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Abstract 

In this research work, some new derivative-based numerical cubature 

schemes have been proposed for the accurate evaluation of double integrals under 

finite range. The proposed modifications are based on the Trapezoidal-type 

quadrature and cubature rules. The proposed schemes are important to numerically 

evaluate the complex double integrals, where the exact value is not available but the 

approximate values can only be obtained. The proposed derivative-based double 

integral schemes provide efficient results with regards to higher precision and order 

of accuracy. The proposed schemes, in basic and composite forms, with local and 

global error terms are presented with necessary proofs with their performance 

evaluation against conventional Trapezoid rule through some numerical experiments. 

The consequent observed error distributions of the proposed schemes are found to be 

lower than the conventional Trapezoidal cubature scheme in composite form. 

Keywords: Cubature, Double integrals, Derivative-based schemes, Precision, Order 

of accuracy, Trapezoid 

I.     Introduction 

The word quadrature is usually used for the numerical computation of single 

integrals, whereas for the multiple integrals and their numerical computation, the 

word cubature is used. Numerical computation of areas and volumes for irregular 

regions has remained a topic of interest for engineers and scientists, as highlighted by 

Burden and Faires in [V], as most often such problems are modeled in terms of 

integrals. When the functions are complicated, so that analytical evaluation of 

integrals is not possible or is very difficult, then we use numerical integration. 

Mathematicians have proposed different quadrature rules for approximating areas, 
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which focus on single integral problems. However, the problem of evaluating 

volumes using double integrals is also important [XIII]. 

A novel family of numerical integration of closed Newton-Cotes quadrature rules was 

presented by [XIX], these kinds of quadrature rules obtain an increase of two orders 

of precision over the classical closed Newton-Cotes formulas. Authors in [IV] 

modified a numerical scheme and proposed a new numerical integration algorithm for 

reducing the errors in a combined hybrid way. Memon et al. in 2020 [XI] developed a 

new efficient midpoint derivative-based quadrature scheme of trapezoid-type for the 

Riemann-Stieltjes integrals which is an efficient modification of [XXI]. Shaikh 

[XVII] in 2019, attempted to compare the polynomial collocation method with 

uniformly-spaced quadrature rules for the solution of integral equations. 

Ramachandran et al. in 2016 [XV] worked for the computation of numerical 

integration using arithmetic, geometric and harmonic means derivative-based closed 

Newton-Cotes rules and compared the results with the existing closed Newton-Cotes 

quadrature (CNC) rules. Shaikh et al. in 2016 [XVIII] proposed a modified four-point 

quadrature rule for numerical integration by using 2nd order derivative instead of 4th 

order derivative and achieved efficient modification of a method in Zhao et al. [XX].  

There are numerous ancient methods and their modifications to approximate 

integrals, for example [VI], [III] and [II] by Burg in 2012, Bailey and Borwein in 

2011 and Babolian et al. in 2005, respectively. Zafar et al in 2013 [XIX] presented 

some new families of open Newton-Cotes rules which also involve derivatives with 

higher accuracy than that of the classical formulas. Other related work is due to 

Dehghan and colleagues  [VII], [VIII], [IX] in 2005-06, Jain in 2007 [X], Pal in 2007 

[XIII], Sastry in 1997 [XVI] and Petrovskaya in 2011 [XIV]. 

A lot of contributions in literature have been devoted to the improvements of existing 

rules of numerical integration for single integrals, whereas not much work is done on 

multiple integrals. The only classical and basic rules the closed Newton-Cotes 

cubature schemes for double integrals, as discussed in [XIII].  

In this study, we propose some new and efficient modifications of conventional 

closed Newton-Cotes Trapezoidal cubature rule (CNCT) by incorporating partial 

derivatives besides the usual functional evaluations. The proposed rules are higher-

order accurate and exhibit higher precision while the errors are smaller than the 

existing CNCT schemes.   

II.  General Formulation and Existing Closed Newton-Cotes Cubature 

Scheme for Double Integrals 

In this section, we describe the mathematical formulation of the double 

integrals over finite rectangles, the basic form of the Trapezoidal rule extension for 

cubature in two dimensions with the help of [XIII]. This material will help understand 

the proposed schemes and the main contributions through this research work. 

