4)

—2b%+a?+ab) [ g(t)dt+6b g(x)dxdt—6 yg(x)dxdydt
N I M

6f f g(x)dxdt—3(b— a)f g(t)dt
The composite forms of the CT, ZCT and MZCT schemes are defined in (5)-(7) as:

where, Cyyzr =

€T = [ [ g(0)dt - g(@)] (@) + = SRod [ 17+ g (D)de -
I g(t)dt]f(xk)+[g(b)—— o g(tadt|f(b) (5)

2CT = [ (X g(0)dt - g(0)] (@) + 5= SRzd [ 7+ g (D)t -
b

[ g@adt|faa) +[g®) == f)  g(Odt] Fb) +
ra 0 S gCodxde =2 [T g(©)dt] f(czri)

I, f(H)dg ~ MzCT = [ xlg(t)dt - 9@ f(@ + 5= 2r23 | g (0t -

[ g@®dt] fea) +[gb) ==, g®ydt| Fb) +

[ S gCodxde -3 ffk"_1 g(Odt| f(ce) (6)
Where,
Czr ke =

(-2xftxf g —xoam) K g(oaeveb [Tk [} geodxdi-6 [k [\ [} gGodxdydt

3(xp—x
610k fi g(x)dxdt—%f;‘:_lg(t)dt

CMmzT K =

(—2x2+x2_ +xp_1x5) f"k L 9(0dt+6b f;‘:_l N 9()dxdt—6 f;"f ) ka , fxyk | 9(0)dxdydt

X X=X X
fx,f e REVRRCCTETEY Het) ¥k g ey

1. Proposed Four-point Scheme for the Riemann-Stieltjes Integral

We base the proposed four-point scheme for the RS-integral approximation
on the well-known closed Newton-Cotes four-point quadrature rule — the Simpson’s
3/8 (S38) rule — which is defined in basic form in (7).

538 = =2 [f(a) + 3 (25) + 3f (2) + f ()] )

The Simpson’s 3/8 rule for the Riemann integral as in (7) provides an exact answer
for all polynomials whose degree is three or less, so its precision is 3 and global order
of accuracy is 4.
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On the basis of (7), the proposed four-point scheme, i.e. S38 for the RS-integral
(RS), in basic form is derived in Theorem 1.

Theorem 1. Let f(t) and g(t) be continuous on [a, b] and g(t) be increasing there.
Simpson’s 3/8 scheme for the RS-integral can be described as

b 1 (b 9 bt
J, f(x)dg ~ S38 = <Efa gt)dt — mfa J, 9(x)dxdt +

o Iy Iy I7 9 (o) dxdydt - g(a)>f(a) +

((b a)2f fg(x)dxdt—z(b f g(®)dt — o= a)3f f fy (x)dxdydt)f(za;b)
((b a)f g(®)dt — = a)zf f g(x)dxdt +

(b a)3f f fyg(x)dxdydt)f(a+2b) ( (b)_z(;la)fbg(t)dt-l_

s [, Jy 9Codxdt — 2 [V [ [ g(x)dxdydt ) £ (b) ®)

Proof of Theorem 1.

To derive the proposed four-point, i.e. Simpson’s 3/8 type scheme for the RSI, we
search numbers: ap, bo, Co, do such that:

[} F©)dg = aof (@) + bof (252) + cof (2222) + dof (b) ©
is exact for f (t) =1, t, t?, t3. That is,

f:ldg:a0+b0+C0+d0

f tdg = apa + b, (2a+b) + ¢ (a+2b) + dob

f t?dg = aga® + by (2a+b) + ¢ (a+32b)2 + dyb?

3
f t3dg = aoa + bo (2a+b) + CO (a+22b) + d0b3
By using integration by parts of the RS integral, as in [XXI], we have the following
system of equations (11)-(14).

ag+ by +co+do=g(b)—g(a) (10)

aoa + by (222) + ¢ (222) + dob = bg(b) — ag(a) — [, g(t)at (11)
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2 2
aa® + by (222) +co (52) +dob? = b2g(b) — a?g(a) — 2b [, g(t)dt +
2 [ [L g(o)dx de (12)
3 3
a0@® + by (222) + ¢ (52) +dob?® = b3g(b) — a*g(a) — 3b2 [ g(t)dt
b b
+6b [ [T g(odxdt — 6 [ [7 [ g(x)dxdt (13)

