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Abstract:

In this article an analytical approximate solution has been investigated for
obtaining the transient response of fourth order more critically damped nonlinear
systems. The results obtained by the presented technique agree with the numerical
results obtained by the fourth order Runge-Kutta method nicely. An example is solved
to illustrate the method,
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L. Introduction

The control of micro vibration has become a growing research field due to
the demand of high-performance systems and the advent of micro and
nanotechnology in various scientific and industrial fields, such as,
semiconductor manufacturing, biomedical engineering, aerospace-equipments,
and high-precision measurements. In micro and nanotechnology a small

vibration has great significance, since due to a small vibration the produced
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equipment may be defective. So, in micro and nano-technological industries,

vibration is avoidable rather than desirable. But it arises in different way, such
as, earthquake, direct disturbance etc. Accordingly, the control of vibration in
micro and nano-technological industries is very essential (see also Emdadul e
al. [5], Mizuon er al. [8] for details). So, we should keep watch that the
originated vibrations come to its equilibrium position within minimum time
and the more critically damped systems have this characteristic. Therefore,
more critically damped systems play an important role in micro and nano-
technological industries.

To investigate the transient behavior of vibrating systems the Krylov-
Bogoliubov-Mitropolskii (KBM) [4, 6] method is an extensively used tool.
Originally, the method was developed for obtaining the periodic solutions of
second order nonlinear differential systems with small nonlinearities. Later,
the method extended by Popov [11] to investigate the solutions of nonlinear
systems in presence of strong linear damping effects. Owing to physical
importance Popov’s results were rediscovered by Mendelson [7]. Murty et al.
[9] developed a technique based on ;hé method of Bogoliubov'’s to obtain the
transient response of over-damped nonlinear systems. Later, Murty [10]
presented a unified KBM method for second order nonlinear systems which
covers the un-damped, damped and over-damped cases. Sattar [14] found an
asymptotic solution of a second order critically damped nonlinear system.
Shamsul [16] developed a new asymptotic solution for both over-damped and
¢ritically damped nonlinear systems.

Shamsul and Sattar [15] developed a technique based on the work of
KBM for obtaining the soluﬁon of third order critically damped nonlinear
systems. Later, Shamsul [17] investigated solutions of third order critically

nonlinear systems whose unequal eigenvalues are in integral multiple. In

article [17], Shamsul also investigated solutions of third order more critically
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damped nonlinear systems. Rokibul et al. [12] found a new technique for
obtaining the solutions of third order critically damped nonlinear systems.

In article [9], Murty et al. also extended the KBM method for solving
fourth order over-damped nonlinear systems. But their method is too much
complex and laborious. Akbar e al. [1] presented an asymptotic method for
fourth order over-damped nonlinear systems which is simple, systematic and
casier than the method presented in [9], but the results obtained by [1] is
identical as the results obtained in [9]. Later, Akbar er al. [2] extended the
method presented in [1] for fourth order damped oscillatory nonlinear
systems, Rokibul es al. [13] extended the KBM method for obtaining the
response of fourth order critically damped nonlinear systems.

In the present article, we have investigated solutions for obtaining the
transient response of fourth order more critically damped nonlinear systems.
The results obtained by the presented technique match nicely with the results
obtained by numerical method (fourth order'Runge-Kutta method).

2. The method
Consider a fourth ordér weakly nonlinear ordinary differential system

XV B X+ kR + kg +kx =~ f(x) (N
where x) denote the fourth derivative of x and over dots are used to denote
the first, second and third derivative of x with respect to #; k,, k,, k;, k, are
characteristic parameters, ¢ is a small parameter and f(x)is the given
nonlinear function. As the equation is fourth order so there ar;: four
real negative eigenvalues, and three of the eigenvalues are equal (for
more critically damped). Suppose the eigenvalues are-A,-4,~4,-u.
Whene =0, the equation (1) becomes linear and the solution of the
corresponding linear equation is

I x(t,0)=(a, +b, t +cyt*)e™ +d, e (2)
where a,, b,, ¢,, d, are constants of integration.
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Whene # 0, following Shamsul [16] an asymptotic solution of the equation
(1) is sought in the form

x(t,e)=(@+bt+ct?)e +de™ +eu (a,bc, d, )+ 3)

where a, b, ¢, d the functions of ¢ and satisfy the first order differential
equations
a(t)=¢ A(a,b,c,d, )+
b(t) = B,(a,b,c,d, 1)+
é(0) =€ Cy(a,b,e,d,t) ++-
d(¢)=¢ D,(a,b,c,d, 1)+

(4)

Now differentiating (3) four times with respect to / substituting the
value of x and the derivatives %, ¥ ¥,x* in the original equation (1),
utilizing the relations presented in (4) and finally extracting the coefficients
of e, we obtain

A 5*'4 0B ’C, _oC 2*C
¢ “‘[é—;+p—£)[?~‘-+3—a-}‘—+6q +r[ &2'_ +6 a{’]+f2 61’1}

. (5)
i N igeaies ©
+e EHI.-JH D, + 'a—‘,"'j- =t w=~f"(abec,d.)

