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Abstract 

In this study, a new derivative-based cubically convergent iterative method is 

established for nonlinear equations, which is a modification of an existing method. 

The idea of difference quotient is used to arrive at a better formula than the existing 

one. The theorem concerning the order of convergence has been proved theoretically. 

Some examples of nonlinear equations have been solved to analyse convergence and 

competence of the PM against existing methods. High precision arithmetic has been 

used and graphs have been plotted using Ms Excel. Using standard test parameters: 

efficiency index, absolute error distributions, observed order of convergence, number 

of iterations and number of evaluations, the PM is compared against the existing 

methods, and is found to be a cost-efficient alternative with the higher order of 

convergence. From results, it has been detected that established technique is superior 

to the widely used Bisection (BM), Regula-Falsi (RFM) and Newton-Raphson (NRM) 

methods from iterations and accuracy perspectives. Moreover, the proposed method 

(PM) is cost-efficient than the original method used for modification as well as some 

other methods. 

Keywords: Convergence, Efficiency, Nonlinear equation, Derivative-based, 

Precision. 

I.    Introduction 

Nonlinear equations arise from the modelling of various disciplines. The 

exact solutions of nonlinear equations are not always possible to find out, so, mostly 

numerical methods are used. It is very important for a numerical method to be higher 

order accurate and cost efficient by using lesser number of iterations and evaluations. 
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A huge number of problems arise in science and engineering [XII], [V], [IX] which 

require solving nonlinear equations of the general form: 

      𝑓(𝑥) = 0      (1) 

For example, in the load flow problems associated with the electrical power systems 

[XII], the equations for the unknown voltage buses are nonlinear, and demand 

numerical methods for the efficient solution that is helpful in full resolution studies of 

the power system stability and control [XXI]. Similarly, in studying the dynamics of 

fluid flow inside a pipe, on the basis of pipe roughness and Reynolds number 

associated with the fluid flow inside, often highly turbulent regimen have arrived in 

the rough pipes leading to the friction factor. This friction factor – also known as 

Darcy friction factor – is modelled in form of a nonlinear equation involving the 

implicit appearance of the friction factor [XXIII], [XXIV].    

Using the mathematical modelling techniques, we often get nonlinear equations, and 

their solution is one of the most essential purposes to use the numerical analysis. 

Optimization problems are resolved using the numerical analysis, where it provides 

the optimal answer to the given problem. Due to having a similar repetitive structure, 

these solutions can be presented and inquired in a general framework. In numerical 

analysis, the ancient method for the nonlinear equations is the Bisection method 

(BM), which works when two initial guesses a and b are known bracketing the root, 

such that f(a) and f(b) are opposite signed numbers. Similarly, the Regula-Falsi 

method (RFM) is another method in literature for solving nonlinear equations, but 

RFM is more efficient and accurate than the BM [XII], [V]. Some improvements to 

the BM method have been discussed in [V], [XXVI]. 

On the other hand, one of the most effective methods is the Newton-Raphson method 

(NRM). The NRM is fast converging and has a quadratic rate of convergence. NRM 

uses two evaluations: one is  𝑓(𝑥) and another is  𝑓′(𝑥), and has the form : 

  𝑥𝑛+1=𝑥𝑛 -
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 , 𝑛 = 0,1,2 ….      (2) 

However, the NRM has a pitfall [III] that the method suffers if the iterated 

approximations are in the vicinity of the singular points of f (x) in (1). Nevertheless, 

NRM is the most useful and vigorous numerical technique to obtain the only solution 

of a nonlinear equation in the earlier times. In literature, there are several 

modifications to the methods including the NRM. In this zeal, in [III], [IV], [VIII], 

numerous iterated techniques were proposed for convergence and efficiency purpose 

by using different procedures such as Taylor series, quadrature formula, variational 

iteration method, and decomposition method [XV],[VII],[XXV],[XXI].  

