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Abstract

Most of the problems in applied sciences in engineering contain integrals,
not only in one dimension but also in higher dimensions. The complexity of
integrands of functions in one variable or higher variables motivates the quadrature
and cubature approximations. Much of the work is focused on the literature on single
integral quadrature approximations and double integral cubature schemes. On the
other hand, the work on triple integral schemes has been quite rarely focused. In this
work, we propose the closed Newton-Cotes-type cubature schemes for triple integrals
and discuss consequent error analysis of these schemes in terms of the degree of
precision and local error terms for the basic form approximations. The results
obtained for the proposed triple integral schemes are in line with the patterns
observed in single and double integral schemes. The theorems proved in this work on
the local error analysis will be a great aid in extending the work towards global error
analysis of the schemes in the future.

Keywords: Cubature, Triple integrals, closed Newton-Cotes, Precision, Order of
accuracy, Local error, Global error.

l. Introduction

Numerical methods are utilized to deal with the highly complicated and
nonlinear equations arising from the modeling of physical systems in science and
engineering [I11]. The traditional methods mostly cannot be applied to such systems
because of nonlinearity and complex nature terms (derivatives, integrals, algebraic,
rational) involved in equations [I1],[VIII], and numerical methods efficiently deal
with such problems [XIV],[XVII]. The complicated integrals in this way are
approximated by using methods of numerical integration, also called the quadrature
rules in one dimension [I]. Isaac Newton and his colleague Roger Cotes first
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contributed quadrature rules for the approximate evaluation of such integrals in one
dimension [IlI] for single-variable integration [I]. The basic quadrature rules of
Newton-Cotes were modified quite frequently, as in [VI], [VII] without derivatives
and in [, [IV], [V], [XIX], [XVII], [XVI] with derivatives. The basic and modified
rules were used in other applications as well, for instance, to approximate solutions of
Fredholm integral equations of the second kind [XV], reliable numerical simulation
of switched reluctance machines [XIII], approximating efficiently the Riemann-
Stieltjes integral [XI],[XI1], proposing cubature rules with derivative-based schemes
and error analysis [IX], [X], etc. However, for the integration in higher dimensions
the basic closed Newton-Cotes schemes are although available in the literature [XIV]
for double integrals only and their error analysis [X], but for higher are not available
to the best of our knowledge.

This work focuses on the extension of closed Newton-Cotes integration schemes for
the approximation of triple integrals. In this regard, three cubature schemes for the
triple integrals have been proposed, and the local error analysis has been conducted
for the proposed schemes. The theorems concerning precision and error terms in basic
form have been proved. It is demonstrated through exhaustive theoretical comparison
of the obtained results that the results of this study match with the previous works in
the literature on single and double integral closed Newton-Cotes schemes. The
degrees of precision, local orders of accuracy and local error terms have been derived
successfully for triple integral cases.

Il. Existing Closed Newton-Cotes Quadrature and Cubature Scheme

For single integrals approximation in closed Newton-Cotes sense, the starting
three schemes, also referred to as quadrature rules, in the basic form are described in

(1)-(3) (]

J2 F@) dx = CNCTyp =22 [f (@) + F(0)] - 22 f7(6) (1)

[? f(x) dx = CNCS13p = ”%‘1 fr (;l()b;r Y (T)] “;8;13 FOE@ )
LJf@+3 () | g

[, f(x) dx = CNCS38,, = =2 o () 4 1 G0? ) 3)

where & € (a, b), and are known as trapezoidal, Simpson’s 1/3 and Simpson’s 3/8
rules. For the double integrals, the corresponding schemes to (1)-(3) with error terms
from [X] are expressed in (4)-(6):
w-a)@-o [f(a,c) + f(a,d)

4 +f(b,c) + f(b,d)

fyy 1)) 4

S 1P f (e y) dx dy = CNCTyp =

_ - a) (d c) (b— a)(d c)?