In this article, the functional f® is expanded in the Taylor’s series of the
form (see also Sattar [14] and Shamsul [15-17] for details)

f{(}] A i[ (bf + ct!)." i};}(a’d)e-—[m-uy):] (6)

1=0 i, j=0

Thus, using (6), the equation (5) becomes

2 p . Agr
e-z:(§+p_l){ a’A| +3§§+6C1 +![a&f| +65Cl}+tl 0 («|}

2 a, a,l

3 3 @ @
+e“’”(ﬁ+ﬂ.~—pJ D, +(£+ﬁ.) [ﬁ-r,u)u‘ =-Z((b1+crz)’ ZF}(a,d)e‘”"*“‘“]
ot ot ot =

i, j=0

(D
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KBM [4, 6], Murty er al. [9], Sattar [14], Shamsul and Sattar [15],

Shamsul [17] imposed the condition that u, can not contains the fundamt_:mal
terms (the solution (2) is called generating solution of (1) and its terms are
called fundamental terms) of /', Therefore, equation (7) can be separated for
the unknown functions %,and 4,,8,,C, D, inthe following way:

7 2
e"“[-ﬁiﬂz ;t] i —- e 6C, +1 §—+66C i 20
ot ot Ot o’ ot o

+e“”( +A- ,uJ D, =~Zl:((b:+ct ¥ ZF(a d)e'“’"'“’”}

=0

And

a : B (i A+ upi
[E-‘-AJ (3 +.“J“1—“Z((b’+0’ 3 ZF(ad)e( ’J 9

i, j=0

Now equating the coefficients of ¢°, +' and ¢?; from equation (8), we

obtain
2
it = JRad)er s (10)
=Ar 0 62‘Bl aCI 3 =(id+j )
=t p=A || —++6—L|=-b Y F(a,d 11
: (6:“‘ )(aﬁ S :‘,;‘Zﬂ} Liel S
And

o 8’4, 0B,
[af +ﬂ-l)(-’é———"+3—é}—+6ClJ

3
+e"‘”(: e ,u) D= ZF (a,d)e"““*”‘”

i,4=0

(12)

Solving the equation (10), we obtain
_ S cF(ad)et-hmim . s
A+ G=-Dp)-DA+jp)

Substituting the value of C, from (13) into equation (11) and solving, we

obtain
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w c F;(ﬂ', d) e-((f~l}4+j-p}i i bE ( a, d) e-([:—l)ﬂ-r;;;]: (14)
L2(-DA+ i) (A+G-Da) SHG-DA+iu} (2+G-Da)

Now substituting the value of C, from (13) and B, from (14) into equation

B =

(12), we obtain

uf® FA [ :
u(§+p-l]a‘f'+ ( +ﬁ-—,uJ

cFad)e ™ ebFad) et &
==]2 E.(a, e—(Mﬂyli
; G-Davjf = @-Da+ig Z e

(15)

Now, we have only one equation (15) for obtaining the unknown

functions 4, and D,. Therefore, to separate the equation (15) for obtaining the
unknown functions 4, and D,, we need to impose some restrictions (see also
Shamsul [17] and Akbar et al. [3] for details) and thus the value of 4, and
D, can be found subject to the condition that the coefficients in the
solution of .A. and D, do not become large. This completes the
determination of 4,, B,, C, and Dl;

Since 4, b, é, d are proportional to small parameter e, SO, they are slowly

varying functions of time ¢ and for first approximate solution, we may
consider them as constants in the right hand side. This assumption was first

made by Murty et al. [9]. Thus the solutions of the equation (4) become

]
a=ay+& [4,(ay,by,Codo.1)
0
1
b= by +& [By(ag, by, o»dos)
; (16)
c=0, +£IC,(au,bu,cu,du,r) dt
] .

d = dy +& [Dy(ag by, €y, o, )
0
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Equation (9) is an inhomogeneous linear ordinary differential equation;
therefore it can be solved by the well-known operator method.
Substituting the value of a, b, c,d and u, in the equation (3), we shall get
the complete solution of (1).

