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Abstract 

Nonlinear equations and their efficient numerical solution is a fundamental 

issue in the field of research in mathematics because nature is full of nonlinear 

models demanding careful solution and consideration. In this work, a new two-step 

iterative method for solving nonlinear equations has been developed by using a 

quadrature formula so that the cost of evaluations is considerably reduced. The 

proposed strategy successfully removes the use of an additional derivative in an 

existing method in literature so that there is no compromise at all on the cubic 

convergence rate. The developed scheme is cubically convergent and uses a 

functional and three derivative evaluations only as compared to some other methods 

in the literature using much higher evaluations. The theorems concerning the 

derivation of the proposed method and its third order of convergence have been 

discussed with proof. Performance evaluation of the new proposed scheme has been 

discussed with some methods from literature including well-known traditional 

methods. An exhaustive numerical verification has been done under the same 

numerical conditions on ten examples from the literature. The efficiency index is 

found to be higher for the new proposed scheme than some schemes with orders more 

than three, and comparable with some methods. The comparison using observed 

absolute errors, number of iterations, functional and derivative evaluations, and 

observed convergence reveals that the proposed method finds the solutions quickly 

and with lesser computational cost as compared to most of the other methods used in 

the comparison. The results show the encouraging performance of the proposed 

method. 
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I.     Introduction 

Computational mathematics deals with the proposition of numerical schemes 

that can efficiently solve complex problems arising from physical case studies in 

different areas of science and engineering [VIII], [X], [XIV] including the 

Colebrook’s equation [XIV], [XXIII], [XXIV]. When the equation describing the 

relationship between the variables becomes nonlinear with respect to the unknown 

variable, then the solution of such nonlinear equation gives rise to the motivation of 

nonlinear solvers for finding the roots [XIII], [XIII], [V]. Although, there can be more 

than one variable in such implicit relationships, with the objective to compute one of 

these when others are specified. But a simple case of such problems can be 

considered with one variable in the nonlinear relationship. Methods for solving such 

one variable nonlinear equations form the basis to propose extended schemes for 

solving multivariable nonlinear equations. The general form of a nonlinear equation 

in one variable, say x, is: 

                                    𝑓(𝑥) = 0                                                                                    (1) 

The polynomials equations of degree at most 2 can easily be solved by analytical 

methods. For higher order polynomial equations, besides the Cordano and Ferrari 

methods for cubic and bi-quadratic equations respectively, if one root can be guessed 

by hit and trial process then others can be attained using synthetic division method. 

On the other hand, when the above conditions are not followed then, particularly for 

polynomials of degree higher than two, numerical methods are used. Similarly, for 

transcendental equations that cannot be solved analytically, there is a need for 

efficient numerical methods. But the numerical methods need to be convergent and 

stable for wider use and applicability [VIII],[X],[XIV],[XXIII],[XXIV]. 

Finding the root of a nonlinear equation is a very important aspect for researchers in 

mathematics and practitioner engineers and scientists working in different domains of 

knowledge [XXVII]. In recent years, many modifications in iterative methods like 

Bisection, Regula-Falsi and Newton’s method have been proposed in the literature, 

which has either equal or better performance than these methods. In [XXVI], [IX] 

authors demonstrated the effectiveness of the secant method for nonlinear equations 

in comparison with other methods. However, the simplest and oldest root-finding 

algorithm is the Bisection method.  

Modifications of the Newton-Raphson [IV],[XXI],[III],[XVII] method have mostly 

been derived using numerical integration approaches and also by truncating Taylor’s 

series. The error analysis is usually conducted using Taylor’s series and fixed point 

theory.  A second-order Newton-like method was proposed in [XXII], whereas 

[VI],[VII] discussed some biquadratic order methods for nonlinear equations. In 

[XIX], Noor et al. proposed two multi-step methods of third and fourth-order 

convergence, respectively; but with a lot of computational costs in form of functional 

and derivative evaluations. Meanwhile, in [XV] a higher order method was 

suggested. Similarly, [XI] and [II], respectively, considered and promoted the use of 
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derivative-free and time efficient methods for nonlinear equations and systems. Kang 

et al. in [XXV] proposed a third order method better than the corresponding third 

order method in [XIX]. A second order method by Noor et al. in [XVII] was 

recommended because it did not involve higher order derivatives. The method of 

Hafiz and Bhagat [XV] was also a cubically convergent method better than the 

similar method in [XIX]. 