In 2010 [XVII], Noor et al. proposed two algorithms of third and fourth order 

convergence respectively, named as Noor1 and Noor2 here, and defined through (3)-

(4) and (5)-(7) respectively. 

 

𝑦𝑛=  𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
       (3) 

                          𝑥𝑛+1 = 𝑦𝑛 −
4𝑓(𝑦𝑛)

𝑓`(𝑥𝑛)+2𝑓`(
𝑥𝑛+𝑦𝑛

2
)+𝑓`(𝑦𝑛)

         (4) 
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  𝑦𝑛=  𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
       (5) 

                                       𝑧𝑛 = 𝑦𝑛 −
4𝑓(𝑦𝑛)

𝑓`(𝑥𝑛)+2𝑓`(
𝑥𝑛+𝑦𝑛

2
)+𝑓`(𝑦𝑛)

        (6) 

 

                        𝑥𝑛+1 = 𝑧𝑛 −
4𝑓(𝑧𝑛)

𝑓`(𝑥𝑛)+2𝑓`(
𝑥𝑛+𝑧𝑛

2
)+𝑓`(𝑧𝑛)

    (7) 

Similarly, in 2012 Noor et al. [XVII] proposed another method using first-order 

derivatives as a two-step algorithm, which we call Noor3 and is defined in (8)-(9). 

𝑦𝑛=  𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
       (8) 

 𝑥𝑛+1 = 𝑥𝑛 –  
2𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
–

(𝑦𝑛−𝑥𝑛)𝑓′(𝑦𝑛)

𝑓′(𝑥𝑛)
      (9) 

From the algorithms of Noor1, Noor2 and Noor3, it appears that so many evaluations 

of the function and derivative have been used to achieve a lower order of accuracy, 

hence compromising too much on the efficiency index. While on other hand, some 

researchers [II],[XIX],[XI],[XIV] have efficiently utilized the forthcoming terms of 

the Taylor series to acquire higher order convergence while not compromising too 

much upon the efficiency index. The main characteristics of the sixth order method in 

[II] by Abro and Shaikh in 2019 have been the time and cost efficiency. Similarly, in 

[X],[XVI],[XXVII], few derivative-free approaches were discussed for improving the 

classical NRM. Receiving motivations from [II],[XIX],[XI],[XIV] studies, we have 

attempted to propose another iterative method based on derivatives to efficiently 

solve the nonlinear equations. 

In this work, a modified method for solving nonlinear equations is suggested with an 

objective to reduce the computational cost with compromising upon the order of 

convergence of an existing method [XVIII] from literature. The proposed method 

(PM) is a derivative-based method, as it also utilizes tangent slopes at the iterates 

along with the functional evaluations. The PM is a cubically convergent method. The 

theorem concerning the order of convergence is proved, and several numerical 

experiments have been conducted to demonstrate the computational performance of 

the PM against other methods from literature using standard comparison parameters.  

It is expected that the PM will result in better accuracy and lesser errors than the 

NRM and others Hence, the PM can be used for efficient and accurate solution of 

nonlinear equations.  

II.   The Proposed Method (PM) 

We use f(x) = 0 to state the one variable nonlinear equation. Here, we take x 

as the quantity needed which may be related in f(x) in the form of polynomials and 

transcendental equations on the left side. As the nonlinear equations for i cannot be 

solved in direct way mostly, so for the generation of sequences approximation 

solution that converges to the real solution, we use the numerical methods, and thus 

the proposed method can also be used.  