Therefore, the determination of the first order improved solution is
completed.

Example

As an example of the above method, in this article, we have considered
the Duffing equation type fourth order nonlinear differential system
x4 kX ki kx+kx=—£x’ 17
Here f(x) = x’. Therefore,
1O =g 4 34% e R L3 g? N 3ot
Hot+c?) Bae™ +6ad e 4382 HW) (g
Hbt+c )} Bae™ +3d e )i (br+cr?Y e

For example equation (17), the equations (9)-(12) respectively become

3
[; +ﬂ.] [2 +,uJu, {b*Pe* +6abc’ e +3b et e

+3acttt e 43bR e vt tt e 4 6bed e B! (19)

$3¢7dr e A 4 3ab e +3d b e M|

2
e"“[g + - /’L] aac w{3az ce™ +6acd e +3cd’ e"““"’_’“"] (20)
ie

e—"*(-ga-p-;tj [%—? GE} ={3abe™ +eabd @ +pd | (21)
and
3
-uf @ 62‘41 aBI m:(a }
—t pu=Al| —+3—+6C —+A-u| D
e [at+,u AJ( o + 5 +6C, |+e Y i , 22)
5 _{ase-u: +3a%d e 4 347 eI dje_“"}
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The solution of the equation (20) is
C,=l a*ce® +l,acd e 4] cd® ™ (23)
where
L=GPL)/4, L,=GBQ*L)/2, I,=CBOM?)/4, P=1/3A-u),
O=1(A+w), L=1i, M=l/y.

Putting the value of C,from equation (23) into equation (21) and solving,

we obtain
Bi=m, a*ce™ +m, acde™™®' +m,cd? e
(24)
+m, a*be*' + mabd e +mbd? e
where
m =9PL 4, m,<18Q°L, m,=90M*/4, m,=3PI*/4,

m,=30°L |, m =30M 14,
Substituting the values of B, and C, into equation (21), we shall get an
equation for unknown functions 4, and D,. To separate the equation (22) for

determining these unknown functions, in this article, we considered the
relation 4 ~3 u exists among.the eigenvalues (see also Shamsul [15, 17] for
details). i. e. the unequal eigenvalue A is the multiple of 2. This type of
relation (A ~ 3 u) appears intuitively in the symmetric problems. Since our
~ problem (example equation (17)) is symmetric, therefore consideration of

such type of relation is logical. Therefore, under this relation, we obtain
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e*’“(§+ JTRs l)—a;i:!- =6m A(u~-34)a’c e
=12 A(A+wymyacd e — 6y (A + p)m, cd? "R
+6A(u-3A)m,a*be* ~6 (A + u)msabd e @+ (25)
=6 u(A+puhmebd? e 4 6 (y-34)l,a%c e

+24 Al,acd e Ao ~_b-6(/?.+ ,u)fs_cdz et wqle

“3a2d e-(z.h,u)t _3ad2 e-(.l+2,u}t

e ’(g +A- ,uT D, = —d%e™ %! (26)
The particular solutions of (25) and (26) respectively become
A=na’ce® +n, acde™ ™ +n,cd® e +n, o be™ M
+nsabd e ™ +nbd’ e +n, a’c M tpacde ™ (27)

+nycd e +n, a’e?

+m, a’d e +n,ad?
Di=p d'e? : (28)
where '
m=21PL'/8, m=18Q°L, n,=2710M*I8, n,=9PI*/8
ng=90L, n,=90M'/8, n,=-9PI"/8, n,=-90Q'L,
ne=-9QM*/8, no=-PL* 4, By st LIz,
n,=30M*14,  p = —(%.
The solution of the equation (19) for , is
w =(n £ +r, 12 +r33‘+r4)(!b3 +6abc)e‘”' +(r5 1P 4 4r )
x(b* c+ac*)e +(r,0£5 +r P +.t*,41‘-i-r,5).t')c2 e
+(1r'“\i 41, Hngt +1,0 41yt +;r~2,;"+r23)c:'3 g
+(r23 £+, +r25t+r25)bcde'“”2 i 29)
+(r2? trg gt +rmt‘+r3,)c2 dy e

o Frgt 41, )ab e 2 Frgt+ 1y, b 2 1
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where