In this work, we construct and propose a new nonlinear solver based on the 

quadrature rule for solving scalar nonlinear equations, which appears to be an 

enhancement of the method of Noor et al. [XIX]. Besides being simpler and easy-to-

use, the proposed method takes lesser evaluations to achieve the same accuracy as by 

the Noor et al. method [XIX]. The cost-effectiveness of the proposed method is the 

main advantage. The proposed method has been compared with many old methods 

and also some recent methods from literature. We demonstrate using all possible 

computational test procedures that the proposed method is a cost-efficient 

modification of the method of Noor et al. [XIX]. For the sake of conformity of the 

theoretical results about the convergence behaviour and lesser cost of the proposed 

method with high efficiency, a set of nonlinear equations from literature has been 

solved by proposed and other methods. The results have been obtained in high 

precision arithmetic using MATLAB software. The comparison of absolute error 

distributions, observed orders of convergence, the number of iterations and 

computational cost to achieve some specified error tolerance have been examined for 

all methods, and the results confirm the suitability of the proposed method.    

II.    Material and methods 

 The general form into which a scalar nonlinear equation in the unknown 

variable x can best be described is: f (x) = 0. The left hand side function can be a 

polynomial of degree at least 3, purely a transcendental relation or a mixture of both. 

Nonlinear solvers try to find the approximate solution in a series of steps depending 

on each other, called iterations so that the iterative solutions by numerical methods 

approach to the exact solution as iterations advance. Here, a few existing nonlinear 

solvers in this section along with the derivation and convergence proof of the 

proposed method. 

Some Existing Nonlinear Solvers 

The very first method appearing in the literature of iterative nature is the Bisection 

method (BM) [XIII],[XXVI]. It finds the approximations to root of f(x) = 0 using the 

mid-point of the interval [a, b] containing the root. The BM is always convergent, but 

it inclines to slow, for discovering the root of an equation.   

For an equation, 𝑓(𝑥) =0, where f(x) is continuous in the interval [a, b] containing its 

root such that  𝑓(𝑎). 𝑓(𝑏) < 0 then the approximate root by BM in [a, b] is (a+b)/2. 

The process is continued until the required accuracy is achieved. The order of 

convergence of BM is one. For an interval containing more than one root of the 

equation, the BM converges to only one root at a time. However, to find all roots BM 

must be applied in lower length intervals containing one root at a time. 
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A faster method than the BM is the Regula-Falsi method (RFM) [XXVI],[IX],[XX]. 

Most nonlinear equation solving techniques commonly converge faster than BM, and 

the RFM is one of those. RFM works the same as BM, but generally faster than it, 

and also sometimes slower than BM when f(x) is a flatter curve around X-axis. Under 

the assumptions of BM, the RFM approximates the root at the root of the secant line 

joining the ordinates of the ending points of [a, b].  The order of convergence of RFM 

is also one, but the speed of convergence is higher than BM. Both the BM and RFM 

are modest in a way that these do not contain derivatives.  

The Newton-Raphson method (NRM) [IV],[XXI],[III] is a classical method because 

of its quick convergence for approximating the root. This method finds successive 

estimation to the root of the nonlinear equation by estimating and using the first order 

derivative at several points. The NRM method uses one functional and derivative 

evaluation and converges quadratically. The NRM scheme is given in equation (1) to 

find (n + 1)th approximation of the root through nth
 approximation. The NRM method 

is an open method that can be initiated with a starting point x0, called an initial guess. 

