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Abstract 

In this paper, the transversal vibrations of axially moving strings under 

structural damping are studied. The focus on the possibility of the truncation method 

has been discussed. Governing equations of motion are modelled as second order 

linear homogeneous partial differential equations with constant coefficients.  The 

string is taken to be fixed at both ends. To construct the asymptotic approximations, 

the Fourier expansion method in conjunction with the two timescales perturbation 

method is employed. Amplitude-response of individual mode is computed under the 

effect of various structural damping parameter values. It is obtained that the response 

of individual mode decays as time increases. Furthermore, to investigate the 

applicability of the truncation method, the method of characteristic coordinates and 

two timescales perturbation methods are used in conjunction with each other. The 

amplitude-response subject to the specific initial conditions under the effect of 

various structural damping parameter values is computed. It turned out that 

amplitude-response decay as time increases. The energy of the system is also 

computed and found to be decaying as time progresses. From the amplitude-response 

of the system and individual mode amplitude-response, it is found out that the mode-

truncation is allowed in the structural damping case.  

Keywords : Transverse vibrations, asymptotic approximations, structural damping, 

perturbation method. 
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I.    Introduction  

Many real life necessities like weighing cables, elevator cables, vertical 

beams, power transmission wires, tram-ways, and oil pipelines fall in the category of 

axially moving strings. These systems have been studied for last seven decades, and 

still gain attention of the researchers, because of their huge applications. Despite their 

wide range of applications in engineering, the vibrations have limited their 

applications. It is therefore essential to analyze the dynamic of the systems in terms of 

vibrations, specifically, the transverse vibrations and stability analysis of the systems.  

Wind, earthquake and other external excitations induce vibrations in these systems. 

The transversal vibrations [VIII], [XII], [XIII], [XIV], longitudinal vibrations [V] as 

well as coupled (transversal together with longitudinal) motion [VI], [XI] helps to 

study the behavior of axially moving system. 

To control the vibrations in structural and mechanical systems, various kinds of 

damping such as external (viscous) damping [VII], [XIII], [XX] and internal 

(structural) damping [X] are used. In addition, most of the studies on axially moving 

string are also concerned with the vibrations at the boundaries [II], [III], [IX], [XVII]. 

In most physical systems, the damping is incorporated by means of dissipation of the 

energy and isolation of the energy [XVIII]. The damping is of great importance in the 

design of engineering structures, as it brings sustainability into systems. The response 

behavior and undesired oscillations are controlled by means of dampers. Few 

examples are viscous drag, resistance in electronic frequencies, and absorption in 

scattering of light waves. Damping is essential in oscillating systems occurring in 

bikes and biological systems, which is not related with energy loss. Damping can be 

classified into two classes: External (viscous) damping and internal (structural) 

damping. In this work, we consider the structural damping, with damping parameter, 

denoted by parameter 𝛿, ranging between 0 and1. The effect of damping parameter is 

discussed in details and respective results are presented in this work. 

Mathematically, the transversal and/or longitudinal vibrations are modeled as (non) 

homogeneous (non) linear second order partial differential equations (string-like 

models) [XIV], [XIX], [XXI] and fourth order partial differential equations (beam-

like models) [XXII] with or without variable coefficients. Such type of PDEs are 

developed by means of Newton’s second law of motion (vector approach) and 

extended Hamilton’s principle (scalar approach).  

In literature, the approximate-analytical technique together with the truncation 

method is employed to compute the transverse vibrations for string-like models [IV], 

[VII], [XX]. However, the application of truncation method on string-like models is 

questionable; see for instance [I], [IX], [XII], [XVII]. Maitlo et. al. [I] found out that 

the truncation method for problems governing vertical vibrations in string-like 

models under external (viscous) damping is not possible.    

However, the applicability of truncation method for string-like model under the effect 

of structural damping in terms of all-mode response is not studied. This study will 

focus on the investigation of application of truncation method for axially moving 

string with structural damping via method of characteristic coordinates. 

In this paper, the work is carried out as follows. 
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In section II, we construct the asymptotic approximations for the equations of motion 

via Fourier expansion method in conjunction with two timescales perturbation 

method. 

In section III, computed the amplitude-response of the system via two timescales 

perturbation method together with method of characteristic coordinates (close-form 

solution). 

In section IV, computed the energy of the system. In section V, some conclusions has 

been given, based on obtained results. Finally, the verification of results is given in 

section VI of appendix. 