— [ (&) —
S f (x, y)dxdy = CN65132D
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fla,c)+ f(a,d)+f(b,c) + f(b,d)

= Cmowal (i (a5) +f (b5 ath o
36 +4 +£ (a+b) )+Ec(a_ib)d) +16f (_b Td)
- Z)ss(g : Sreonx(§51) = %fyyw@' ) (%)
S 12 F(x,y) dx dy = CNCS38,
fla,0)+ fla,d)+ f(bc)+ f(bd)
2c+d 2c+d c+2d c+2d
(b—a)(d-0) +3 f_](ca(’Zaib) ;igcb&mib):)i((; (a3+21); +)f_El; (;+2)b )
“T o4 f(2a+b 2c+d) +f(23a+;) c+2d)
L AR
+ ) + ,
_ (b-a)(@a- c)f_ 3 ?b—a)(c?;—c)S ° ; i
6480 xXXXX U) 6480 f}yyy(f'n) (6)

where ¢ € (a,b) and n € (c,d).

I11. Proposed Closed Newton-Cotes Triple Integration Schemes

The proposed triple integral cubature schemes in the closed Newton-Cotes
sense denoted as CNCT3p, CNCS133p and CNCS38s3p are described here as (7)-(9).
Following the extension mechanism of single integral quadrature schemes (1)-(3) to
double integral cubature schemes (4)-(6), we propose the following three
corresponding closed Newton-Cotes triple integral cubature schemes:

f(a,c,r) + f(a,c,s)
(b-a)d-o)-n|+f(a d, )+ f(ad,s)
8 +f(b,c,7)+ f(b,c,s)
+f(b,d,r)+ f(b,d,s)

E LD f ey, 2) dx dydz = @)

db
s _(b-a)(d-c)(s-r) f(acr)+f(acs)+f(adr)+f(ads)
Ji({lf(x,y.Z)dxdydz~ 216 H+f(b,c,r)+f(b,c,s)+f(b,d,r)+f(b,d,5)}

r+s
f[a,c,7j+
4 b
2 2

c+d r+s a+b r+s a+b c+d
fla, — |+ | —.c, + | ——r
2 2 2 2 2 2

[a+b c+d
+f| —,
2 2

+f(L+bd
2

+16

c+d

f(a,
2

Cc+

,rj+ f(a, d
2

,sj (a d £]+

2
c+d j
2

,5J+ f (a—er
2

’d’r+sj+f(b’c+d|r+sj
2 2 2
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sdb _ )(d_c)(s_r)Hf(a,c,r)+f(a,c,s)+f(a,d,r)+ f(a,d,s) }

jiif(xyz)dx‘jydz~ 512 +f(b.e,r)+ f(bc,s)+ f(b,d,r)+ f(b,d,s)
;

2r+s r+2s 2c+d 2c+d c+2d c+2d
f(a,c,7)+f(a,c, J+f(a,7,r)+f(a, ,s)+f[a,7,r)+f(a,7,s]
3 3 3 3 3 3
( 2r+s) ( r+25j (2a+b ’ ) f(2a+b,c,s)+f[2a+b,d,r)+f(2a+b,d,sj
3 3 3
(a+2b ] (a+2b ) (a+2b ]+f(a+2b,d,sj+f[b,c,2r+sj+f(b,c,r+25)
3 3 3
[ ) [ 2c+d J [ c+2d ) f[b,c+32d.sj+f[b,d,zr;sj+f[b,d,rgzsj

( 2c+d 2r+s ( 2c+d r+25] ( c+2d 2r+sj [ c+2d r+25)
+f|a, — |+ f|a
3 3 3 3
2a+b _r+2s 2a+b 20+d
f ,C, + f
3 3
2a+b c+2d 2a+b c+2d 2a+b 2r+s 2a+b
s |+ f s S|+ f + f s
3 3
2

+3

,S

+

2a+b _2r+s c+d

3"3) 3 ]
r+2s
altZ)
dJ

a+2b 2r+s a+2b r+2s a+2b 2c+d a+2b 2c+
,C, + f ,C, + f + f ,

+9

S
3

3
+ +
3 3 3
a+2b c+2d a+2b c+2d a+2b 2r+s a+2b r+23
+ f , + f + f .d,
3 3 3
25

b,

3 3

f[Zaﬁ—b 2c+d 2r+sj+f[2a+b 2c+d r+25j+f[2a+b c+2d 2r+sj
"3 3 ' 3 '3

2a+b c+2d r+25j f(a+2b 2c+d 2r+s)+f[a+2b 2c+d r+25j

2c+d r+25 c+2d 2r+s c+2d r+25
(o2 Jf@ )+( J

3 3 3 ' 3 '3 3 ' 3 '3
a+2b c+2d 2r+s a+2b c+2d r+2s
+f , , + f , ,
3 3 3 3 3 3

+27 +f(

9)
IV. Error Analysis, Main Results and Discussion

Now, the theorems concerning their degree of precision and local error term
are also proved in this section, which are the main contributions from this study.
Particularly, in Theorems, 1-3 refer to our main contributions for the proposed closed

Newton-Cotes triple integral cubature schemes: CNCT, CNCS13 and CNCS38,
respectively.