                                𝑥𝑛+1= 𝑥𝑛 -   
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 , 𝑛 = 0,1,2 ….                                             (2) 

The derivative-term in the denominator of (1) must be nonzero, i.e. the tangent drawn 

at any iterate xn must not be horizontal; otherwise the NRM fails. 

In 2010, Noor et al. [XVIII] developed a method, say Noor1, which was cubically 

convergent. Noor1 requires two functional and three derivative evaluations in an 

iteration. The two steps of Noor1 scheme are described as equations (3) and (4). 

                                       𝑦𝑛=  𝑥𝑛 −    
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
                     (3)          

                                 𝑥𝑛+1 = 𝑦𝑛 −
4𝑓(𝑦𝑛)

𝑓`(𝑥𝑛)+2𝑓`(
𝑥𝑛+𝑦𝑛

2
)+𝑓`(𝑦𝑛)

   ,𝑛 = 0,1,2..                     (4)                                

Proposed Method 

Using the background of a recently proposed nonlinear solver in [XIX] by Noor et al., 

we propose an improved method using the quadrature rule and fundamental theorem 

of integral calculus to solve the scalar nonlinear equations with the lesser 

computational cost. The first step of the proposed method is the usual NRM. The 

second step of the proposed cubically convergent method (PM) is given as in (5).  

                                                𝑦𝑛=  𝑥𝑛 −    
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
  

                               𝑥𝑛+1 = 𝑥𝑛 −
4𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)+2𝑓`(
𝑥𝑛+𝑦𝑛

2
)+𝑓`(𝑦𝑛)

         ,𝑛 = 0,1,2..                 (5) 

The PM is an enhancement of Noor1 method in [XVIII]. The PM uses one functional 

and three derivative evaluations, i.e. 4 in total instead of 5 as in the method Noor1 

[XIX]. 

The derivation of PM is discussed in the following theorem – Theorem 1. 

Theorem 1. If f(x) = 0 is a nonlinear equation to be solved, then the proposed 

quadrature-based method is defined in equation (5). 
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Proof of Theorem 1. 

The scalar nonlinear equation is: 

                    𝑓(𝑥) = 0                     (6) 

Using the combination of midpoint and Trapezoidal rules, equation (6) can be written 

as 

                𝑓(𝑥) = 𝑓(𝑟) +
ℎ

2
[𝑓`(𝑟) + 4𝑓` (

(𝑥 + 𝑟)

2
) + 𝑓`(𝑥)]                                     (7) 

        If  𝑓(𝑥) = 0, then (7) becomes 

              𝑓(𝑟) +
(𝑥 − 𝑟)

4
[𝑓`(𝑟) + 2𝑓` (

(𝑥 + 𝑟)

2
) + 𝑓`(𝑥)] = 0                                     (8) 

             Equation (8) can also be written as, 

                       𝑥 = 𝑟 −
4𝑓(𝑟)

𝑓`(𝑟)+2𝑓`(
(𝑥+𝑟)

2
)+𝑓`(𝑥)

            (9) 

Using (9), and by taking 𝑟 = 𝑥𝑛 and 𝑥= 𝑥𝑛+1 the following scheme based on 

quadrature (7) can be used. 

                      𝑥𝑛+1 = 𝑥𝑛 −
4𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)+2𝑓`(
𝑥𝑛+𝑥𝑛+1

2
)+𝑓`(𝑥𝑛+1)

       

Where we consider 𝑥𝑛+1 =  𝑦𝑛 = NRM  on the right hand side to remove 

implicitness, and thus 

            𝑥𝑛+1 = 𝑥𝑛 −
4𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)+2𝑓`(
𝑥𝑛+𝑦𝑛

2
)+𝑓`(𝑦𝑛)

    𝑓𝑜𝑟 𝑛 = 0,1,2 … 

which is the same as the proposed method in equation (5).    

The PM method is cubically convergent, and the proof is included below as in 

Theorem 2.  