The PM is established by modifying the Noor1 method [XVIII]. As a result, a new 

third-order convergent method is derived, the PM. The PM uses four evaluations: two 
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functions and two derivatives, instead of five as in the Noor 1 [XVIII]. PM algorithm 

can be described as in (10)-(11) 

       𝑦𝑛=  𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
      (10) 

                                      𝑥𝑛+1 = 𝑦𝑛 − 
4(𝑦𝑛−𝑥𝑛)𝑓(𝑦(𝑛))

(𝑦𝑛−𝑥𝑛)[𝑓′(𝑥𝑛)+𝑓′(𝑦𝑛)]+2[𝑓(𝑦𝑛)−𝑓(𝑥𝑛)]
                (11) 

Where n = 0,1,2,… 

The PM is established by using the finite difference quotient approximation of the 

mid-point derivative in the Noor1 method (4) as: 

            𝑓′ (
𝑥𝑛+𝑦𝑛

2
) =  

𝑓(𝑦𝑛)−𝑓(𝑥𝑛)

2{(
𝑦𝑖−𝑥𝑖

2
)}

      (12) 

Simplifying (120, we have: 

       𝑓′ (
𝑥𝑛+𝑦𝑛

2
) =

𝑓(𝑦𝑛)−𝑓(𝑥𝑛)

𝑦𝑖−𝑥𝑖
              (13) 

Using (13) in (4) gives: 

𝑥𝑛+1 =  𝑦𝑛 −
4𝑓(𝑦(𝑛))

𝑓′(𝑥𝑛)+2{ 
𝑓(𝑦𝑛)−𝑓(𝑥𝑛)

𝑦𝑖−𝑥𝑖
 }+𝑓′(𝑦𝑛)

     (14) 

Simplifying (14) successively, we have: 

𝑥𝑛+1 =  𝑦𝑛 − 
4𝑓(𝑦(𝑛))

(𝑦𝑖−𝑥𝑖)𝑓′(𝑥𝑛)+2𝑓(𝑦𝑛)−2𝑓(𝑥𝑛)+𝑓′(𝑦𝑛)(𝑦𝑖−𝑥𝑖)

𝑦𝑖−𝑥𝑖

    (15) 

Or, 𝑥𝑛+1 =  𝑦𝑛 −  
4(𝑦𝑛−𝑥𝑛)𝑓(𝑦(𝑛))

(𝑦𝑛−𝑥𝑛)𝑓′(𝑥𝑛)+2𝑓(𝑦𝑛)−2𝑓(𝑥𝑛)+𝑓′(𝑦𝑛)(𝑦𝑛−𝑥𝑛)
  (16) 

Finally, 𝑥𝑛+1 =  𝑦𝑛 −  
4(𝑦𝑛−𝑥𝑛)𝑓(𝑦(𝑛))

(𝑦𝑛−𝑥𝑛)[𝑓′(𝑥𝑛)+𝑓′(𝑦𝑛)]+2[𝑓(𝑦𝑛)−𝑓(𝑥𝑛)]
        (17) 

Where, 𝑦𝑛 =  𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
       (18) 

Hence, (17)-(18) define the algorithm of the PM for solving nonlinear equations. 

We, now prove the theorem concerning the cubic order of convergence of the PM, 

and also derive the leading error term of the PM in Theorem 1. 

Theorem 1.  Let α ∈ Q be the zero of a differentiable function f: Q⊂R→R for 

an open interval Q. Then, the three-step iterative method PM, i.e. equation 

(17) has third order convergence, and the consequent leading error term 

is:(−𝑐2 − 6𝑐2
2 + 8𝑐3

2)𝑒3
𝑛 where, ei = xi−α. 

Proof of Theorem 1. 

Let α be a simple zero of 𝑓. Then, by expanding 𝑓(𝑥𝑛) and 𝑓′(𝑥𝑛) in Taylor’s series 

about α, we have 

𝑓(𝑥𝑛) = 𝑓`(𝑎)(𝑒𝑛 + 𝑐2𝑒2
𝑛 + 𝑐3𝑒3

𝑛 + ⋯ )                       (19) 

𝑓`(𝑥𝑛) = 𝑓`(𝑎)(1 + 2𝑐2𝑒𝑛 + 3𝑐3𝑒2
𝑛 + 4𝑐4𝑒3

𝑛 + ⋯ )           (20) 