The general form of the double integrals defined over rectangles in two dimensions is 

defined as 

      𝑉 = ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥
𝑏

𝑎
𝑑𝑦

𝑑

𝑐
              (1) 
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where V  is the volume of the surface defined by the integrand over the area element 

Here, we consider the evaluation of the double integral over a rectangle x=a, x=b, 

y=c, y=d with all limits being finite.    

The existing closed Newton-Cotes cubature scheme for double integrals is (CNCT 

double integral Scheme) was discussed in [XIII] to approximate volume in (1) in the 

form: 

𝐶𝑁𝐶𝑇 = ∫ ∫ 𝑓(𝑥, 𝑦)
𝑏

𝑎
𝑑𝑥

𝑑

𝑐
𝑑𝑦 ≈

(𝑏−𝑎)(𝑑−𝑐)

4
[𝑓(𝑎, 𝑐) + 𝑓(𝑎, 𝑑) + 𝑓(𝑏, 𝑐) + 𝑓(𝑏, 𝑑)]   

          (2) 

CNCT scheme defined by (2) has a precision degree of one. The composite form of 

CNCT schemes was not discussed in [XIII]. In this work, however, we shall present 

the composite form in the next section and then present the new and efficient 

improvements to (2) in basic and composite form.  

III.   Present Work and Proposed Derivative-based Numerical Cubature 

Schemes 

First, we mark that the composite form of CNCT, denoted as CNCT-Cn, with 

the global error term may be defined as the following Theorem 1, which is done in 

the present work, and was not discussed in [XIII]. 

Theorem 1. Let a, b, c, d be finite real numbers, and f (x, y) along with its second 

order partial derivatives exist and are continuous in [a,b]⤬[c, d]. Let {xi, i=0,1,…,n} 

and {yj, j=0,1,…,n} form uniformly spaced partitions of [a, b] and [c, d] such that b-a 

= nh  and   d-c = nk then the CNCT-Cn scheme in composite form for n elements  

with the global error term is defined as: 

𝐶𝑁𝐶𝑇 − 𝐶𝑛 = ∫ ∫ 𝑓(𝑥, 𝑦)
𝑏

𝑎

𝑑𝑥
𝑑

𝑐

𝑑𝑦 = ∑ ∑ ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑥𝑖+1

𝑥𝑖

𝑦𝑗+1

𝑦𝑗

𝑛−1

𝑖=0

𝑛−1

𝑗=0

 

= ∑ ∑
ℎ𝑘

4
[𝑓(𝑥𝑖, 𝑦𝑗) + 𝑓(𝑥𝑖 , 𝑦𝑗+1) + 𝑓(𝑥𝑖+1, 𝑦𝑗) + 𝑓(𝑥𝑖+1, 𝑦𝑗+1)]

𝑛−1

𝑖=0

𝑛−1

𝑗=0

 

−
ℎ2(𝑏−𝑎)(𝑑−𝑐)

12
𝑓𝑥𝑥 (𝜉, 𝜂) −

𝑘2(𝑏−𝑎)(𝑑−𝑐)

12
𝑓𝑦𝑦 (𝜉, 𝜂)        (3) 

𝑤ℎ𝑒𝑟𝑒  𝜉 ∈ (𝑎, 𝑏)  𝑎𝑛𝑑  𝜂 ∈ (𝑐, 𝑑) 

In basic form, we attempt to suggest modifications of CNCT rule by using derivatives 

in the following form: 

𝑃𝑇(𝑎: 𝑏, 𝑐: 𝑑) = ∫ ∫ 𝑓(𝑥, 𝑦)
𝑏

𝑎
𝑑𝑥

𝑑

𝑐
𝑑𝑦 = 𝐶𝑁𝐶𝑇 + ∑ 𝐶𝑖𝜙𝑖

𝑖=3
𝑖=1     (4) 

Where 𝐶𝑖 = 𝑔𝑖(𝑏 − 𝑎, 𝑑 − 𝑐)are coefficients depending on the limits, and the 

derivative terms are: 