Theorem 2. Let α ∈ I be a simple zero of sufficiently differentiable function f : I ⊆ R 

→ R for an open interval I. If 𝑥0 is sufficiently close to α , then the two-step iterative 

methods, i.e. equation (5) has third order of convergence. 

Proof of Theorem 2. 

Let 𝛼 be a simple zero of 𝑓. Expanding𝑓(𝑥𝑛) and 𝑓′(𝑥𝑛) in Taylor’s Series about 𝛼, 

gives:  

𝑓(𝑥𝑛) = 𝑓`(𝑎)(𝑒𝑛 + 𝑐2𝑒2
𝑛 + 𝑐3𝑒3

𝑛 + ⋯ )                                                      (10) 

𝑓`(𝑥𝑛) = 𝑓`(𝑎)(1 + 2𝑐2𝑒𝑛 + 3𝑐3𝑒2
𝑛 + 4𝑐4𝑒3

𝑛 + ⋯ )                               (11) 

 

Where 

 𝑐𝑘 =
𝑓𝑘(𝑎)

𝑘!𝑓𝑘−1(𝑎)
,   k= 2, 3, 4…and 𝑒𝑛 = 𝑥𝑛 − a 
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From(10) and(11), we have 

𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
= 𝑒𝑛 − 𝑐2𝑒2

𝑛 + 2(𝑐2
2  − 𝑐3)𝑒3

𝑛  + ⋯                                                    (12) 

From (12), we get 

𝑦𝑛 = 𝑐2𝑒2
𝑛 − 2(𝑐2

2  − 𝑐3)𝑒3
𝑛   + ⋯                                                                     (13𝑎) 

Expanding 𝑓(𝑦𝑛), 𝑓`(𝑦𝑛)  𝑎𝑛𝑑 𝑓` (
𝑥𝑛+𝑦𝑛

2
) as in (10)-(11) about 𝛼, and thus using (8), 

gives: 

𝑓(𝑦𝑛) = 𝑓`(a)[𝑐2𝑒2
𝑛 + 2(𝑐3 − 𝑐2

2)𝑒3
𝑛 + ⋯ ]                         (13B) 

 𝑓`(𝑦𝑛) = 𝑓`(a)[1 + 2𝑐2
2

𝑒2
𝑛 + 4(𝑐2𝑐3 − 𝑐3

2)𝑒3
𝑛 + ⋯ ]                            (14) 

𝑓` (
𝑥𝑛+𝑦𝑛

2
) = 𝑓`(a)[1 + 𝑐2𝑒𝑛 + (𝑐2

2 +
3

4
𝑐3) 𝑒2

𝑛 + (
7

2
𝑐2𝑐3 − 2𝑐3

2) 𝑒3
𝑛 + ⋯ ]  (15) 

From(11), (14), and(15), we have 

𝑓`(𝑦𝑛) + 2𝑓` (
𝑥𝑛+𝑦𝑛

2
) + 𝑓`(𝑥𝑛) = 𝑓`(a) [

4 + 4𝑐2𝑒𝑛 + (4𝑐2
2 +

9

2
𝑐3) 𝑒2

𝑛

+(11𝑐2𝑐3 + 5𝑐4 − 8𝑐3
2)𝑒3

𝑛 + ⋯ 
]  (16) 

From (10) and (16), we obtain 

4𝑓(𝑥𝑛)

𝑓`(𝑥𝑛) + 2𝑓` (
𝑥𝑛 + 𝑦𝑛

2
) + 𝑓`(𝑦𝑛)

=
4𝑓`(a)[𝑒𝑛 + 𝑐2𝑒2

𝑛 + 𝑐3𝑒3
𝑛 + ⋯ ] 

4𝑓`(a) [1 + 𝑐2𝑒𝑛 + (𝑐2
2 +

9
8

𝑐3) 𝑒2
𝑛 + (

11
4

𝑐2𝑐3 +
5
4

𝑐4 − 2𝑐3
2) 𝑒3

𝑛 + ⋯ ]
     (17) 