Theorem 1. Leta, b, c, d, r, s be finite real numbers, and f (x, y, z) along with its
second-order partial derivatives exist and are continuous in [a, b]X[c, d]X [r, s], then
the CNCTsp scheme has precision one, and in basic form with the local error term is
defined as:

s prd rb
Jfff(x,y,Z)dxdde=CNCT+RCNCT[f]
=%;d(s_’”)[f(a,c,r)+f(a,cs)+f(adT)-l'f(adS)"'f(b'Crr)"'

f(b,c,s) + f(b,d,r) + f(b,d,s)] - LZ@OET ¢ 2y —

12
b-a)(d- b-a)a-
e BN R LS. Lo

where & € (a,b) ,n€(c,d) and y € (r,s)
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Proof of Theorem 1.

Following the definition of degree of precision as mentioned in [IX],[X], the exact
results of the triple integral for f (x, y, z) = (xy )" withn =0,1,2 are:

f: fcd f:(xoyozo) dxdydz = (b—a)(d —c)(s — 1) (10)

f: fcd f:(xlylzl) dx dydz = (bz_az)(dzgcz)(sz_rz) (11)
f: fcd f;(xzyzzz) dx dydz = (bS—a3)(d32—7C3)(53—T3) (12)
The approximate results using (7) are:
CNCT(x°y°z%) = (b—a)(d —c)(s — 1) (13)
ENCT(etytt) = @) 14
CNCT (e2y22?) = (b—a)(b2+a2)(d—c)gd2+c2)(s—r)(52+r2) (15)
Comparison of (10)-(12) with (13)-(15) gives,
For f(x,y,2z) = (xyz)", n <1,

f: (fcd (f:(xyz)” dx) dy) dz — CNCT (xyz)" = 0 (16)
Butif f(x,y,z) = x?y?z? , then
f: (fcd (f: x%y?z? dx) dy) dz — CNCT (x%y?z*) # 0 (7)
So, from (16)-(17), the derived precision of CNCT triple integral scheme is 1.
From [1X], [X], the 2" order partial derivative term in Taylor series of f(x,y, z)
about (Xo, Yo, Zo) is:

(x — x0)? % (x0, Y0, 20) + (¥ = ¥0)? ZTC (%0, Y0, 20) + (z — 29)* Z—y’; (xo, Yo, Zo)

~| +20— %) — y0) :;—a’; (%0, Y0, 20) + 2(y = ¥0)(z — 79) :yz—a'; (X0, Yo, Z0) (18)

62
+2(z — z9) (x — x¢) ﬁ (%0, Y0, Z0)

Focusing (18), the local error term of CNCT triple integral scheme is expressed as:

Error term (CNCT) = %[f: fcd f;xz dxdydz — CNCT(XZ)]fxx(E,n,y)
+%[frs fcd f; y? dxdydz — CNCT(YZ)] fyy(Eny) + % [f: fcd f; z? dxdydz —
CNCT(2%)| £ &) + [ 7, xy dxdydz — CNCT (xey) | fx (§1.7) +
(022 2 yz dxdydz — ENCT(y2)| £y € my) + [ [ [ [ 2x dxdydz -

CNCT (2] fie G0 ) (19)
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The exact results in (19) are:

s ¢d b p3—qa3 (d—c)(s—r) s cd b (b-a)(d3—c3)(s-1)
fr fc fa dexdde:( ) ,ff f y2dxd ydz = ( . ) ,

b 5 (b—a)(d- c)(s -r3) _ (b%2-a?)(a?-c?)(s-1)
f f J, Z*dxd ydz = f f f xydxdydz = - :

d b (b—a)(d?-c?)(s?-r? b2—a?)(d—c)(s?-r?
f: J. [ yzdxdydz = ( . X ), f: fC fa zxdxdydz = ( ) ” (s=r%)