—_pI}/8, nr=nrBP+9L/2), r,=r (6P +9PL+9L),
” =r,(6P’_+9P2L+9PL2+15L-‘f2), r,=-3PL*18,
r,=F (4P+6L), ey (l?.P2 +18PL+18L%),

r=r 24P +36P2L+36P 1} +30L°),

—r, (24P +36P° L+36P* L' +30PL +4504/2), r,=-3PL/8,
r, =1, (5P+15L/2), ry =10 (20 P? +30PL+30L%),
" =rw(60P3+90P2L+90PL3+75L3)
_ , =1, (120P* +180P° L+180P* I +150PL3 +2251'12),
-r“,(120P5 +180 P* L+180 P> I* +150P? I’ +150 P L' +315L514)
r;‘, =-PL'/8, ry =re(6P+9LI2),
ny =1 (B0P? +45PL+45L), '
ry =1 (120 P +180 P* L+180P L’ +1501%),
. =1 (360 P* + 540 P* L+ 540 P L* + 450 P L' + 673 L' 12),
Sl (720 P* +1080P° L+1080P° L* +900P* L’ +675PL* +9451° 12)

ry, = 1 (720 P® +1080 P° L+ 10802 2 +900 P L

+675 P* L' +945P L* /24315 )
ry==30°LI2, 1y =1y (3L/2+90),
r25=r23(3L2!2+9QL+9Q2],
(3L3;4+9QL/2+9Q1L+60Q) ry=-30°L/2,
rzs=r17[2L+l2Q), ny =1, B L +18QL+720%),

= r, B +18Q L +7207 L+ 2400°),
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Py =y (SL" 12+901 +360% I* +1200° L+360Q4), r,=-3PL/8,

re=ryBL+2P), n, =r, (I +3PL+2P?), rs =-30°L/2,
rs =ns(6Q+1), Iy = Iy (IZQE“"?‘QL""L!”)‘

Substituting the values of 4,, B,, C,, D, from the equations (27), (24), (23) and
(28) into equation (16), we obtain

. -2l : _ p-(Avani 2y . -2t
azau+£{n‘a" c"zg . )+n’a"t"c:;'£]ﬂ)e 5 )+”3"od02‘(:‘ . #)

Jnao’h (- ) noabd e nobd(1- )
w2A A+ p) 2u

> n,a,’c, (1 et G d, (I- e'“*"") T ng codoz(l - e""”)
24 (A+ 1) 2u

W a,’ (l - e‘“')+ B0 d, (l = e"““‘“)+ nyy aydy’ (l - e’z"“)
27 A+ 5 P

2 =24t A 2 -
b m a,’c, (1-e )Imzaﬂcd(l-e" +*"")Ir.‘ri.jc:d (l—ez"”)
b'%+£{ 2 b o e

(30)

: m, anzbo (l ___e-u:)+ ms ay by d, (l"e-uml)_'_ mg b, dﬂz (I _e-zp:)}
24 (A+u) 2u

e s{f' a,’c, (l —e‘“’)+ hLayeed, (1 ~e"‘“‘”“)+ Le,d,’ e“’”’}
. 24 A+ p0) 2u
dje?*!
2u ;
Therefore, we obtain the first order approximate solution of the equation
(17) as
x(t,e)=(a+bt+ct*)e* +de™ +eu(a,b,c, d,t) (31)

d=d, +e£

where a b,c,d are given by the equation (30) and u, given by (29).

4. Resulis and Discussion

In order to test the accuracy of an approximate solution obtained by a
certain perturbation method, we compare the approximate solution to the
numerical solution. With regard to such a comparison concerning the
presented technique of this article, we refer the work of Murty ez al. [9]. First,
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we have considered the eigenvalues A=3.1, u=1.0 (A=3u). We have
computed x(#,€) by (31) in which 4, b, ¢, d are computed by equation (30) and
u, is computed by equation (29), when £=0.1 together with two sets of
initial conditions (i) a,=05 b, =00, ¢ =03 d,=01 [or
x(0) = 0.599982, x(0)=-1.749542, ¥=5.902058, ¥(0) = ~21.860722] and (ii)
g, =04, b,=00, c,=04, d;=0.1 [or x(0)=0499969, x(0) =—1.439448,
% =5.140599, %(0)=—-20.739441] for various values of ¢ and the results are
presented in the second column of the Table-1 and Table-2 respectively.
The corresponding numerical results (designated by x*) have been
computed by a fourth order Runge-Kutta method and the results are presented
in the third column of the Table-1 and Table-2. The percentage errors have
also been calculated and are presented in the fourth column of the Table-1 and
Table-2. The first column represents various values of t.