4𝑓(𝑥𝑛)

𝑓`(𝑥𝑛) + 2𝑓` (
𝑥𝑛 + 𝑦𝑛

2
) + 𝑓`(𝑦𝑛)

 

= 𝑒𝑛[1 − (2𝑐2
2 +

17

8
𝑐3) 𝑒2

𝑛 + (
23

8
𝑐2𝑐3 +

5

4
𝑐4 − 3𝑐3

2) 𝑒3
𝑛 + ⋯ ]             (18) 

Substituting (18) in (5), we obtain 

𝑒𝑛+1 = 𝑒𝑛 − 𝑒𝑛[1 − (2𝑐2
2 +

17

8
𝑐3) 𝑒2

𝑛 + (
23

8
𝑐2𝑐3 +

5

4
𝑐4 − 3𝑐3

2) 𝑒3
𝑛 + ⋯ ] 

𝑒𝑛+1 = 𝑒𝑛 − 𝑒𝑛 + (2𝑐2
2 +

17

8
𝑐3) 𝑒3

𝑛 − (
23

8
𝑐2𝑐3 +

5

4
𝑐4 − 3𝑐3

2) 𝑒4
𝑛 + ⋯ 

𝑒𝑛+1 = (2𝑐2
2 +

17

8
𝑐3) 𝑒3

𝑛 − (
23

8
𝑐2𝑐3 +

5

4
𝑐4 − 3𝑐3

2) 𝑒4
𝑛 + ⋯ 

𝑒𝑛+1 = (2𝑐2
2 +

17

8
𝑐3) 𝑒3

𝑛 + 𝑂(𝑒4
𝑛) 

Hence, the third order convergence of PM has been established       
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The formula for the efficiency index is E = p1/m, for a pth order convergent method 

using m functional and derivative evaluations in all in an iteration [II]. In this context, 

the efficiency index of the PM for scalar nonlinear equations is 1.3160740129. The 

efficiency indices of PM and some other methods are given in Table 1. 

The PM method takes fewer evaluations than the method of Noor1 without 

compromising upon the third order convergence. Similarly, the evaluations are 

smaller than the fourth order convergent method, Noor2. The efficiency indices from 

Table 1 show that the proposed method is efficient than other lower and higher order 

methods. While the efficiency index of NRM is higher than PM, the former is a lower 

order method as compared to PM. Moreover, the exhaustive comparison of the 

computational performance of PM and other methods is carried out in the 

forthcoming sections, where the ascendancy of PM over other accompanying 

methods will be established. 

Table 1: Efficiency indices for non-linear equation and systems of the discussed methods. 

Methods 
Order of 

convergence 

Total evaluations in 

an iteration 
Efficiency index 

BM 1 1 1 

RFM 1 1 1 

NRM 2 2 1.4142135623 

Noor1 [XVIII] 3 5 1.2457309396 

Noor2 [XVIII] 4 8 1.1892071150 

Noor3 [XVII] 2 3 1.2599210498 

PM (present) 3 4 1.3160740129 

 

III.      Numerical Experiments 

For performance evaluation of PM and some existing methods, some scalar 

nonlinear equations have been taken from the literature [XVII], [XXI], [VI], [VII], 

[XIX], [XV], [XI], [II], [XXV] which are listed in Table 2 along with test conditions. 

We have used high precision arithmetic of 1000 digits to compare the results and 

numerical properties of different methods for sufficiently reduced errors, i.e. upto 10-

50 or lower. In Table 2, the test functions of the considered nonlinear equations, 

corresponding intervals containing a real root, the used initial guesses and the exact 

root to 20 decimal places’ have been mentioned for reference to conduct and replicate 

numerical experiments.  

For comparison, we use the following formulae of errors and observed order of 

convergence from [XVII], [XXII], [VI], [VII], [XIX], [XV], [XI], [II].  