𝜙1 = ∑𝑓𝑥𝑥(𝜇𝑥, 𝑦)

∀𝑦

, 𝜙2 = ∑𝑓𝑦𝑦(𝑥, 𝜇𝑦)

∀𝑥

 𝑎𝑛𝑑 𝜙3 = 𝑓𝑥𝑥𝑦𝑦(𝜇𝑥, 𝜇𝑦). 
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The notation PT stands for the proposed derivative-based cubature schemes of 

Trapezoidal-type. In (4), by using arithmetic, geometric and harmonic means, 

respectively, AM, GM and HaM, we get three new derivative-based schemes, namely 

AMT, GMT, HaMT for efficient evaluation of numerical cubature. The coefficients 

Ci’s in the basic forms, and the averages with respect to x and y in the proposed PT 

cubature schemes are summarized in Table 1. 

Table 1: Coefficients and means used in the PT cubature schemes 

PT 

schemes 
C1 C2 C3 𝝁𝒙 𝝁𝒚 

AMT 
−

(𝑏 − 𝑎)(𝑑 − 𝑐)3

24
 −

(𝑏 − 𝑎)3(𝑑 − 𝑐)

24
 

(𝑏 − 𝑎)3 (𝑑 − 𝑐)3

144
 

𝑎 + 𝑏

2
 

𝑐 + 𝑑

2
 

GMT 
−

(𝑏 − 𝑎)(𝑑 − 𝑐)3

24
 −

(𝑏 − 𝑎)3(𝑑 − 𝑐)

24
 

(𝑏 − 𝑎)3 (𝑑 − 𝑐)3

144
 

√𝑎𝑏 √𝑐𝑑 

HaMT 
−

(𝑏 − 𝑎)(𝑑 − 𝑐)3

24
 −

(𝑏 − 𝑎)3(𝑑 − 𝑐)

24
 

(𝑏 − 𝑎)3 (𝑑 − 𝑐)3

144
 

2𝑎𝑏

𝑎 + 𝑏
 

2𝑐𝑑

𝑐 + 𝑑
 

  

The local error terms in the proposed AMT, GMT and HaMT schemes along with the 

precision are summarized in Table 2. 

Table 2: Local error terms and degrees of precision of PT cubature rules 

PT 

schemes 

Local  Error terms Precision 

AMT −
(𝑏 − 𝑎)5(𝑑 − 𝑐)

480
𝑓𝑥𝑥𝑥𝑥(𝜉, 𝜂) −

(𝑏 − 𝑎)(𝑑 − 𝑐)5

480
𝑓𝑦𝑦𝑦𝑦(𝜉, 𝜂) 3 

GMT 
−

(𝑏 − 𝑎)3(𝑑 − 𝑐)

24
(√𝑏 − √𝑎)

2
𝑓𝑥𝑥𝑥(𝜉, 𝜂)

−
(𝑏 − 𝑎)(𝑑 − 𝑐)3

24
(√𝑑 − √𝑐)

2
𝑓𝑦𝑦𝑦(𝜉, 𝜂) 

2 

HaMT −
(𝑏 − 𝑎)5(𝑑 − 𝑐)

24(𝑎 + 𝑏)
𝑓𝑥𝑥𝑥(𝜉, 𝜂) −

(𝑏 − 𝑎)(𝑑 − 𝑐)5

24(𝑐 + 𝑑)
𝑓𝑦𝑦𝑦(𝜉, 𝜂) 2 

 

For example verification and understanding, we prove the precision degree and derive 

the local error term of the proposed AMT cubature scheme in Theorems 2-3, 

respectively. 

Definition 1. The highest positive integer value of n for which a cubature schemes 

exactly integrate 𝑓(𝑥, 𝑦) = (𝑥𝑦)𝑛 is defined as the degree of precision of the cubature 

scheme. 

Theorem 2. Let a, b, c, d be finite real numbers, and f (x, y) along with its fourth-

order partial derivatives exist and are continuous in [a, b]⤬[c, d], then the AMT 
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scheme in basic form defined in (4) with coefficients in Table 1 has a degree of 

precision equal to three. 