The system of linear equations (10)-(13) can be written in the coefficient matrix as:

1l 1 1 17
2a+b a+2b b

a+2b

=)

a+2b

3
2b2
(=5%) " |

()
)

a2
2a+b
* (357

3

The reduced row echelon form of M is:

0
R 0
M~ Mg = )
0

S O O
SO r O
—_ O O O

As in Mg, all four rows are nonzero rows, so M has four linearly independent rows,
and rank(M) = 4. To find the coefficients ao, bo, coand do, we solve equations (10)-
(13) simultaneously, to have:

1 b 9 b (t 27 b rt
Qo = Efa g(t)dt - (b—a)? fa fa g(x)dxdt + (b—a)3 fa fa f;g(x)dXd}’dt - g(a)

36 81 9

b rt b ~t b
bo = (b-a)? fa fa g(x)dxdt — (b—a)? fa fa f;/g(x)dxdydt ~20-0) fa gt)de

9 b 45 b (t 81 b (t
co =5, 9Ot — = [ [ 9(dxdt + = [ [, J7 g()dxdydt

11
2(b-a)

do = g(b) — = [ g(t)dt

27

18 b (ot b ot oy
+ (b-a)? fa fa g(x)dxdt — (b—a)? fa fa fa g(x)dxdydt

Putting the values of coefficients ao, bo, Coand dgin (9), we get the required scheme
(8) as stated in the statement of Theorem 1 with the precision equal to 3.

In Theorem 2, we derive the local error term in the proposed four-point S38 schemes
for the RS-integral as stated in (8). The successful reduction of the proposed scheme
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for RS integral (8) to the corresponding Riemann integral scheme (7) is then
established in Theorem 3.

Theorem 2. Let f(t) and g(t) be continuous on [a, b] and g(t) be increasing there. The
proposed four-point scheme S38 for the RS-integral with local error term is:

J:-f(x)dg _538_(bia.i.g(t)d E!g(X)dth+ 5 Hig(x)dxdydt_g(a)]f(a) w4
36 bt o1 oy , i
+[2_£_£9(X)dxdt )jg( T !!!g(x)dxdydt} f [%j

9

b bt bty 2b
!g(t)dt—mﬁg(x)dxdu(b_a)3 H!g(x)dxdydt] f (ag j

11 ° 18 bt 27 bty
900~ 5,55 gt s [ Tatowa - b_a)gmg(x)dxdydtJ b)

+

"
|

+( a—b) Tg(t)dt+11(f0;b)zﬁ (x)dxdt + 22 Hfg(X)dxdydt

108 2

gl

» —<

g(x)dxdydzdt} f9(u)g'(n),

whereu,n € (a, b).
Proof of Theorem 2.

The precision of the proposed scheme (8) is 3, so taking f(t) = Z—T .

For the basic form scheme of the proposed S38 rule for RSI, the local error term thus
takes the form:

Rssg[f] = —f t4dg 538(t4,g, a, b) (15)

From [XXI], we know that
2 bt

%t“dg_ (b*g(b)-a‘g(a))- %!g(t)dt+5££g(x)dxdt (16)
- bj"j‘j‘ g(x)dxdydt +_Tj‘jjy‘ g(x)dxdydzdt

By Theorem 1 and scheme (8), we have:
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1 b b
$38(t*;g;a,b)= mj'g dt— 2!

2 —

27

3

g(x)dxdt +

® —
D —

JI g(x)dxdydt—g(a)]% i

¥ (bi)zjjg(x)dxon—2 bg_a jg(t)d 81 ajﬁg(x dxdydt](za”_’)

a

45 B 8L iy a+2b)’
+ (b- 2.!:_!:g(x)dxdt+( a)3.a[_!.'!g(x)dxdydt]( 1;.4!)
1} 18 §F 27 it b*
+ g(b)—Z(b_a)lg(t)du(b_a)z Mg(x)dxdt— - H{g(x)dxdydt}z
Using (16) and (17) in (15) we have:
RS38[f]—[ j ()t ~b) Hg(x)dxdua—;bj [ [ 9(x)aixayat (18)

+mfg(x dxdydzdt]f(‘”( )g'(n),

Which is the required local error term of proposed Simpson’s 3/8 scheme for RS-
integral.