II.   Application of Fourier-Expansion Method 

 In this section, the following equations of motion for string-like model are 

studied under structural damping which in dimensionless form [X] are given as: 

( ) ( )22 1 0,     0,  0 1,tt xt xx txx xxxu Vu V u u Vu t x+ + − − + =                   (1)  

( ) ( )0, 1, 0,      0,u t u t t= =          (2) 

( ) ( ) ( )0 1,0 ( ),   ,0 ,        0 1,tu x u x u x u x x= =         (3) 

 

 
Fig. 1: A schematic model for axially moving string between two fixed ends 

 

where, ( ),u x t
 

is the transversal displacement, t  is the time, x  is the axial 

displacement, V is axial speed in belt and assumed to be constant,   is damping 

coefficient and assumed to be constant, ( )0u x is the initial displacement and ( )1u x  is 

the initial velocity of the system. Both V and   are taken to be of order   .  

In the following, we consider the mathematical Eq. (1)-(3), with the following 

assumptions; 

( ) ( ), .V O O  = =  

The solution of Eq. (1)-(3) is assumed as series expansion as: 

( ) ( ) ( )
1

, ; sin ,n

n

u x t u t n x 


=

=         (4) 
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Where, nu is the amplitude. 

Putting Eq. (4) and its derivatives in Eq. (1), we obtain; 

( ) ( )
( ) ( )

( ) ( )
( )

2 2

2
1 1

2 cos
sin

sin

n

n n

n n n

Vu n n x
u n u n x O

u n n x

 
   

  = =

   
 + = − + 
  +  

      (5) 

By multiplying the function ( )sin k x  , for fixed k  , and by using the orthogonally 

relation for the 𝑠𝑖𝑛𝑒 and 𝑐𝑜𝑠𝑖𝑛𝑒 functions, we obtain; 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1
2

1 0

1

0

1
1 2

0

sin sin

2 sin cos

 

sin sin

n n

n

n

n

n

n u n x k x dx

Vu n k x n x dx

u n n x k x x

u

d

  

  



   





=

=

 + =
 

 
 
 −
 
 +
  

 






   (6) 

( ) ( )
2 2

2 2
1

8
 k k k

n

n k

is odd

nkV
k u k u

n k
u    



=



 
 
 

+ = − −
 


+

 

        (7) 

Eq. (7) represents the system of coupled infinitely many ordinary differential 

equations. The system given in Eq. (7) is not easy to solve analytically.  Therefore, to 

compute the solution of Eq. (7), two timescales perturbation method is used.   

The solution of Eq. (7) is assumed to be in the form; 

( ) ( ) ( ) ( ) ( )
0 1

2

0 1 0 1 0 1  , ; , ; , ;  k k ku t w t t w t t w t t O    = = + +      (8) 

Where, 0  t t=  (Fast scale) 1t t=  (Slow scale), 0 1  .   

For the derivatives, the following transformation is considered:  

0 1

     k k kdu w w

dt t t


 
= +
 

         (9) 

( )
2 2 2

2

2 2

0 0 1

2      k k kd u w w
O

dt t t t
 

 
= + +

  
     (10) 

Putting Eq. (9)-Eq. (10), into Eq. (7) and equating the coefficients of 0  and 1  we 

obtain; 
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( ) ( )0

0

2
2

2
0

1 : 0
k

k

w
O k w

t



+ =


                                               (11) 

( ) ( )
( )

( )0 01

1 0

22
2 2

2 2 2
10 1 00

8
: 2

k kk

k k

n

n k

is odd

w ww nk V
O k w w k

t t tt n k
   



=



 
+ = − + −

   −
                  (12) 

We shall solve the Eq. (11) by direct integration as: 

( ) ( ) ( ) ( ) ( )
0 0 00 1 1 0 1 0, cos sink k kw t t A t k t B t k t = +         (13) 

Putting Eq.(13) into Eq. (12) we obtain; 

( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( )

( )
( )( ) ( ) ( )( ) ( )

1

1 0 0

0 0

0 0

2
2

1 0 1 02
0

2

1 0 1 0

1 0 1 02 2
1

2 sin cos

sin cos

8
sin cos

k

k k k

k k

n n

n

n k

is odd

w
k w A t k k t B t k k t

t

k A t k k t B t k k t

nk V
A t n n t B t n n t

n k

    

     

   


=




 + = − − + 

 − − + 

 + − +

 

 −


  

(14) 

Eliminating the secular terms from Eq. (12), we obtain; 

( ) ( ) ( )

( ) ( ) ( )