Table-1

t X x Errors%
00 1 0.399982 | 0.599982 | 0.00000
05 | 0.163559 | 0.163550 | 0.00550
10 1 0.056936 | 0.056904 | 0.05623
15 1 0022951 | 0.022912 | 0.17021
70 | 0010342 | 0.010310 | 031037
55 [ 0,005155 | 0.005133 | 043711
30 | 0002788 | 0.002774 | 0.50468
35 | 0.001592 | 0.001583 | 0.56854
20 1 0,000938 | 0.000932 | 0.64377
45 | 0.000561 | 0.000558 | 0.53763
50 | 0.000338 | 0.000336 | 0.59523

Initial values are (i) a =05, b, =00, ¢ =03, dy =01 ande=0.1
x is computed by (31) and x" is computed by Runge-Kutta method.
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Table-2

t % x' Errors%
0.0 | 0499969 | 0.499969 | 0.00000
0.5 0.147644 | 0.147639 | 0.00338
1.0 | 0.056938 | 0.056921 | 0.02986
L5 [ 0024147 | 0.024127 | 0.08289
20 | 0.010951 | 0.010935 | 0.14631
25 | 0.005381 | 0.005370 | 0.20484
3.0 | 0.002861 | 0.002854 | 0.24526
35 0.001614 | 0.001609 | 0.31075
4.0 | 0.000944 | 0.000941 | 031880
45 0.000563 | 0.000561 | 0.35650
50 | 0.000339 | 0.000338 | 0.29585

Initial values are (ii) ag =04, by=00, cp=04, dy=01 and =0
= Is computed by (31) and x' is computed by Runge-Kutta method.

Secondly, we have considered A = 4.6, H#=15 (A=3u) and x(,¢) is

T

computed by (31) when £ =0.1 together with two sets of initial conditions
(i) a,=05, b, = 0.0, ¢, =03, dy=0.1 [for x(0)=0.599999,
#(0)=-2.549924, %=12.004210, %(0)=-60.204288] and (i) a, =04,
by =00, ¢;=04, dy=0.1 [or x(0)=0499999, #(0)=-2.08992l,
x=10.088197, ¥(0)=-53.230522] for various values of ¢ and the results are
presented in the second column of the Table-3 and Table-4 respectively.
The corresponding numerical results (designated by x*) have been
computed by a fourth order Runge-Kutta method and the results are presented
in the third column of the Table-3 and Table-4. The percentage errors have
also been calculated and are presented in the fourth column of the Table-3

" and Table-4. The first column represents various values of ¢
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Table-3

t x x Errors%
0.0 0.599999 0.599999 | 0.00000
0.5 0.092656 0.092655 | 0.00107
1.0 0.023288 0.023280 | 0.03436
1:5 0.008250 0.008244 | 0.07278
2.0 0.003495 0.003492 | 0.08591
2.3 0.001592 0.001591 | 0.06285
3.0 0.000744 0.000743 | 0.13485
3.5 0.000350 0.000350 | 0.00000
4.0 0.000165 0.000165 | 0.00000

Initial values are (i) a, =05, b =00, ¢ =03, 4 =01 ande=0.1
« is computed by (31) and x" is computed by Runge-Kutta method.

Table-4

t x x Errors%
0.0 0499999 | 0.499999 | 0.00000
0.5 0.085137 | 0.085138 | 0.00117
1.0 0023288 | 0.023284 | 0.01717
15 0008376 | 0.008373 | 0.03582
2.0 0.003525 | 0.003524 | 0.02837
2.5 0.001598 | 0.001597 | 0.06261
3.0 0.000745 | 0.000744 | 0.13440
3.5 0.000350 | 0.000350 | 0.00000
4.0 0.000165 | 0.000165 | 0.00000

Initial values are (ii) a, =04, by =00, ¢ =04, do=0.1 and £=0.
« is computed by (31) and x" is computed by Runge-Kutta method.
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From the above four Tables, we observe that the errors are much smaller

than 1%.

5. Conclusion

An analytical approximate solution of fourth order more critically damped
nonlinear systems is investigated in this article. The results obtained by the
solution equation (31) for different sets of initial conditions as well as
different damping forces show good coincidence with those results obtained
by numerical method. The results may be used in various scientific and

industrial fields where control of vibrations is needed.
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