The approximate results in (19) using (7) are:

(b—a)(b%+a?)(d—c)(s—1) (b—a)(d—c)(d?+c?)(s- r)

CNCT(x?) = - ,CNCT(y?) = :
_ _ _ 2.2 2 2\(42 2\ (e
CNCT(z2) = Lm0 () - (o) (@o)oon)
2_02)(g2_y2 2 2Vrq_ 2 2
CNCT(yz) = L=NENST) oner(zr) = L)@

4 4

Using the exact and approximate results in (19), and simplifying we finally get the
local error term for CNCT triple integral cubature scheme (7) in basic form as:
Error term = Reyerlf] = fex(&m7) —

(b-a)(d-c)3(s-1) (b— )(d )( )3
S fy (Emy) — T (o my) (20)

_ (-a)® (d c)(s-7)

where & € (a,b),n € (c,d)and y € (1,5).

Theorem 2. Let a, b, ¢, d, r, s be finite real numbers, and f (x, y, z) along with its
fourth order partial derivatives exist and are continuous in [a, b]X[c, d]X [r, s], then
the CNCS13 scheme has precision degree three, and in basic form with the local error
term is defined as:

CNCS13 + Renesiz =
‘{f(a,c,r)+f(a,c,s)+f(a,d,r)+f(a,d,s) }
+f(b,c,7) + f(b,c,s)+ f(b,d,r) + f(b,d,s)

[rlaes s (@Shn)+r(@Shs) 17 (@) )
+43+f (2 er)+f(BRes) + £ (22, dr) + £ (B2.d.s)

(b‘a)(‘zil‘;)(s—r) +f( r+s) ( c+d ) (b c+d )+f(b d r+s)

f( ctd r+s) f(a+b r+s) f(aTH"%'r)

() (£2,072) 1 (552 )

o (222224 )

_ (=®)3(d=)(s=1)

(b—a)(d—c)®(s—1)
5880 frooxx &M Y) — Mfyyyy(f: ny)—

2880
(b-a)(d=c)(s-1)°
. 28860 = fzzzz(‘f;nny) ] Where EE (a, b) )y 77 € (C, d) and ]/ (S (T,S) .

+16
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Proof of Theorem 2.
It is immediate to note for f(x,y,z) = (xyz)", and n < 3 through (8) that:

E (2 (F, eyzym dx) dy) dz — CNCS13(xyz)™ = 0 (21)
But if f(x,y,z) = x*y*z*, then:

s(ra((b. 4,4,4 4.4, 4
fr (fc (fa x'y'z dx) dY) dz — CNCS13(x*y*z*) # 0 (22)

So, from (21)-(22)), it appears that the derived precision of the CNCS13 triple
integral scheme is 3.

From [IX],[X], using the coefficients of 4" order partial derivative terms in the Taylor
series the local error term of the CNCS13 triple integral scheme can be defined as:

Error term (CNCS13 triple) = % [f: fcd f; x*dxdydz —
1 d b
CNCS13(e)| fraaa €Y +55 [ 1 S S v* dxdydz —
d b
CNCS13OM)| fryyy Gnv) + 55| I 7 #* dxdydz — CNCS13(29)] frraz G0 )

#2122 2 %y dxdydz — CNCS13(3Y)| fyn (60 7) +

%[f: de faby32 dxdydz — CNCSl3(y3Z)] fzyyy &, 7) +%[f: fcd f; z3x dxdydz —
CNCS13(230) | fraza(Em v) +2[ [ [2 f x%y? dxdydz —

CNCSlB(nyZ)] fyyex (&1, 7) + % [frs fcd f;yZz2 dxdydz —

CNCS13(y22%)| frayy € ) + 2|7 [0 [} 2222 dxdydz —

CNCS13(222)] fraza (61 ¥) + 2 [ [ [7 J7 xy® dxdydz -

CNCS13(ey™)] fyyyu @) + 5 [J) 1 f v2° dxdydz —

CNCS13(2%) | fraay (6 0) + 2|7 [0 7 2% dxdydz —

CNCS13(2x®)| frnxe (611D +2 [ 2 [ [ xy2? dxdydz

CNCSlB(xyZZ)] frzyx (&1, 7) + é [f: fcd f; xy?zdxdydz —

CNCSlB(xyZZ)] fayyx (& ¥) + i [f: fcd ffxzyz dxdydz —

CNCS13(x?2) | fryax (€1, 7) (23)