By using 𝑐𝑘 =
𝑓𝑘(𝑎)

𝑘!𝑓𝑘−1(𝑎)
,  for k = 2,3,4,… and 𝑒𝑛 = 𝑥𝑛 − 𝛼, and using (19) and 

(20), we have 
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𝑓(𝑥𝑛)

𝑓`(𝑥𝑛)
= 𝑒𝑛 − 𝑐2𝑒2

𝑛 + 2(𝑐2
2  − 𝑐3)𝑒3

𝑛  + ⋯                  (21) 

Using (21) in (18) gives: 

𝑦𝑛 = 𝑐2𝑒2
𝑛 − 2(𝑐2

2  − 𝑐3)𝑒3
𝑛   + ⋯                          (22) 

Expanding 𝑓(𝑦𝑛) 𝑎𝑛𝑑 𝑓′(𝑦𝑛) in Taylor’s series about α by using (22), we have 

𝑓(𝑦𝑛) = 𝑓`(a)[𝑐2𝑒2
𝑛 + 2(𝑐3 − 𝑐2

2)𝑒3
𝑛 + ⋯ ]                       (23) 

𝑓′(𝑦𝑛) = 𝑓`(a)[1 + 2𝑐2
2

𝑒2
𝑛 + 4(𝑐2𝑐3 − 𝑐3

2)𝑒3
𝑛 + ⋯ ]           (24) 

From(𝑖𝑖) and(𝑣), we have 

𝑒𝑛+1 = 𝑐2𝑒2
𝑛 + ⋯ −

4(𝑐2𝑒2
𝑛−𝑒𝑛+⋯ )𝑓`(a)[1+2𝑐2

2𝑒2
𝑛+⋯ ]

[
(𝑐2𝑒2

𝑛−𝑒𝑛+⋯ )(𝑓`(𝑎)(1+2𝑐2𝑒𝑛+3𝑐3𝑒2
𝑛+⋯ )+𝑓`(a)[1+2𝑐2

2𝑒2
𝑛+⋯ ] )

+2(𝑓`(a)[𝑐2𝑒2
𝑛+⋯−𝑓`(𝑎)(𝑒𝑛+𝑐2𝑒2

𝑛+⋯ ))
]

  25) 

Ignoring the higher order terms, and considering only those having an effect on the 

third order error term, we have: 

𝑒𝑛+1 = 𝑐2𝑒2
𝑛 −

4[1−𝑐2𝑒𝑛+2𝑐2
2𝑒2

𝑛]

4(1+𝑐3𝑒2
𝑛)

      (26) 

Simplifying the right side in (26) further, we have: 

𝑒𝑛+1 = (−𝑐2 − 6𝑐2
2 + 8𝑐3

2)𝑒3
𝑛 + 𝑜(𝑒4

𝑛)     (27) 

Equation (27), contains the leading error term associated with PM and shows that the 

PM is a third-order convergent nonlinear solver.       

Using the formula for the efficiency index (E.I) [I], i.e. 

E.I = S1/n           (28) 

where  S shows the order of convergence of a method and n shows the number of 

evaluations required per iteration, the efficiency index of the PM is found to be 

1.3160740129 which is higher than the efficiency indices  1, 1, 1.2457309396, 

1.1892071150 and 1.2599210498 of the BM, RFM, Noor1, Noor2 and Noor3 

methods, respectively. The PM is cubically convergent and is more efficient than 

lower order methods BM, RFM and Noor3. The PM is also more efficient than the 

accompanying cubically convergent method Noor1, and interestingly even better than 

the fourth-order convergent Noor2. However, it must be mentioned here that the 

efficiency index of the classical NRM is 1.4142135623, more than others as it is the 

optimal method of quadratic convergence. The PM is better than NRM from the point 

of views of the higher order of convergence as well as fewer iterations to reach a pr-

specified error tolerance. The facts on the precedence of the PM over other methods 

are summarized and demonstrated in the next section. 