Proof of Theorem 2. 

The exact double integrations of the 𝑓(𝑥, 𝑦) = (𝑥𝑦)𝑛 with n = 0, 1, 2, 3 and 4 are 

given as, over the rectangle [a, b]⤬[c, d]: 

∫ ∫ (1)
𝑏

𝑎
𝑑𝑥

𝑑

𝑐
𝑑𝑦 = (𝑏 − 𝑎)(𝑑 − 𝑐)     (5) 

∫ ∫ (𝑥𝑦)
𝑏

𝑎
𝑑𝑥

𝑑

𝑐
𝑑𝑦 =

(𝑏2−𝑎2)(𝑑2−𝑐2)

4
     (6) 

∫ ∫ (𝑥2𝑦2)
𝑏

𝑎
𝑑𝑥

𝑑

𝑐
𝑑𝑦 =

(𝑏3−𝑎3)(𝑑3−𝑐3)

9
    (7) 

∫ ∫ (𝑥3𝑦3)
𝑏

𝑎
𝑑𝑥

𝑑

𝑐
𝑑𝑦 =

(𝑏4−𝑎4)(𝑑4−𝑐4)

16
    (8) 

∫ ∫ (𝑥4𝑦4)
𝑏

𝑎
𝑑𝑥

𝑑

𝑐
𝑑𝑦 =

(𝑏5−𝑎5)(𝑑5−𝑐5)

25
    (9) 

Using the proposed AMT scheme with coefficient in Table 1 and general expression 

(4), the approximate evaluation of the integral with the same values of n are 

computed as: 

𝐴𝑀𝑇(1) = (𝑏 − 𝑎)(𝑑 − 𝑐)                (10) 

𝐴𝑀𝑇(𝑥𝑦) =
(𝑏2−𝑎2)(𝑑2−𝑐2)

4
                 (11) 

𝐴𝑀𝑇(𝑥2𝑦2) =
(𝑏3−𝑎3)(𝑑3−𝑐3)

9
              (12) 

𝐴𝑀𝑇(𝑥3𝑦3) =
(𝑏4−𝑎4)(𝑑4−𝑐4)

16
              (13) 

𝐴𝑀𝑇(𝑥4𝑦4) =
(𝑏−𝑎)(𝑏4+2𝑏2𝑎2+𝑎4)(𝑑−𝑐)(𝑑4+2𝑑2𝑐2+𝑐4)

16
           (14) 

By comparing (5)-(9) with (10)-(14), it appears that: 

For    

 𝑛 ≤ 3,  ∫ (∫ (𝑥𝑦)𝑛𝑑𝑥
𝑏

𝑎
)𝑑𝑦 − 𝐴𝑀𝑇(𝑥𝑦)𝑛𝑑

𝑐
= 0.                (15) 

But if   

 𝑛 ≥ 4,  then   ∫ (∫ 𝑥4𝑦4𝑑𝑥
𝑏

𝑎
)𝑑𝑦 − 𝐴𝑀𝑇(𝑥4𝑦4) ≠

𝑑

𝑐
0.            (16) 

Therefore, using Definition 1 and (15)-(16), we conclude that the degree of 

precision of the AMT double integral scheme is three.  ■ 

Definition 2. If the degree of precision of a cubature scheme is M, then the leading 

local error term is the difference of exact and approximate evaluations of the integral 

for the (M+1)th order term in the Taylor’s series development of f (x, y) defined in the 

neighborhood of (xo, y0).   

Theorem 3. Let a, b, c, d be finite real numbers, and f (x, y) along with its fourth 

order partial derivatives exist and are continuous in [a, b]⤬[c, d], then the local 
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error term of the proposed AMT scheme in basic form defined in (4) with coefficients 

in Table 1 is given as: 

𝐿𝐸𝐴𝑀𝑇 = −
(𝑏−𝑎)5(𝑑−𝑐)

480
𝑓𝑥𝑥𝑥𝑥(𝜉, 𝜂) −

(𝑏−𝑎)(𝑑−𝑐)5

480
𝑓𝑦𝑦𝑦𝑦(𝜉, 𝜂)  (17) 

𝑤ℎ𝑒𝑟𝑒  𝜉 ∈ (𝑎, 𝑏)  𝑎𝑛𝑑  𝜂 ∈ (𝑐, 𝑑)                     

Proof of Theorem 3. 

