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Abstract
In this study we collected the monthly raw data form DSE (Dhaka Stock Exchange)

and we analyzed the data based on curve fitting. We represented this curve in wavelet form,
especially in the form of Haar wavelet representation.
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1. Introduction
Wavelets are functions that satisfy certain mathematical requirements

and are used in representing data or functions. Wavelet transform of a function
is the improved version of Fourier transform which is a powerful tool for
analyzing the components of a stationary signal. The first connection of
modern wavelets was made by Jean Baptiste Joseph Fourier in the nineteenth
ceutury The next known link to wavelets came from Alfred Haar in the year
1909. After Haar’s contribution to wavelets there was a big gap of time in
research in this field until Paul Levy formulated some advance functions in
the field of wavelets from 1930 to 1970. The next major advancement came
from Jean Morlet around the year 1975. Morlet had made quite an impact in
the field of wavelets; however, he wasn’t satisfied with his efforts by any
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means. In 1981, Morlet teamed with man named Alex Grossman and they
worked on an idea that Morlet discovered while experimenting on a basic
calculator. The next two important contributors to the field of wavelets were
Yves Meyer and Stephane Mallat, who applied the concept of wavelets in
different applied problems. They introduced Multiresolution Analysis (MRA)
for wavelets. The last wavelet researcher in our knowledge is Ingrid
Daubechies who made a great contribution in the wavelet theory.

The Fourier transform is also a powerful tool for processing signals
that are composed of some combination of sine and cosine signals Mallat
(1999). Wells (1993) and Strang (1989) have shown that wavelets also allow
filters to be constructed for stationary and non-stationary signals. However,
wavelets have been applied in many other areas including non-linear
regression and compression. An offshoot of wavelet compression allows the
amount of determinism in a time series to be estimated Walnut (2001),
Wojtaszezyk (1997). Charles (1991), Christensen (2004), Daubechies (1992),
Addition, Paul S. (2002), Debnath (2002), Meyer (1993) extensively worked
on wavelets.

In this paper, we have discussed about different wavelets, their
properties and advantages. But with wavelet analysis, we can use
approximating functions that are contained neatly in finite domains. Also, we
collected the monthly raw data form DSE (Dhaka Stock Exchange) and we
analyzed the data based on curve fitting and then represent the curvés in
wavelet form, especially in the Haar wavelet representation.

2. Materials and Methods
Wavelets: Wavelets are functions that are confined in finite domains and are

used to represent data or a function. In an analogous way to Fourier analysis,
which analyzes the frequency content in a function using sines and cosines,

wavelet analysis analyzes the scale of a function’s content with special basis
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functions called wavelets. For details we refer Debnath, I.. (2002). Equivalent

mathematical conditions for wavelet are:

() ]Jwtx)i’:ﬁm, (i) ]‘]w{:}ktw. (i) ]E’;—:-}Edw-:m

where (@) is the Fourier Transform of y(x), (iii) is called the ad missibility
condition.
Wavelet Transform: Wavelet transform analysis uses a little wave like

functions known as wavelets. Wavelets are used to transform the signal under
investigation into another representation, which presents the signal
information in a more useful form. This transformation of signal is known as
the wavelet transform. Mathematically speaking, the wavelet transform is a
convolution of the wavelet function with the signals. Jean Morlet in 1982,
first considered wavelets as a family of functions constructed from
translations and dilations of a single function called the "mother wavelet",
y(x). For details we refer to Debnath (2002) & Eugenio Hernandez & Guido
Weiss (1996). They are defined by

l x—k :
EF e— _. ,k R_| ‘# u
W;,t(x) HI W’( ] J Ik € ¥

Here j and k& represent the scaling parameter which measures the degree of
compression and the translation parameter which determines the time location
of the wavelet respectively. The wavelet transform of f can be defined as

1 x—k
W, f(jk)= — dx
WS k) ]le!!‘{ 7 M(x)

where Mf;k} is the complex conjugate of w(x_—‘ﬁ) .There are many kinds
' 4 J

of wavelet transforms such as continuous, discrete, fast, complex transforms
as well as wavelet packet transforms.