0 0

0 0

2

1 1

2

1 1

0,
2

0.
2

k k

k k

A t k A t

B t k B t








+ =


 + =






                           (15) 

The solution of Eq. (15) is; 

( )
( )

( )
( )

2

1

0

2

1

0

2
1

2
1

k t

k

k t

k

A t e

B t e







−

−







=

=

                                                      (16) 

Putting Eq. (16) into Eq. (13), we obtain; 

( )
( )

( ) ( )
2

1

0

2
0 1 0 0, cos sin

k t

kw t t e k t k t




 
−

 = +                      (17) 

Thus the solution of Eq. (1)-(3) is; 

( )
( )

( ) ( ) ( )
2

1
2

0 0, cos sin
k t

u x t e k t k t O




  
−

 = + +                      (18)     
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To plot the mode-response Eq. (18), the computer software MATLAB is used. In this 

work, the response of the system up to ten-modes is computed, by taking 1, 2k k= =  

up to 10k = . Figure 2- Figure 6 depict the amplitude of individual modes of the 

axially moving system under the effect of structural damping. It is evident that the 

amplitude of each mode decays with the increasing of time. 

 

 

 

 

                                   

 

                  (a)                     (b)               

Fig. 2: Mode response for 0.1, 0.01 = =  (a) 1k = , (b) 2k =   

                      (a)            

                   (b) 

Fig. 3: Mode response for 0.1, 0.01 = = (a) 3k = , (b) 4k =  

 

 

 

 

 

 

          

(a)                      (b) 

Fig. 4: Mode response for 0.1, 0.01 = = (a) 5k = , (b) 6k =   
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            (a)                        (b) 

Fig. 5: Mode response for 0.1, 0.01 = =  (a) 7k = , (b) 8k =   

 

 

 

 

 

 

            

 

(a)                     (b) 

Fig. 6: Mode response for 0.1, 0.01 = =  (a) 9k = , (b) 10k =   

 

III.   Application of Characteristic Coordinates Method: 

In this section, the characteristic coordinate method together with the two 

time scales perturbation method is employed. In order to apply the method of 

characteristic coordinates, we need to convert the initial-boundary value problem to 

an initial-value problem [XIV], [XVII]. For doing so, we will extend the domain and 

each term in the Eq. (1) to 2-periodic and odd. Since the term xtu  and xxxu  are not 

odd, these terms can be made odd by multiplying the term:  

1,    1 0

1, 0
( )

   1

x

x
R x


= 


− −  

 
        (19) 

The Fourier series of ( )R x is given as: 
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( )
( )

( )( )
1

4
sin 2 1 ,

2 1n

H x n x
n






=

= −
−

                                                       (20) 

Multiplying the term ( )H x with the terms xtu  and xxxu , we obtain; 

( )22 ( ) ( 1) ( ) 0, 0, 0 1tt xt xx txx xxxu Vu H x V u u Vu H x t x+ + − − + =              (21) 

( ) ( ) ( ) ( )0 1,0 ,    ,0tu x u x u x u x= =             (22) 

In this study, we choose the specific initial conditions: 

( ) ( ) ( )0 1sin ,   0u x x u x= =       (23) 

Further, by applying perturbation method, we assume the solution of Eq. (21) in the 

form; 

( ) ( ), , , ,  u x t w   =                                      (24) 

Where ,x t x t = − = +  and t = . 

The introduction of ,  and  transformation as above, the solution and its 

derivative, as needed in Eq. (1) will take form as follows: 

,tu w w w  = − + +        (25)

( ) 2 ,2 2ttu w w w w w w      = + − + − +     (26) 

,2xxu w w w  = + +        (27) 

 ,3 3xxxu w w w w   = + + +      (28) 

( ), xtu w w w w   = − + + +      (29) 

( )2 . xxtu w w w w w w w      = − + − + + + +   (30) 

Now substitute equations (24)-(30) in Eq. (21), we get,

( )

( )
( )2

2 2 2
24 .

w w V w w H
w O

w w w w

   



   

 

 



 + 
− + −   

 = + 
 + − + −
 

                               (31) 

Moreover, we assume that the function ( , , )w    can be expanded as;

( ) ( ) ( ) ( )2

0 1, , , , , , .w w w O          = + +                                                      (32) 

Plugging Eq. (32) into Eq. (31), and equating the terms of order 0  and 1 , obtained 

the problems of (1)O and ( )O  ; 
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( ) ( ) ( )

( ) ( ) ( )