Absolute Error (AE) = |Approximate solution  – Exact solution |            (19) 
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If exact solution is not known, then: 

Absolute Error (A.E.)i = |xi  - xi-1 |, i=1,2,…              (20) 

The observed order of convergence (P) [XXII], [VI], [VII], [XIX], [XV], [XI], 

[II],[XXV],[XVIII] can be obtained as: 

𝑃 =
ln (

𝑒𝑛+1
𝑒𝑛

)

ln (
𝑒𝑛

𝑒𝑛−1
)
                         (21) 

 

Table 2:  Numerical examples 1-10 and test conditions 

Test 

functions 

f(x) Interval 

containing a 

real root 

Initial 

guess used 

(x0) 

Exact root upto 20 decimal 

places’ 

𝑓1(𝑥)   3x+  sin(x) –

exp(x) 

[0,1] 0.5 0.36042170296032440136 

𝑓2(𝑥)   Cos(x)  - x 

exp(x) 

[0,1] 0.5 0.51775736368245829832 

𝑓3(𝑥)    3x +  Cos(x) 

- 1 

[0,1] 0.5 0.60710164810312263122 

𝑓4(𝑥) 𝑙𝑛𝑥 + √𝑥 − 5 [8,9] 8.5 8.30943269423157179534 

𝑓5(𝑥)     Cos(x)  – x [0,1] 0.5 0.73908513321516064165 

𝑓6(𝑥)    Sin2 (x)  – x2  

+ 1 

[-2,-1] -1.5 -1.4044916482153412260 

𝑓7(𝑥) x2 – ex - 3x  + 

2 

[0,1] 0.5 0.25753028543986076045 

𝑓8(𝑥) √𝑥 − 𝑐𝑜𝑠𝑥 [0,1] 0.5 0.64171437087288265839 

𝑓9(𝑥)   2x – ln(x) - 7

  

[3,5] 4 4.21990648378038144162 

𝑓10(𝑥)     exp(x)-5(x) [0,0.5] 0.25 0.25917110181907374505 

IV.    Results and Discussion 

The PM has been compared with some existing methods: BM, RFM and 

NRM In Fig. 1, the absolute error distributions for the first few iterations using (20) 

are shown for all methods for Examples 1-10. The absolute errors are represented by 

the vertical axis and have been represented in the logarithmic scale with the reversed 

direction in a way that higher marks in the graph intend to show smaller errors. From 

Fig. 1, it is clear that the PM at the same iterations exhibits smaller errors than the 

BM, RFM and NRM methods. Table 3 describes the number of iteration (𝐼), 

computational order (𝑃)𝑜𝑓 convergence, absolute errors (𝐴𝐸) and the number of 

evaluations (EVAL) to attain an absolute error of atmost 10-50 for all methods. It is 
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clear from Table 3 that all methods including the PM converge to the theoretical 

orders of convergence as mentioned in Table 1, and that the number of iterations 

taken by the PM is lower than BM, RFM and NRM for all examples, as also shown 

collectively in Fig. 2. It should be noted that the number of evaluations for the PM are 

sufficiently smaller than those of BM and RFM as shown in Fig. 3 and Table 3 

example-wise, whereas in comparison to the NRM the evaluations of the PM are 

either comparable or a bit more, nevertheless the PM method is better than NRM 

because of the theoretical order of convergence, which is 3 for PM and 2 for NRM.  

The main advantage of PM lies on the fact that it uses only first-order derivative 

instead of higher ones to approximate the solution of nonlinear equations. From Table 

1, we observe that the efficiency indices of BM, RFM, Noor1, Noor2 and Noor3 were 

higher than PM. The rapid decrease in errors in Fig. 1, lower iterations in Fig. 2, and 

lesser evaluations as in Fig. 3 than most of the methods are the main characteristics of 

the PM justifying its cost effectiveness over other methods with only first derivative 

information instead of higher order derivatives usually used in other methods in the 

literature. Also, for higher order nonlinear systems the PM method will not contribute 

much cost than most of the other methods which can be tested in the future.  