Wavelet Series & Wavelet Coefficients: Now a day’s wavelet
representation of a function is very popular. Because Fourier transformation
loss time information but wavelet representation does not loss time

information. In the following way we can represent a function in wavelet
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series. The series 3 3 (f.¢7,, )y, (%) is called the wavelet series of f if the

JeZ kel

function fe LZ{R), and then (fow ) =d,, = ]f{-ﬂ W, (x)dx are called the

wavelet coefficients of 1.

Continuous Wavelet Transform: The continuous wavelet transform of
jL e
SeLrcan be defined as T, f(.k)=|j[? If{xJW[“Tft)dw{f.m},

where 7 ,(x)is the complex conjugate ofy ,(x),

xX—

1
w}_l(.:)=|j|'3w( J_k] is translated by & and dilated by j of y and 7, 1(j,4)

is called the wavelet transform of Ax) in Ly(R).
Haar Function: A function defined on the real line R as

I for xe[0.1/2)
wx)=4-1 for xe[1/2,1)

0 otherwise
is known as the Haar function. The Haar function w(x)is the simplest
example of a wavelet. The Haar function y(x) is a wavelet because it satisfies

all the conditions of wavelet. Haar function is discontinuous at x = n,%,l and

it is very well localized in the time domain. Haar function is known as Haar
wavelet,

Haar Wavelet Representation of functions:
Haar Scaling Function: The Haar scaling function can be defined as

1if 0 1
ﬂ‘}=flﬂ.l}(*‘:'={ if0sx<

0 otherwise. :
Haar Wavelet Function: Haar wavelet function w(x) in terms of scaling

function can be written as ;
L if 0sx<1/2

W) = Zouny(¥) = iy (®) ==L ¥ %514!

0, otherwise.

Haar Wavelet Series and Wavelet Coefficients: Let / be defined on [0, 1],
then it has an expansion in terms of Haar functions as follows. For any
integer j, 20,
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My w i b o M
=2 .00+ 2.3 fvow, ()= 2%k P+ > d, v
=0 Jody &0 = Joio 40

The series is known as the Haar wavelet series for the given function f.
d,, and ¢, , are known as the Haar wavelet co-cfficient and the Haar scaling

co-efficient, respectively and are given by
dia=[FG) wu® dsand e, = [ /() o, ds
Share m;ket general index: Index :unsists of group of shares. Index
denotes the direction of the entire market. Like when people say market is
going up or down then that means Index is going up or down. Index consists
of high market capitalization and high liquidity shares. High Market
capitalization shares - Companies having highest number of shares and
highest price of each share. Market capitalization is calculated by multiplying
current share price and number of shares in the market. High Liquidity shares
- Shares in the market with high volumes.
Curve fitting as a straight line: Let (x,,y, )/ =123,.....n be a given set of n
pairs of values, x being independent variable and ¥ the dependent variable.
The general problem in curve fitting is to find, if possible, an analytic
expression of the form y = f(x), for the functional relationship suggested by
the given data.
Let us consider the fitting of a straight line as
y=a+bx (1)

To a set of n points (x,y,)i=123,...,n equation (1) reprcs:ﬁts a
family of straight lines for different values of the arbitrary constants @ andb.
The problem is to determine aand & so that the line (1)is of the line “best fit".

The term “best fit” is interpreted in accordance with Legender’s
principle of least squares which consists in minimizing the sum of the squares
of the deviations of the actual values of y from their estimated values as
given by the line best fit.
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Figure 1

Let A(x,,y,)be any general points in the scatter diagram. Draw
FM 1 x-axis meeting the line in 4. Abscissa of 4, is x, and since H, lies
on (1), its ordinate isa+bx§_ Hence the co-ordinates of H, are(x,a+bx,).
From fig, 1

£H, = EM~HM =y, ~(a+bx)
which is called the error of estimation or the residual for y, .
According to the principle of least squares, we have to determine @ and b so
thﬂt'

E =i_PfH?=§-L“-a'—ﬁ:l),
=]
mminmum.methcmxmmdmmmﬂwwﬁaldmvatm of E, with
respect to a and b should vanish separately, i.e. ]
OE :
0= -:Z;[y, —a-bx]
=3y =na+b3 s, @
f=l -l
Again
& =0=2n-a-bx](-x)
e
: Vo= _&l x 3).
=§m¢. a§x; + Z«rf 3
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Equation (2) and (3) are known as the normal equations for estimating @ and b.
From our collected data we can find the Table | and Table 2 for finding a and b