Using the exact and approximate evaluations of the integrals in (23), the local error
term for the CNCS13 triple integral cubature scheme is

(b—a)®(d—c)(s—1) (b—a)(d—c)>(s-1)
Renesiz = — . 28806 — frxxx &M Y) — < 288CO = fyyyy('flnvy) -
(b—a)(d—c)(s-1)°
e [ (61, 7) (24)

where é € (a,b),n € (c,d) and y € (r,s)

Theorem 3. Let a, b, ¢, d, r, s be finite real numbers, and f (x, y, z) along with its
fourth order partial derivatives exist and are continuous in [a, b]X[c, d]X [r, s], then
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the CNCS38 scheme has precision degree of three, and in basic form with the local
error term is defined as:

-a)(d-c)(s-r)

db
? (b
512

T f(acr)+f(acs)+f(adr)+f(ads)

(x Y, z)dxdydz =

rca

|

+f(b,c,r)+ f(bcs)+f(bd,r)+f(bd,s)

|

f[a,c,
+f(a,d,

+3

2r+s

2r+s

r+2s 2c+d
+ fla,c, + f|a, Jrl+fla,
3 3
j+f[a,d,r+25j+f(2a+b,c,r]+f(

2c+d

2a+b

a+2b

s)+t(a
as)e o

2a+

c+2d

,rj+f(a,
,d,r]+f[

b

+f(a+2b

j (a+2b a+2b
cr|+f

asfest|

,d,rj+f[

c+2d

as) 1[be

c+2d

2r+s

j+f(b,cyi

+f(b,
e

+f

2c+d ’rj+ f[b,

2c+d 2r+s
3

2

H'

erfe

2C+d,sj+f(b,

2c+d r+2s

c+2d 2r+s

,Sj+f[b,d,

) (oo,

j [ c+2d r+2s
+f|a,

)

3

a+b (
3
f 2a+b c+2

+9

3
+
3

2a+b c+2d

r+25j f(2a+b 2c+d

( a+b 2c+d j
S

2 r

+

‘ J+f(2a+b
3

a

j 3 '3
)

(220

r+s
d

CL wl|t

2b 2r+sj (
+ f

3
2c

+f| b,

¢ a+b 20+d 2r+s

(
(

+
3
a+2b c+2d

2b r+25j f[a+2b 2c+ r)

+

f(a+ b’2c s

)

2r+s r+25

j (a+2b
+f
3

3
+2b
+
3

f(a d,

2r+s

b,20+d r+25j+f[ c+2d

2a+b 2c+d r+2s

) 3
) )

[ c+2d r+25
+ f

j+f(b,dyi

(
(
(
(
5
5

)
127 2a+b c+2d r+2s

%

a+2b 2c+d 2r+s

J+f

3

(2a+b c+2d 2r+s
7

3

a+2b 2c+d r+2s

)

3

o

3 ' 3 3
a+2b c+2d 2r+s

i

3

3

a+2b c+2d r+2s

Js

3

f

-3 (-1,
6480

(b-a)(d —c)(s—r)5 :
6480 ZZZZ

where £e(ab) ,ne(c,d) &

3 ' 3 3

XXXX

Proof of Theorem 3.

(&,

i

7)-

3

3

)

3

(b—a)(d —c)5(s—r) ;

&)

ye(r.s)

6480

i
3 3

Wy (&m.7)

)

3

Using exact and approximate integrals with the help of (9) for f(x,y,z) = (xyz)", we

observe that:

f: (fcd (fj(xyz)” dx) dy) dz — CNCS38(xyz)* =0,forn <3
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But, if f(x,y,z) = x*y*z*, then:
Sf(rd (b _4 4_a 4,44
I (fc (fax y*z dx)dy)dz—CNCS38(x y*z*) #0 (26)
So, from (25)-(26), the derived precision of CNCS38 triple integral scheme is 3.