From equations (15)-(16), is evident that the degree of precision of the proposed 

AMT cubature scheme is 3. So the leading local error term can be obtained through 

the exact and AMT integral evaluations of the fourth-order term in Taylor’s series 

expression, which is given as [XVI]: 

1

4!

[
 
 
 
 
 (𝑥 − 𝑥0)

4 𝜕4𝑓

𝜕𝑥4
(𝑥0, 𝑦0) + 4(𝑥 − 𝑥0)

3(𝑦 − 𝑦0)
𝜕4𝑓

𝜕𝑥3𝜕𝑦
(𝑥0, 𝑦0)

+6(𝑥 − 𝑥0)
2(𝑦 − 𝑦0)

2 𝜕4𝑓

𝜕𝑥2𝜕𝑦2
(𝑥0, 𝑦0)

+4(𝑥 − 𝑥0)(𝑦 − 𝑦0)
3 𝜕4𝑓

𝜕𝑥𝜕𝑦3
(𝑥0, 𝑦0) + (𝑦 − 𝑦0)

4 𝜕4𝑓

𝜕𝑦4 (𝑥0, 𝑦0)]
 
 
 
 
 

 (18) 

The local error term in the proposed AMT scheme takes the shape for some   𝜉 ∈
(𝑎, 𝑏) and 𝜂 ∈ (𝑐, 𝑑): 

𝐿𝐸𝐴𝑀𝑇 =
1

4!
[∫ ∫ 𝑥4𝑑𝑥

𝑏

𝑎

𝑑𝑦 − 𝐴𝑀𝑇(𝑥4)
𝑑

𝑐

] 𝑓𝑥𝑥𝑥𝑥(𝜉, 𝜂)

+
1

6
[∫ ∫ 𝑥3𝑦𝑑𝑥

𝑏

𝑎

𝑑𝑦 − 𝐴𝑀𝑇(𝑥3𝑦)
𝑑

𝑐

] 𝑓𝑦𝑥𝑥𝑥(𝜉, 𝜂) 

+
1

4
[∫ ∫ 𝑥2𝑦2𝑑𝑥

𝑏

𝑎

𝑑𝑦 − 𝐴𝑀𝑇(𝑥2𝑦2)
𝑑

𝑐

] 𝑓𝑦𝑦𝑥𝑥(𝜉, 𝜂)

+
1

6
[∫ ∫ 𝑥𝑦3𝑑𝑥

𝑏

𝑎

𝑑𝑦 − 𝐴𝑀𝑇(𝑥𝑦3)
𝑑

𝑐

] 𝑓𝑦𝑦𝑦𝑥(𝜉, 𝜂) 

+
1

4!
[∫ ∫ 𝑦4𝑑𝑥

𝑏

𝑎
𝑑𝑦 − 𝐴𝑀𝑇(𝑦4)

𝑑

𝑐
] 𝑓𝑦𝑦𝑦𝑦(𝜉, 𝜂)    (19) 

Using the exact and approximate evaluations of the integrals in (19), we observe that 

the three middle terms vanish since the precision of AMT is 3, and then using the 

exact and approximate integrals of the first and last terms in (19), we have: 

𝐿𝐸𝐴𝑀𝑇 =
1

4!
[
(𝑏5 − 𝑎5)(𝑑 − 𝑐)

5
−

(𝑏 − 𝑎)(𝑏2 + 𝑎2)2(𝑑 − 𝑐)

4
 ] 𝑓𝑥𝑥𝑥𝑥(𝜉, 𝜂) 

+
1

4!
[
(𝑏−𝑎)(𝑑5−𝑐5)

5
−

(𝑏−𝑎)(𝑑−𝑐)(𝑑2+𝑐2)
2

4
 ] 𝑓𝑦𝑦𝑦𝑦(𝜉, 𝜂)                (20) 

After simplification in (20), we finally have: 
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𝐿𝐸𝐴𝑀𝑇 = −
(𝑏 − 𝑎)5(𝑑 − 𝑐)

480
𝑓𝑥𝑥𝑥𝑥(𝜉, 𝜂) −

(𝑏 − 𝑎)(𝑑 − 𝑐)5

480
𝑓𝑦𝑦𝑦𝑦(𝜉, 𝜂) 

for some   𝜉 ∈ (𝑎, 𝑏) and 𝜂 ∈ (𝑐, 𝑑).      