0

0 0

0 0 1

4 0,                                                     , 0

1 : , ,0 ,                                                  ,    0

, ,0 , ,0 ,    ,    0

w

O w u

w w u



 

  

     

       

 = −     


= −  =   =
− + = −  =   =

        (33) 

And  

( )

( )
( )
( ) ( ) ( )

1 0 0 0 0

0 0 0

1 1

0

0

1

, 0

,    0

, ,0 , ,0 , ,0 ,  

2

0

  ,  

4 2 2 2

,

( ) : , , 0,

  0

w w w V w w H

w w w w

O

w w w

w

    

   

 





 



  

  

      



 

 



−  



  

−  =   =

− + = −  =  

 + 
= − + − 

 
 + − + −



=

=






    

(34) 

By direct integration, the solution of (1)O -problem is obtained as; 

( ) ( ) ( )0 0 0, , , , .w f g      = +                                                                 (35)  

Substitute Eq. (35) into Eq. (34), we obtain: 

( ) ( )1 0 0 0 0 0 04 2 2 2 .
2

w g f V g f H f g      

 


+ 
= − + − + − 

 
                  (36) 

Integrate Eq. (36) w.r.t ' ' , we obtain; 

( ) ( ) ( )( )

( ) ( )

1 1 0 0

00 0 0

4 , , 4 , , 2

2 , ,  
2

w w f f

g V g f H g d F

   



  



        

 
   

= + − −

  +
+ + − − +  

   


                (37) 

Where, ( , )F    is an arbitrary function. Again, by integrating Eq. (36) w.r.t ' ' , we 

obtain: 

 

( ) ( ) ( )( )

( ) ( )

1 1 0 0

00 0 0

4 , , 4 , , 2

2 , ,
2

w w g g

V g H f Gf f d

   



  



        

 
   

= + − −

 + 
+ + − − +  



+


 


  

          (38) 

Where, ( , )G    is an arbitrary function. Since 2t − =  is the term which grows 

without bound. By eliminating the secular (unbounded) terms from Eq. (37), we have; 

0 0 0.
2

f f 


− =

       
                                          (39) 
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From (38), we have;   

0 0
2

g g 


−

                                                                                     (40)
 

Eq. (39) and Eq. (40) are equivalent. 
 

In order to solve (39), let 0f h = , we obtain;  

2

2
0,

2

h h

 

 
− =

 
       (41) 

With initial condition (23), we have; 

 
( ) ( ),0 cos .h   =                                                                                     (42)                         

By using Fourier transform method, we get the solution (41); 

( ) ( )
2

 
2

0 , cos .f e
 

    
−

=                                                                   (43) 

Integrating (43) w.r.t ' ' , we get; 

( ) ( )
2  

 
2

0 , sin .f e
 

  
−

=                                                                            (44) 

Thus, the solution of the mathematical model (1)-(3) for transversal vibrations of 

damped string system given as under; 

( ) ( ) ( )0, ,  , ,u x t w O   = +                                                                (45) 

From Eq. (35), we have; 

( ) ( ) ( )0 0,   ,  , u x t f g   = +                                                                    (46) 

Since, ( ) ( )0 0,  , g f   = − − , thus, the Eq. (46) becomes;                   

( ) ( ) ( )0 0, ,  ,  .u x t f f   = − −                                                                      (47) 

By plugging Eq. (44) into (47), we obtain; 

( ) ( ) ( ) ( )
2  

 
2, [sin sin ]u x t e O

 

 
−

= + +                                                 (48)

( ) ( )( ) ( )( ) ( )
2  

 
2, sin sin

t

u x t e x t x t O
 

 
−

 = − + + +                               (49) 

Eq. (49) is the solution of the IVP (1)-(3). From where, the amplitude response 

presented using MATLAB software in Figure 7 –Figure 11. One can clearly notice 

that amplitude response decays with the passage of time and further the amplitude 

response is inversely proportional to the structural damping parameter 0.1  1  . 
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This means that the amplitude damps out at a certain time when larger value of 

damping  is incorporated.  