Theorem 3. With g(t) = t, the proposed S38 scheme with the error term (14) for the
RS-integral reduces to the corresponding S38 scheme i.e. (7) for the classical
Riemann integral.

Proof of Theorem 3.

By Theorem 2, we get

b b b b
Iy f©dg = [} foydt = (5= I, tdt — 5 9)2 JP [f xdxdt +

b b
(,,ZZ)J [y I}, xdxdydt — g(@)) £(@) + (G5 f, [ xd dt—z(b J? vt -

2a+b 9 b
(b a)3f f fy XdXdydt)f( a3 )+ ((b—a) fa tdt — (b—a)2 fa fa xdxdt +
y a+2b 11 b

L o)1 (£2) (o0~ 2
- a)3 [ 7 [ xdxdyat) f(b)+((“101;) [ ede + 2O g f dxdt+

R Lo Y xdxdyde+ [ [ f7 [ xdx dy dz dt) f O ) g (n) (19)
It is direct to observe that:

b 2_,2
[7 tdt = 2=*
b3  a?b 3
J2 [ xdx dt——— +5
2 32 2 3b 4
b* b
f ffyxdxdydt—— z —-I
24 4 3 8
b5  a?p® | a®*b? a*b  a®

y _ b —
fa fa fa fa xdxdded 120 12 + 6 8 +30'
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and, using these in (19), we finally have:

[P f@ydx =22 [f (@) +3f (222) + 37 (X22) + f ()| - L2 f 0 (8), (20)

where ¢ € (a, b), which shows the reducibility of the proposed S38 scheme to the
classical Riemann integral form (7).

Now, the proposed composite Simpson’s 3/8 scheme for the RSI integral is derived
by dividing the interval into small subintervals and applying integration rule to each
subinterval, and the results are showcased in Theorem 4.

Theorem 4. Let f(t) and g(t) be continuous on [a, b] and g(t) be increasing there. Let
the interval [a, b] be subdivided into 3n subintervals [Xk, Xk+1] with width h = b%a by

using the equally spaced nodes xx = a+kh, where k =0, 1, ..., n. The composite
Simpson’s 3/8 scheme to 3n subintervals for the RSI can be described as

2 F(t)dg ~ €538 = [ [ g (D)t — 2 [ | g(x)dxdt +

e fyg(x)dxdydt—g(a)]f(a)+9—"z O

Sk gdt — 57 fj:l L S go)dxdydt| f(M) +

9_n2 [f g)dt — -~ af;kklf g(x)dxdt +

e f;{ ‘ ka J? g(x)dxdyadt] f(w)
(I g~ 2 [ gy

+2i| (el L eCodxde =[5 [} gGodxdt) | fa)
+ (;72)3 { [ I J7 gGdxdydt - [+ ka N g(x)dxdydt}

+lam) 3= 1, (t)dt+(;8’;)2 2 gOodxde -
(57’;)3 L g 2 y  g@)dxdydt] £ (b)

Proof of Theorem 4.

The proposed basic form S38 scheme for the RSI is given in (8). Applying proposed
S38 rule over each subinterval, we have:

[} f(tdg ~ |5 [ g(Ddt — ﬁf [ g(x)dxde +
(;)3 717 9@dxdydt — g(@)| f(@) + (g)z [7 7 gGdxdt —
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(%3 [ 03 2 9Goydxdydt - 2(5_1.1,1) I g(t)dt] f(32)+ ff g(t)ydt —
(g)z Iy gGoydxdt + : 2)3 [ g(x)dxdydt] (22 + g -

sy la 9O+ G [y g Gt — G [ 7 g(x)dxdydt] f)

(%29 (%)
+ [_ I3 g(®dt — (é_j)s

L2 0 7 9(odxdydt —

2 f;lz fxtl g(x)dxdt + f;lz fxtl f;; g(x)dxdydt] f(x1)

(59

36 X t
J2 ), 9Codxdt —

36 81
(%9

(=9’

= g g(t)dt] f(EE) 4 %f g(tydt —

+

()

f (x1+32x2) + [g(xz) _ ﬁf;jg(t)dt +

t
5 f;lz fxlg(x)dxdt +

81 t
mf;f ), f,i g(x)dxdydt

59

n

18 (xp ot 27 (xp ot (Y

(b__a)z fxlz fxlg(x)dxdt - (b;a)3 fxlz fxl fxlg(x)dxdydt flx)+...
1 Xk 9 X t

+ [b;na ka_l g®dt — (ﬂ)z ka_l ka_lg(x)dxdt +

Jy._ 9Gdxdydt — g (- | f (1)