Table 1 Monthly DSE general index for 2005 to 2008

x y x xy e i Xy
1 1893 1 1893 | 1 1893
: 1682 9 3364 8 16 6728
3 1660 9 4980 27 81 14940
4 1692 16 6768 64 256 27072
5 1328 25 6640 125 625 33200
6 1570 36 9420 216 1296 56520
7 1644 49 11508 343 2401 80556
8 2050 64 16400 512 4096 131200
g 294] 81 26469 729 6561 238221
10 2961 100 20610 1000 10000 296100
11 3090 121 33990 1331 14641 373890
12 2530 144 30360 1728 20736 364320
Zx= Z}': Z;{'!l‘: Z;}J: ZIJ= Zx‘: szy=
78 25041 650 181402 6084 60710 1624640
%, y represents month and general index respectively,
From (2) and Table 1 we get
25041 =12a+78b (4)
From (3) and Table 2 we get
181402 = 78a + 6505 (5)

Solving (4) and (5) we get
a=1239.68, b=130.32, y=1239.68+130.32x
which is our mathematical model as a straight line.
Mathematical model as an algebraic equation

If the curve represented by a 2™ degree equation, then we consider

y=a+bx+ex®

E=

1

Z[y, -a-bx, -m;z]
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" A : l
Ly=nasbyxeyy, o
iml inl L
%ﬂh};m-a—bx -
tx'yf .—-..az..r, +btl’,l+¢2xf M
ey i) =1 il
%: 0 =.—2§[y, —a-bx, _c‘}}f
Sty =a st +b3x ve X N
= i= L =

From (6) and Table 1 we get, 25041 =12a+78b + 650¢
From (7) and Table 1 we get, 181402 = 784+ 6505 + 6084
From (8) and Table 1 we get, 1624640 = 6504+ 60845 + 607 10c
Solving above all those equations we get
a=1830.39, b=-122.84, c=19.47
y=1830.39-122.84x+19.47x° 9)
This is the mathematical model of the above data.
Mathematical model as a power curve
If the curve represented by power curve, then we consider y=ax’. Taking log
on both sides we get, logy = loga + blog x
Putting logy =)', loga=4 and logx=x we get the following mathematical
model of DSE General Index for the year 2005 to 2008,
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Table 2: Monthly DSE general index for 2005 to 2008

x| y logx=x logy=y xy x?

1 | 1893 0 3.277 0 0

2 | 1682 0.3031 3.225 0.9707 0.0906
3 | 1660 04771 3.220 1.536 0.2276
4 | 1692 0.6020 3.228 1.943 0.3624
5 | 1328 0.6990 3.123 2.183 0.4886
6 | 1570 0.7782 3.195 2.486 0.6055
7 | 1644 0.8450 3.215 2.716 0.7140
8 | 2050 0.9030 3312 2.990 0.8154
9 | 2941 0.9541 3.468 3.308 0.9101
10 | 2961 | 3471 3.471 1
11 | 3090 1.041 3.489 3.632 1.083
12 | 2530 1.081 3.403 3.675 1.1664

2% =868 |3 y'=3963 | Yxy =28913 | T x" =7.46
Xy represents month and general index respectively.

The normal equations are
Dy =nd+ by x
From Table (2), 39.63=12A+8.68b (10)
Yy = AY x +b) x*
From Table (2), 28.913=6.68A+7.464b (11)
Solving (10) and (11) we get,
A=3.1509 i.e. a=1412.53 and b=0.208
¥ =1412,53x1%" (12)

This is the mathematical model of the above dara,
Haar Representation of Continuous Funetion:

Example 1:
From (9) the function can be written as

19.47x* —122.84x+1830.39 if 0sx<lI
0  otherwise,

f(x)={
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We can represent f(x) aa(A).Letthestaﬂingscalebej,:ﬂ.mthucalhg

]
coefficient c,, = [(19.47x ~122.84x+1830.39) g o (x) dx =1775.46 and the wavelet
o