III.      Numerical Experiments, Results and Discussion 

Several nonlinear equations have been solved from the literature 

[XXI],[XVIII],[XVII], [II], [XVIII], [XI], [XIV] to check and compare the 

performance of the PM with other most widely used methods: BM, RFM and NRM. 

The numerical results associated with the following 10 examples are provided here 

for brevity. For the computation of error and verification of accuracy and precision 

the 20 decimal places’ accurate solutions obtained using the MATLAB and some of 



 

 

 

 

 

 

J. Mech. Cont.& Math. Sci., Vol.-15, No.-10, October (2020)  pp 110-123 

Adnan Ali Mastoi et al 

 

 

115 

 

which were also reported in previous studies are also shown beside each example. 

Table 1 lists the intervals containing the roots for Examples 1-10 as used in the BM 

and RFM, and also the initial guesses, as the mid-points of the intervals, used in 

NRM and PM.  

Example 1. 3x+  sin(x) –exp(x) = 0   (0.36042170296032440136) 

Example 2. Cos(x)  - x exp(x) = 0   (0.51775736368245829832) 

Example 3.  3x +  Cos(x) – 1 = 0   (0.60710164810312263122) 

Example 4.  4sin(x) – x +1 = 0   (2.70206137332604022180) 

Example 5.  Cos(x)  – x = 0    (0.73908513321516064165) 

Example 6.  Sin2 (x)  – x2  + 1 = 0   (-1.4044916482153412260) 

Example 7.  x2 – ex – 3x  + 2 = 0  (0.25753028543986076045) 

Example 8.  (x – 1) 3- 1 = 0   (2) 

Example 9.  2x – ln(x) – 7 = 0  (4.21990648378038144162) 

Example 10.  exp(x)-5x = 0   (0.25917110181907374505) 

Using higher precision arithmetic in the MATLAB software, PM and other methods 

were implemented and it was desired to achieve at least 20 decimal places’ accuracy 

between the exact and approximate solutions, or between any two successive 

approximations. The absolute error (A.E) formula used here are described in equation 

(29) for i = 0,1,2,… 

𝐴. 𝐸 (𝑖 + 1) =  {
|𝐸𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 (𝑖 + 1)|, 𝑖𝑓 𝐸𝑥𝑎𝑐𝑡 𝑖𝑠 𝑘𝑛𝑜𝑤𝑛

|𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 (𝑖 + 1) − 𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 (𝑖)|, 𝑖𝑓 𝐸𝑥𝑎𝑐𝑡 𝑖𝑠 𝑢𝑛𝑘𝑛𝑜𝑤𝑛
 (29) 

The observed order of convergence (Q)  [XX],[XVIII],[XVII], [II], [XVIII], [XI], 

[XIV] has been computed suing (30): 

       𝑄𝑗+1 =
ln (

𝐴𝐸 (𝑗+1)

𝐴𝐸(𝑗)
)

ln (
𝐴𝐸 (𝑗)

𝐴𝐸 (𝑗−1)
)
             (30) 

Using the formula (29) in every iteration, the absolute error distributions by all 

methods were obtained by all methods for Examples 1-10, and are shown in Fig. 1. It 

is evident from Fig. 1 that the PM always exhibits lower A.E. as compared to the BM, 

RFM and NRM for all examples. The A.E for first few iterations have been shown in 

Fig. 1, as the default lower limit in the Ms Excel for figures display is 1E-300, so 

errors below this were approximated by zero by Ms Excel. The errors are shown in 

reverse log scale for brevity, and the error distributions for the PM in Examples 1-10 

are always on top of others. Using the formula (30), the observed orders of 

convergence were computed for all methods in Examples 1-10, and the comparison is 

shown in Fig. 2. It is evident from Fig. 2 that all methods converge to their theoretical 

orders of convergence, i.e. to 1, 1, 2 and 3 of BM, RFM, NRM and PM, respectively. 