Xk—-1

27 X t
ey |

+

36 rxk ¢ 81 xp t y
(ﬂ)z ka_l ka_lg(x)dxdt - (b;a)?’ ka_l ka_l ka_lg(x)dxdydt -

9

@f;{k_lg(t)dt]f(zxk—;"'xk) 4|2

=z f, g(O)dt —

-1

45 Xk t 81 Xk t y Xp—1+2xk
(b‘_a)z ka—l ka—1 g()dxdt + (17—_‘1)3 ka—l ka—l ka—1 g(x)dxdydt] f ( 3 )

n

81 xp t
I fL g(odxdt -

(b a)z Xk—1
n

SIS [ ) g@dxdydt| f (o)t

(b— )3 X1 Ixg—1
n

+ [g(xk) - @f g(tyde +

9

(5

b b
+ [i [0 gdt——==[ [ g(x)dxdt+
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b
el Je Il gGodxdydt

(b—a)3 Xn-1 - Xn-1
n

36 b t 81 b t
(b__a)z fxn—l fxn—l g(X)dth T (b-ay? fxn—l f

() e
5l g(t)dt] f(F5) +

45 b
(b__a)z fxn—1
81 b t
(b—_a)?’ fxn—l fxn—l

n b b

ﬁfxn_l gdt+ 2= [0 [0 g(x)dxdt -

)

(,3_2)3 Lo o I g(x)dxdydt] f(b)

f(xn-1) +

[} g()dxdydt -

9 b
7 J,,_ 9(®dt -

n

[;  g(x)dxdt+

g(b) —

f,?;_l g(x)dxdydt] f (xn_;_+2b) N

an?

t
= [ gt — G2 [ ) g (rydxdt +

27n3 36n?

s L I 9Godxdydt — g (@) £(@) + | i [ [y 9 (e)dxdt —

81n3

X1 t Yy oan X 2a+x
S L I 9Godxdydt — 27 [ g(0de] £ (*52)

36n% x; (ot 81n3 x, ot Yy
+ [(b—a)2 fﬂq fxl g(x)dxdt — (b—a)3 fxlz fxl fxl g(x)dxdydt —

m_ rx2 2x1+%5 36n% xp ot
2(b-a) fxl g(t)dt] f ( 3 ) tt [(b—a)2 ka—1 ka—1 g(x)dxdt —
81n3 xx ot y on  rxg 2y
(b-a)? ka—1 ka—l ka—1 g(x)dXdydt B 2(b—a) ka—l g(t)dt] f (Tl)

36n2 b t 81n3 b ¢ y
+. .. + [(b_a)z fxn—l fxn_l g(x)dth - (b—a)3 fxn—l fxn_l fx‘l’;—l g(X)dXdydt -
on b 2Xp—1+b I x 45n2  xq t
17 gode] £ () [ 5 geyde — 2 L gyt +
81n3 t 5 9
s [ I 9 Godxdydt] £ (S52) + [ 25 [ g0t

b—a
45n? 81n3 X1+2%,

t t
S I T 9Godxdt + oo [ 1 [ g(rydxdydt | £ (FEE2) +...
o xg _45n% cxp ot
F[Z 0 g(de— 22 [ L gGodxdt +

b-a Xk—1
81n® ,xp [t y Xp—1+2X on b
(b-a)? ka—l ka—1 ka—1 g(x)dxdydt] f (17) tet [E fxn—l g(t)dt B
t 81n® b t n—1+2b
(b-a)? xn—1 fxn—l g(x)dxdt + (b—2)3 fxn—l fxn—l f;;—l g(X)dXdydt] f (X1T)
([ gde =5 [ g(0)de) + 52 (207 [ gCodxdt — [ [ gx)dxd)

27n3

+ 2 (22 S S gdxdyde — [ [ [ g(x)dxdydt)

45n? fb

f(xy
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11 9In? t t
([ g@ar -3 [ g(oyde) + 52 (2 17 [, g(oydxde — [[7 [} g(x)dxdt)