V.    Conclusion 

This work has been devoted to the proposition of a cubically convergent 

quadrature-based iterative method to solve scalar nonlinear equations. The proposed 

method is a two-step scheme. The proposed method was derived using the quadrature 

approach, and its third order of convergence was proved. An exhaustive comparison 

of the new method with several traditional methods from the literature on ten 

numerical examples under similar conditions was made. The superiority of the 

proposed method was demonstrated over others, especially the main feature being its 

cost efficiency as it used lesser evaluations to achieve similar accuracy as compared 

to other methods. The proposed method can be used as a replacement of some 

methods contributing a lot of computational burdens to yield the required accuracy.   
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Example 1 

 
Example 2 

 
Example 3 

 
Example 4 

 
Example 5 

 
Example 6 

 
Example 7 

 
Example 8 

 
Example 9 

 
Example 10 

Fig 1. Absolute errors in Examples 1-10 for first few iterations (Along X-axis are number of 

iterations and along Y-axis are Absolute errors in reversed logarithm scale)  
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Table 3. Comparison of the computational performance in Examples 1-10 for AE ≤ 10-50. 

______________________________________________________________________________________________ 

𝑓𝑖, (𝑥0)   BM  RFM   NRM  PM 

_____________________________________________________________________________________________  

 𝑓1 I 165    50   7  5 

                  P 1.04965  0.9999   2.00214  3.10020 

                  A.E 2.6E-50  1.9E-50   1.79E-80  2.14E-104 
 EVAL 166  51   14  20  

______________________________________________________________________________________________ 

 𝑓2 I 161  102   6  4 

P 1.03991  0.92758   1.97621  3.01755 

A.E 2.1E-50  6.1E-50   2.19E-117  1.70E-147 
EVAL 162  103   12  16 

______________________________________________________________________________________________ 

𝑓3 I 164  36   6  4 

P 1.04965  1.03078   2.04134  2.94945 
A.E 3.0E-50  1.3E-50   2.13E-60  2.21E-52 

EVAL 165  37   12  16 

______________________________________________________________________________________________ 

  𝑓4 I 160  27   6  4 

P 0.90080  0.99490   2.05720  3.09198 
A.E 7.9E-50  1.3E-50                2.16E-66  7.9E-55 

EVAL 161  28   12  16 
______________________________________________________________________________________________ 

 𝑓5 I 164  38   7  5 

P 0.90080  0.99490   2.05720  3.09198 

A.E 5.4E-50  7.1E-50   1.5E-78  6.1E-99 

EVAL 165  39   14  20 

______________________________________________________________________________________________ 

𝑓6 I 163  99   7  5 

                 P 0.9999  1.01476   2.00003  3.09198 

              A.E 6.2E-50  1 .3E-49   1.8E-74  7.8E-94 
EVAL 164  100   14  20 

______________________________________________________________________________________________ 

𝑓7 I 164  33   6  5  

P 0.9999  0.9999   1.92852  3.00144 

                  A.E 1.0E-50  1.0E50   8.4E-55  2.9E-124 
EVAL 165  34   12  20 

______________________________________________________________________________________________ 

𝑓8  I 163  73   6  5 

                P 1.00148         0.993452   1.99986                    3.000023 
A.E 4.7E-50  4.8E-50        2.14E-57  1.57E-131 

EVAL 164  74   12  20 

______________________________________________________________________________________________ 

𝑓9 I 162  26   6  4 

               P 0.948469  1.01630   2.00033  2.95437 
                A.E 2.8E-50  2.0E-50   5.7E-77  2.1E-73 

EVAL 163  27   12  16 
______________________________________________________________________________________________ 

𝑓10 I 163  37   6  4 

                 P 0.948469  0.98587   1.99994  3.04071 

   A.E 4.2E-50  1.0E-51   1.8E-89  5.0E-77 
 EVAL 164  38   12  16 
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Fig. 2. Number of iterations for Examples 1-10. 

 

 
 

Fig. 3. Number of evaluations for Examples 1-10. 
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