The PM method, even after minimizing the use of one additional derivative as in 

Noor1 method, maintains the cubic convergence in all examples. The orders of 

convergence reported in Fig. 2 have been computed in the last iteration of each 
method here it achieves at least 50 decimal places’ accuracy, i.e. A.E of atmost 1E-50.  



 

 

 

 

 

 

J. Mech. Cont.& Math. Sci., Vol.-15, No.-10, October (2020)  pp 110-123 

Adnan Ali Mastoi et al 

 

 

116 

 

As seen in Fig. 1 the PM achieves the required A.E earlier than other methods. For 

instance, in Example 1 through Fig. 1, it can be seen that PM achieves the required 

error in 5 iterations, whereas it takes the BM, RFM and NRM to achieve same in lot 

more iterations, i.e. 165, 50 and 7 iterations, respectively. Such comparison for all 

Examples 1-10 regarding the number of iterations required to achieve A.E of atmost 

1E-50 is shown in Fig. 3, and it is quite clear from Fig. 3 that the PM achieves 

required error too earlier than all other methods in the discussion. As a consequence 

of the lower number of iterations, the computational cost in terms of total functional 

and derivative evaluations of the PM is also smaller than BM and RFM methods for 

all Examples as shown in Fig. 4. Since the PM uses 4 evaluations per iteration, so the 

number of evaluations for each example to achieve pre-specified A.E will be the 

number of iterations timed the cost per iteration, i.e. 4 for the PM. The results in Fig. 

4 speak for themselves, as the evaluations in the Pm are smaller than those in BM and 

RFM as the latter requires much more operations than the PM. But, for the NRM the 

costs are lower and closer to the PM because NRM uses only 2 evaluations per 

iteration. Still the PM is better than the NRM from view-points being higher order 

convergent (Fig. 2), lower number of iterations (Fig. 3) and smaller error distributions 

(Fig. 1) for all examples. Thus, the PM exhibits strong precedence over other 

methods used in the comparison for all example nonlinear equations are taken from 

the literature.  

Table 1:  Intervals used in BM and RFM, and initial guesses in NRM and PM for 

Examples 1-10 

Example 1 2 3 4 5 6 7 8 9 10 

[a, b] [0,1] [0,1] [0,1] [8,9] [0,1] [-2,-1] [0,1] [0,1] [3,5] [0,0.5] 

x0 0.5 0.5 0.5 8.5 0.5 -1.5 0.5 0.5 4 0.25 

 

IV.    Conclusion 

For solving scalar nonlinear equations efficiently with lesser evaluations without 

compromising upon the order of convergence, we modified the Noor` method in the 

literature to propose a new and efficient derivative-based method. The proposed method 

uses four evaluations instead of five as in Noor1 and maintains cubic convergence. The 

theorem concerning the order of convergence and derivation of the leading error term has 

been proved. The efficiency index of the proposed method is found to be higher than of 

the BM, RFM, Noor1, Noor2 and Noor3 methods. Several nonlinear equations from the 

literature were solved to compare the performance of the proposed method with other 

methods. The proposed method shows lower error distributions, lower number of 

iterations to reach a pre-specified error tolerance as compared to other methods and 

maintains the theoretical order of convergence in all examples. The proposed method can 

be used to solve the nonlinear equations more efficiently as compared to other discussed 

methods.   
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Fig 1. Absolute errors (along Y axis on log scale) for Examples 1-10 for starting 

iterations (along X-axis) 
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Fig 2. Comparison of the observed orders of convergence in last iteration for 

Examples 1-10  
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Fig 3. Comparison of number of iterations to achieve AE of atmost 1E-50 for 

Examples 1-10  
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Fig 4. Comparison of number of evaluations to achieve AE of atmost 1E-50 for 

Examples 1-10  
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