 

 

 

 

       

 

         

 

        (a)             (b)                   

Fig. 7: Amplitude-response u  verses time t  for 0.01 = (a) 0.1 = , (b) 0.2 =  

         

 

 

 

 

 

 

 

                       (a)                              (b) 

      Fig. 8: Amplitude-response u  verses time t  for 0.01 =  (a) 0.3 = , (b) 0.4 =  

 

 

 

 

 

 

          

(a)                              (b) 

     Fig. 9: Amplitude-response u  verses time t  for 0.01 =  (a) 0.5 = , (b) 0.6 =  
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               (a)                                (b) 

Fig. 10: Amplitude-response u  verses time t  for 0.01 =  (a) 0.7 = , (b) 0.8 =  

 

 

 

 

 

 

 

 

(a)                             (b) 

Fig. 11: Amplitude-response u  verses time t  for 0.01 =  (a) 0.9 = , (b) 1.0 =  
 

IV.   Energy of the System 

Using the solution of problem governed by Eq. (1) – (3), as given in Eq.(49) 

and its derivatives; 

( )( ) ( )( ) ( )( ) ( )( )
22 2 2 2cos cos 2cos cos ,t

xu e x t x t x t x t     −  = + + − + + −      
(50)

( )( ) ( )( ) ( )( ) ( )( )
22 2 2 2cos cos 2cos cos ,t

tu e x t x t x t x t     −  = + + − − + −      (51) 

in the equation of Energy for the string system , which is given by; 

( ) ( ) ( )
1

2 2

0

1
.

2
t xE t u u dx O = + +       (52) 

After lengthy calculation, we obtain the following expression for the energy of the 

string system: 
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( )
22 .tE t e   −=                      (53) 

The energy in Eq. (53), so computed, is plotted using MATLAB software in Figures 

12 (a) and 12 (b). The energy of the system also validates the claim that system is 

being damped as the time progresses. In addition to this, the energy is seen to be 

independent of mode-number(s).  

Further, by comparing the energy of the system and individual mode-response, it 

turns out that the truncation is possible in string-like system for constant speed and 

structural damping.  

 

 

 

 

 

 

 

                   (a)                                  (b) 

Fig. 12: Energy of the system for 0.01 =  (a) 0.01 = ,  (b) 0.1 =  

V.   Conclusion 

 This study examined the transverse vibrations of axially moving string (belt) 

system under the effect of structural damping. It was assumed that the belt moves 

with a constant speed. The string is taken to be fixed at the end points. Both the belt 

velocity and structural damping are considered to be small. Mathematically, the 

transverse vibrations of the system are modeled as a linear homogeneous partial 

differential equation with variable coefficients. The method of two timescales 

perturbation is used together with the Fourier expansion method and the method of 

characteristic coordinates. The individual mode response and the response of system 

are computed. The main purpose of computing the response of individual mode via 

Fourier expansion method and the response of the system via characteristic 

coordinate method was to examine the applicability of mode-truncation in string-like 

model with structural damping. It turned out that the individual mode response as 

well as the response of the system exhibit the similar behavior, that is, the amplitude 

response damped out as the time progresses. In addition to this, the energy of the 

system up to order 𝜀 is also seen to be damped out. In conclusion, the mode-

truncation is not a problem in string-like model with the inclusion of structural 

damping 
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VI.   Appendix 

Verification of Eq. (39) with Eq. (15): 

Consider the Eq. (39) 

0 0 0
2

f f 


− =                                                                       (A.1) 

The Fourier series representation for the function 0f  is given as;            

( ) ( ) ( ) ( )0

1

1
sin cos

2
n n

n

f A n B n   
=



 = +                                          (A.2) 

By differentiating Eq. (A.2) w.r.t ' '  and then w.r.t ' ' , we obtain; 

( )( ) ( ) ( )( ) ( )0

1

1
  cos sin

2
n n

n

f A n n B n n      


=

 = −                                     (A.3) 

Also differentiating Eq.(A.2)  w.r.t ' '  thrice, we obtain; 

( )( ) ( ) ( )( ) ( )
3 3

0

1

1
  cos sin

2
n n

n

f A n n B n n      
=



 = − +
                            (A.4) 

Substitution of Eq. (A.3) and Eq. (A.4) into Eq. (A.1), we obtain 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

3

1

cos sin

cos sin 0 
2

n n

n

n n

n

A n B n n

A n B n n

    


    



=



=

 − 

 − − 



+



=





             (A.5) 

Multiplying Eq. (A.5) with sin( )k , and integrate the resulting equation w.r.t ' '  as 

a period of 2 , we get; 

( ) ( )
2

0
2

n nB n B


 + =                         (A.6) 

Multiplying Eq. (A.5) with cos( )k , and integrate the resulting equation w.r.t ' '  

as a period of 2, we get; 

( ) ( )
2

0  
2

n nA n A


 + =                                  (A.7) 

Eq. (A.6) and Eq. (A.7) are the same as Eq. (15). 
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