Likewise in Theorem 2 for the CNCS13 triple integral scheme, using the coefficients
of fourth-order partial derivative terms in the Taylor’s series expansion of f(x, y, z)
about (o, Yo, Zo), the local error term of CNCS38 triple integral scheme is sated as:

Renessslf] = 5= | [ 2 J) x* dxdydz — CNCS38(x*)| fexxx (6,1, 7)

+ [ 12 [2 y* dudydz — CNCS38(™)| fyyy (€0 7) +

Z 2 J2 J7 2* dxdydz — CNCS38(2*)| frana 60, v) 3 [ f2 J7 2%y dxdydz —
CNCS38(3Y)| fyx (61 1) + 2 {7 [ [ y32 dxdydz -

CNCS38(y3z)] fzyyy & my) + % [f: fcd f: z3x dxdydz —

CNCS38(z30) | fraza (& ¥) +2[ [ [7 f, %%y dxdydz —

CNCS38(x2y2)] fyyex &M 7) + % [f: fcd f:yZZ2 dxdydz —

CNCS38(yZZZ)] frzyy (& ¥) + % [f: fcd ffzzx2 dxdydz —

CNCS38(z%x%) | fexaa (611D + 3 [ 7 [ [ xy® dxdydz -

CNCS38(xy™)| fyyyuEn ) + 5 [J) 1 f v2° dxdydz —

CNCS38(yZ%) | fraay (61 v) + 2|7 [ )2 2x® dxdydz —

CNCS38(zx™)| frxxe (611D +2 2 [ [ xy2? dxdydz -

CNCS38(xyz?)| frayx € ) + [ 7 [0 )7 xy?z dxdydz -

CNCS38(xy%2)| fryyx (& 1) +3 [ 1 [} x2yz dxdydz —

CNCS38(x%y2)| foyaa (€. 7) @7)

Using the exact and approximate evaluations (using (9) of the integrals in (27), the
local error term for the CNCS38 triple integral scheme is
(b—a)(d—c)3(s-1)

(b=a)>(d—c)(s-1)
RCNCS38 [f] = == o (E 1Y) = e fryy (6,0, 1) —
(b—a)(d—c)(s-1)°

S o Emy) (28)
where é € (a,b) ,n € (c,d) and y € (r,s)

The degrees of precision verification is carried out in Table 1 for the proposed CNCT,
CNCS13 and CNCS38 cubature schemes for the triple integrals, by applying the rules
to f (X, y, z) = (xyz)" to observe the same and different results concerning the exact
evaluations of the integrals for n = 0,1,2,3,4. It is observed from Table 1 that the
theoretical degrees of precision as also proved in Theorems 1-3 have been verified for
triple integral cases proposed in this work, and results are in line with the expressions
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for the single and double integral closed Newton-Cotes schemes in literature

[IX,[X],[X1IV].

On the other hand, in Table 2, the local orders of accuracy have been summarized for
the closed Newton-Cotes schemes for single (1D), double (2D) and triple (3D)
integrals, which are also the same. Moreover, the coefficients of local error terms and
the degrees of interval lengths in the coefficients in Table 2 are also the same. Tables
1-2 lead to the verification and summary of the results proved in Theorems 1-3.

The presented work focuses on the derivation and error analysis of the closed
Newton-Cotes triple integral cubature schemes in the basic form. The contributions
from this work are pioneering work on such extension and may be extended in the
future towards the composite forms, global error analysis and consequent verification
through numerical examples.

Table 1: Degrees of precision by comparing exact and approximate results

Table 2: Local order of accuracy and error term of cubature schemes up to 3D

Kamran Malik et al



J. Mech. Cont.& Math. Sci., Vol.-16, No.-1, January (2021) 62-73

V. Conclusion

In this paper, a pioneering investigation of the development of triple integral
cubature schemes of the closed Newton-Cotes was carried out. The proposed triple
integral schemes were discussed in basic form, and the theorems on the degrees of
precision and local error terms were proved for the CNCT, CNCS13 and CNCS38
schemes for triple integrals. The comparison of the present theoretical results for
proposed triple integration schemes was in line with the existing single and double
integral schemes. The extension to the composite forms and global error analysis can
be focused on in future works.
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