I
coefficients  d,, = [(19.47x" ~12284x+183039) y,, (x)dx=25.8425,  similarly
[+]

do=10, d,, =827, d,,=3683, d,, =338, d,,=3.1 d,,=2.76 and
so on, Therefore

S =19475" ~12.84x-+183039 =177546 g,()+{2584 yye(0]+

(1010 o) +82704, ()]+[368 as()+338 44, (431 4,(9+276 i () e
Vo=1T7546 @o(x), W, =25.84 y,,(x). W, =10.10 w,,(x)+827y,,(x))

W, =368 yyp(x)+338 (0430 wyu (04276 ()
V=V, ®W,=1775.46 ¢,,(x)+25.84 ,,(x)and

V=K OW =V, Om O, =171546 ¢,(x)+2584 ,,(x)+10.10 Wio3) 4827, (1)
K=V, 8W, =V oW oW, |
=177546 9,5 (x) + 2584y, (x) +10.104, ,(x) +827y, (x)+
B.68w,,0(x)+338y,, (1) + 3.1y, (x) + 276455 (x)]
where ¥, and W,, j> O are the orthogonal subspaces of Z,[0,1]and® is the
direct sum.
1820
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Figure 1.1 Graph of f(x)
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Figure 1.2 Graph of¥
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Figure 1.3 Graph of ¥,
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Figure 1.8 Graph of #,
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Figure 1.10 Graph of f(x)and ¥, jointly
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Example 2: From (12), the function is

1412.53 9% ir 0<i<l

g ={u otherwise
We can represent f(x) as (A). Let the starting scale be j;=0, so the scaling

coefficient

1
€, = [€'Po0(x)dx =1169.31 and the wavelet coefficients
0

dy, =—156.99, d,,=-96.107, d,, =-32.90,
d,, ==-58.83, d,, ==20.238, d,, =-13.39, d,;=-1023 and so on.
Therefore

f(x)=1412.53 ¥

=116931 gy o(0)+~156.99 () [+[-96.11 (03290 y;, (0 ]+

[5883 4,(x)-2024 44, ()-1339 () -1023 yyy(x) |+
Vy=1169.31 g,4(x), W, ==156.99 yio5(x), W =-96.11 y,(x)~32.90y,,(x))

W, ==58.83 y,,(x)-20.24 Wy, (x)—13.39 w,,(x)-10.23p,,(x)
V,=V,@W,=1169.31 @,,(x)-156.99 w,,(x)and

V, =V, ®W, =V, O, O, =116931 g,,()-15699 yoq(x)~96.11 y(x)~3290p,(x)=
1169.319,0 () — 156.99, (%) = 96.1 17, (x) = 32.90y, , (x)

V, =V, O, =V, O, W, =116931 ¢,,(x)—156.99,,(x)~96.11 4,,(x)—-32.90y,,(x)+
[-58.83 ¥, (x)-20.24 (1) -1339 ,,(x)-10.23 g, ()]

where ¥, and W, , j= Oare the orthogonal subspaces of L,[0,ljand® is the
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Figure 2.10 Graph of /(x)and ¥, jointly

Using Mathematica we have drawn this above all the graphs,
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3. Result and Diseussion

From the figures of the wavelet functions, we observe that wavelets are
well localized in both time and frequency domain whereas the standard curve
is only localized in frequency domain. The collected monthly data of DSE
(Dhaka Stock Exchange) general index is well analyzed by curve fitting as
well as by wavelets. This study of data is made in various aspects and which
can be seen from given figures. Wavelets give better results than the curve
fitting processes. Hence we can say that data compression is the great
achievement of wavelet transforms ie. in wavelet transform, it is often
possible to obtain a good approximation of the given function f by using
only a few coefficients.

4. Conclusion
~ From our above discussion it is clear that the experimental results show

that the wavelet transform based approach is better than the existing minutiae
based method and it takes less response time which is more suitable for online
verification with high accuracy. The analysis of collected monthly data of
DSE (Dhaka Stock Exchange) general index give a clear presentation of
economic ups and downs which is very important to the development of
~ financial system of the country. We discussed about wavelets, wavelet
transforms, representation of a function in terms of Haar wavelet. Wavelet
‘transform is a new tool to approximate a function. By using Haar scaling
coefficients and Haar wavelet coefficients we approximate continuous
functions such as algebraic and power functions. We represent continuous
curve in terms of Haar wavelet because wavelets are well localized in both

time and frequency domain.
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