The composite form of the proposed PT schemes in general, denoted as PT-Cn, may 

be defined as (21). 

  𝑃𝑇 − 𝐶𝑛 = ∫ ∫ 𝑓(𝑥, 𝑦)
𝑏

𝑎
𝑑𝑥

𝑑

𝑐
𝑑𝑦 = ∑ ∑ 𝑃𝑇(𝑥𝑖: 𝑥𝑖+1, 𝑦𝑗: 𝑦𝑗+1)

𝑛−1
𝑖=0

𝑛−1
𝑗=0  (21) 

In n2 elements, the averages are the means of each sub-square-element with  b – a =  

n h  and   d – c = n k partitioning the original square element.   

IV.    Numerical Experiments, Results and Discussion 

We use the following two test problems from the literature [XIII] to test the 

performance of proposed AMT, GMT and HaMT cubature schemes against the 

conventional CNCT scheme.  

Example 1. 

 

Example 2.  

  

With the help of MATLAB software, the correct decimal places’ approximations for 

Examples 1-2 which have been used to compute absolute errors are, respectively, 

0.6700784884724 and 3.139707749099465. 

Absolute error distributions have been used, which are the numerical difference 

between the true value of the integrals as mentioned above through MATLAB 

software and the approximate values obtained through numerical schemes for various 

number of elements, n = 1,2,3,…. We present results up to a maximum of 40 

elements for brevity and a sufficient understanding of the decreasing trend of absolute 

errors in different methods. 

The absolute errors of proposed AMT, GMT and HaMT schemes and existing CNCT 

scheme for Examples 1-2 are shown in Figs. 1-2 for n = 1,2,3,…,40. All the proposed 

schemes show reduced errors in both problems, whereas the GMT or AMT taking the 

lead in one or another problem. However, generally speaking, the AMT is prone to no 

disadvantage as for as the limits of integration region are concerned, whereas for 

GMT and HaMT schemes may not be as good as AMT in all problems. Nevertheless, 
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all proposed schemes are efficient modifications of the CNCT rule in basic and 

composite forms.   

The computational cost in terms of the number of functional and partial derivative 

evaluations of the CNCT, and the proposed AMT, GMT and HaMT schemes have 

been compared in Figs. 3-4 for Examples 1-2. The substantial efficiency of the 

proposed schemes and cost saving is evident through Figs. 3-4. 

V.   Conclusion 

In this research work, the CNCT scheme from literature for evaluating 

numerical cubature has been successfully extended to composite form. Three new and 

efficient numerical cubature schemes i.e. AMT, GMT and HaMT for approximating 

the double integrals were proposed in basic and generalized composite forms. The 

theorems concerning the degrees of precision and local error terms have been proved. 

All proposed schemes were found to be more efficient than the existing CNCT 

scheme through numerical experiments.  The proposed AMT scheme is applicable to 

all double integral problems in all situations, even for non-trigonometric integrals 

AMT is very efficient than CNCT when the number of elements is increased for 

higher digits approximations. The lower absolute error distributions and the reduced 

computational cost have been the main feature of the proposed cubature schemes.  

 

Fig 1. Absolute error distributions versus number of elements for Example 1. 
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Fig 2. Absolute error distributions versus the number of elements for Example 2. 

 

Fig 3. Computational cost (in logarithm scale) to achieve an absolute error of at most 

1E-06 from Example 1. 
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Fig 4. Computational cost  (in logarithm scale) to achieve an absolute error of at most 

1E-06 from Example 2. 
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