; fe)
+ s (121, 17 9Godxdyde — [ 7 [7 g(x)dxdydt) "
(o g(t)dt_Ef"n : (t)dt)
+...+ +(b9La)2( fx:n Zlf g(x)dxdt — f;‘n Jf g(x)dxdt) flxn_1)

+or a)g(f""f 2 g@dxdydt — [0 7 g(oddydt)

Xn-1"Xn-1 Xn-2 “Xn-2

[(b)—z(lblna) % (t)dt+(;ﬁ’;)2 fxn1 fi gQodxdt -

(Ziﬁ)sf f fy g(x)dxdydt]f(b)

Xn-1"Xn-1

27n3

=[5 gwae - (,,9”;2 I3 g 9Godxdt + 57 [ f7 g Goydxdydt -
g(a)]f(a)+"—"2"_ S fE g(dxdt -

- a)zf"" fedor_, g(x)dxdydt——f"" g0yt f (Fert)

+ T [ g@de =25 [L g(odxdt +

e MM g(x)dxdydt] f (w)
ﬁ(f""“ (Bde =2 ™ g(t)r)

+ypct + oo a)z( f;;"l N g(x)dxdt— [ [t glodudt) £
F 2 (2 ff 12 gCodxdyde — [ fE [ gCodudydr)

o) — oS [ g(dt+ o [0 [) g(o)dxdt -

oy N g(x)dxdydt]f(b) 22)

The proposed composite scheme for the RS-integral integral is proved.

The global error term of proposed Simpson’s 3/8 scheme for RS-integral is
determined in Theorem 5.

Theorem 5. Let f(t) and g(t) be continuous on [a, b] and g(t) be increasing there. Let
the interval [a, b] be subdivided into 3n subintervals [Xk, Xk+1] with width h = ? by

using the equally spaced nodes xx = a+kh, where k =0, 1, ..., n. The composite
Simpson’s 3/8 scheme with global error term Rcsss[f] for the RS-integral can be
described as

2
[, F(©)dg = €538 + Resslf] = |72 [ g(0)dt — (,f"a)z [ ), 9(oydxde +

Y N fyg(x>dxdydt—g<a>]f(a)+ b [ o [ 9Godxdt —
AN IO o W M g(x)dxdydt]f(—z"";“‘k)
+ I [ g@de == [T [) g(x)dxdt +
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an? [ xp ot
(b_a)zf f

oS I3 gC0dxdyae]  (=25)
E UMIOL I SOk
4 ynot + 22 [0 gCodude — [7 [ g(odxdt] £
F 2P 12 gdxdyde — [ [1 [0 g(o)dxdydt)
oy - 2217 gdr+ 227 [¢ g(o)dxde -
P LI g(dxdyde] £b)
(a—b)3 11(a-b)? a-b

b b rt b rt ry
s Jo 9Odt +——= [ [ g(x)dxdt + — [ [ [ 9(x)dx dy dt
b z
+ 7S g(odx dy dz dt

FOwWg' ),

whereu,n € (a,b).
Proof of Theorem 5.

We know from (18) that the local error in a sub-interval [Xp-1, Xp], can be written as
((xp_l__xpf [} g®at+ Ulporm)” % ¢

108 108 Xp—1%p
Xp—1—Xp rXp t y Xp t
- fx,,_1 fx,,_l fx,,_l g(x)dx dy dt + fxp_1 fxp_l
where z,,17 € (X, X, ).

Hence, the global error is obtained by summing over n such terms:

Coem1=x1)° (e 110ck-1—x1)% (xie ot
e L gOdt + === [ [ g()dxdt

n_ pHL e L[ g(x)dxdydt f@O g,

Xk—1"Xk-1
L I L) g(dxdydzdt
(a—b)?

Xk—1 *Xk—1 " Xk—1
O [P g(e)de + LD P [ gy di
=n + 2700 )2 g(o)dx dy dt [% ?=1f(4)(ﬂk)g’(n)]
+ LY g(x)dx dy dz dt
LetM =257y f@ (u)g (). s0 min {f D (@)g'()} < M < max {(f@)g'(0)}
Since f ®(t) and g’(t) are continuous in [a, b], then there exist two points z and 7
such that M = f (1) g'(7). This implies that the error term Rsss[f] is

(a-b)® (b 11(a-b)? (b  t
_ [ g@)dt + == [, g(x)dx dt O
=N b b ooty b ot oz oy P wg'm),
+Tfa J, [ g@dxdydt+ [ [ [ [ g(x)dxdydzdt

. g(x)dxdt +

I2 1 9Godxdydzde) f@G0g ),

Xp-1

whereu,n € (a,b) and h = bn;a.

Kashif Memon et al

55



J. Mech. Cont.& Math. Sci., Vol.-16, No.-1, January (2021) 44-61
IV. Results and Discussion

It is noted in previous studies [XI], [XI], [XXI] that the experimental works
were not conducted to confirm the theoretical works on quadrature schemes for RS-
integral. In this study, experimental works have been conducted on quadrature
schemes for RS-integral which confirm the validity of theoretical results. Three
numerical problems have been solved for each scheme taken from [VIII], [1X], [I1],
[XI1], [I] etc, which were determined using MATLAB software. All the results are
noted in Intel (R) Core (TM) Laptop with RAM 8.00GB and a processing speed of
1.00GHz-1.61GHz. Double-precision arithmetic is used for numerical results.
Similarly, the absolute error and computational order of accuracy (COC) formulae are
also taken from [IX].

In Table 1, the absolute error drops have been compared for the proposed four-point
CS38 and other schemes: CT, ZCT and MZCT under similar conditions, and it is
observed that the proposed CS38 rule results in the smallest error for all examples.
When the number of strips is increased, it is obvious to conclude from Figs. 1-3
through the line plots of decreasing error distributions that errors in the proposed
scheme reduce rapidly as compared to other accompanying schemes.

Using the COC formula, the observed COC have been computed for the used
methods, and are listed in Tables 2-4 for Examples 1-3, respectively versus several
strips. The numbers in Tables 2-4 confirm the theoretical accuracy of the discussed
methods, including the proposed CS38 scheme for the RS-integral. The proposed
CS38’s order of accuracy is 4 which is the same as the MZCT scheme, but the error
reduction is rapid for the former. The CT scheme exhibits an order of accuracy of 2,
whereas for the ZCT scheme, due to the issues and mistakes highlighted in [VII1], the
order oscillates and doesn’t converge to 4.

In Table 5, the total evaluations required per strip are summarized for the discussed
methods, which are necessary to compute the computational costs. In Table 6, we list
the total computational cost and the average CPU usage in seconds for the three
integrals mentioned in Examples 1-3 using CT, ZCT, MZCT and CS38 schemes. It is
observed from numerical results that the proposed scheme took less cost to achieve
the error 10 as compared to existing schemes for all test problems, and the similar
performance is obvious from Table 6 regarding the smaller average CPU time to
achieve the error 10 for the proposed method against others for Examples 1-3.

Table 1: Absolute error comparison by CS38 and other schemes for Examples 1-3.

CT 1.1862E-03 4.9713E-04 3.9042E-02
ZCT 1.6698 E-03 5.5959 E-04 3.9042E-02
MZCT 1.8552 E-06 1,2428E-09 2.4399E-06
CS38 1.6946E-09 1.1351E-12 2.2317E-09
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Fig 3. Comparison of error drops by all methods for Example 3
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Table 2: Comparison of COC in all methods for Example 1

Table 3: Comparison of COC in all methods for Example 2

Table 4: Comparison of COC in all methods for Example 3

Table 5: Computational cost in quadrature variants for m strips.
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Table 6: Computational cost and CPU time comparison to achieve at most 1E-05
absolute error in quadrature variants for Examples 1-3.

CT 439 1415 2503 68.04 12.82 432.30
ZCT 1043 3503 6253 552.60 153.98 | 6469.38
MZCT 73 78 78 28.01 5.26 27.35
CS38 21 15 21 8.25 2.84 7.61

V Conclusion

A new four-point quadrature scheme of Simpson’s 3/8 type was developed
for efficient approximations of the RS-integral and extended for higher strips in a
composite sense. The theorems concerning the local and global error terms were
proved. Three numerical problems were considered from the literature to test the
performance of the proposed scheme versus a few other existing schemes. The error
drops, observed orders of accuracy and computations performance in terms of
evaluations and CPU usage demonstrate the ascendance of the proposed scheme over
other discussed schemes for the evaluation for the RS-integral numerically.
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