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Abstract 

Analysis of single machine infinite bus system is made by considering single 

Kaplan turbine-generator with exciter and governor for the small-signal stability. In 

this research paper a scientific approach was adopted to minimize the settling time 

along with the stability of the given power system. Kaplan turbine generators were 

predominantly implemented in hydroelectric power plants with lower heads. 

However, dual regulation of such turbines in the plants are renowned in the current 

research trends. The dual regulation of hydro-turbine is incorporated through the 

operation of both wicket gate and runner blade position. In a worldwide scenario 

Kaplan turbine-generators play a vital role in power and energy generation. Whereas 

the life of these generator gates or runner blades depends on speed deviations. In this 

context, a PID controller has been designed for the extended single machine infinite 

bus system to improve the speed deviation. The results of the extended single machine 

infinite bus system are compared with and without PID controller for the 

enhancement of speed deviation. 

Keywords : Power System, Extended SMIB, Governor, Speed deviation, PID 

controller.  

I.    Introduction  

 Electrical power systems are one of the complex constituents required for the 

generation, transmission along with large scale distribution of Electrical Energy 
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through any power or energy source. Such power systems should be capable of 

periodical adaptability to variable load demands corresponding to active and reactive 

power. Complex power system stability will be the state of operating equilibrium at 

normal operating conditions. (Chan & Aung, 2020) Synchronous machines in such 

power systems will have huge significance and wide range of applications in hydro 

prime movers such as turbines. In the emerging researches in power systems stability, 

the major challenge is in adequate damping of the corresponding system oscillations. 

Hence, in analyzing the stability of such power systems signal, a linearized 

illustration model was preferred to illustrate the required power system and its 

components. (Czeslaw Banka, 2017) The illustrations itself gives the state space 

representation with various operational inputs and outputs along with the internal 

behavior of the system. Transfer functions are one of prominent representations 

which illustrates the behavior of the input and output while a state-space illustration 

represents the system along with the transfer function along with its defined 

characteristics. (Ghosh, Das, & Sanyal, 2019) The context to the current research 

with the application state-space representation will give the complete details of the 

power system that can be significantly applied to the analysis of Multi-Variable 

MIMO systems which are ideal for optimized speeds versus toque characteristics. 

Present research is on use of pressure signal for speed control of hydro generator. 

Presently SMIB is extended to dual regulation of low- head hydro power plant with 

wicket gate opening and runner blade position for controlling the water pressure. The 

results of extended single machine infinite bus system are compared with and without 

PID controller for speed deviations. (Machowski, Bialek, & Bumby, 2020) 

II.   Mathematical Modeling of Extended Smib 

Considering a single machine system neglecting damper windings both in the 

d and q axes. By neglecting the armature resistance of the machine, the excitation 

system is represented by a single time constant system is shown in Fig.1. (Bux, Xiao, 

Hussain, & Wang, 2019) The linearized model of SMIB is derived as follows: 

 

 

Fig. 1: A Single machine system 

 

The linearized model of SMIB is derived as follows: 

The algebraic equations of the stator are” 

 Eq
′ + xd

′ id = vq        (1) 
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 −xqiq = vd         (2) 

The complex terminal voltage can be expressed as 

 vQ + jvD = (vq + jvd)ejδ = (iq + jid)(Re + jxe)ejδ + Eb∠0 

 (vq + jvd) = (iq + jid)(Re + jxe) + Ebe−jδ     (3) 

From equations. (1), (2) and (3) the expressions for id and iq are  

 id =
1

A
[ReEbsinδ + (xq + xe)(Ebcosδ − Eq

′ )]     (4)  

 iq =
1

A
[(xd

′ + xe)Ebsinδ − Re(Ebcosδ − Eq
′ )]     (5)  

Where, 

 A = (xd
′ + xe)(xq + xe) + Re

2        (6)  

Linearizing Equations. (4) and (5) we get 

 ∆id = C1∆δ + C2∆Eq
′         (7)  

 ∆iq = C3∆δ + C4∆Eq
′         (8)  

Where, 

 C1 =
1

A
[ReEbcosδo − (xq + xe)Ebsinδo] 

 C2 = −
1

A
(xq + xe) 

 C3 =
1

A
[(xd

′ + xe)Ebcosδo + ReEbsinδo] 

 C4 =
Re

A
 

Linearizing Equations. (1) and (2) , and substituting from Equations. (7) and (8), we 

get, 

 ∆vq = xd
′ C1∆δ + (1 + xd

′ C2)∆Eq
′  (9) ∆vd = −xqC3∆δ − xqC4∆Eq

′   (9)  

The subscript ‘o’ indicates operating value of the variable. 

Rotor Mechanical Equations and Torque Angle Loop:  

The rotor mechanical equations are 

 
 dδ

dt
= ω0(Sm − Smo)        (10)  

 2H
dSm

dt
= −DSm + Tm − Te       (11)  

 Te = Eq
′ iq − (xq − xd

′ )idiq       (12)  

Linearizing Eq. (13) we get 
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∆Te = [Eqo
′ − (xq − xd

′ )ido]∆iq + iqo∆Eq
′ − (xq − xd

′ )iqo∆id   (13)  

Substituting Equations. (7) and (8) in Eq. (14), we can express ∆Te as  

 ∆Te = K1∆δ + K2∆Eq
′         (14)  

Where, 

 K1 = EqoC3 − (xq − xd
′ )iqoC1       (15)  

 K2 = EqoC4 + iqo − (xq − xd
′ )iqoC2      (16) 

 Eqo = Eqo
′ − (xq − xd

′ )ido       (17)  

Liberalizing Eqns. (11) and (12) and applying Laplace transform, we get 

 ∆𝛿 =
𝜔0

𝑠
∆𝑆𝑚 =

𝜔0

𝑠
∆𝜔̅        (18) 

∆𝑆𝑚 =
1

2𝑀𝑠
[∆𝑇𝑚 − ∆𝑇𝑒 − 𝐷∆𝑆𝑚]      (19) 

The combined Equations. (15), (19) and Eq. (20) represent a block diagram shown in 

Fig.2. This represents the torque-angle loop of the synchronous machine. 

 

 

Fig. 2: Block diagram of Torque angle loop 

 

Representation of Flux Decay:  

The equation for the field winding can be expressed as 

 𝑇𝑑𝑜
′ 𝑑𝐸𝑞

′

𝑑𝑡
= 𝐸𝑓𝑑 − Eq

′ + (xd − xd
′ )id      (20)  

Linearizing Eq. (21) and substituting from Eq. (7) we have 

 Tdo
′ d∆Eq

′

dt
= ∆Efd − ∆Eq

′ + (xd − xd
′ )(C1∆δ + C2∆Eq

′ )    (21) 

Taking Laplace transform of above equation we get, 

 (1 + sTdo
′ K3)∆Eq

′ = K3∆Efd − K3K4∆δ     (22)  

Where, 

+ 
1

2𝑀𝑠
 

𝜔0

𝑠
 

D 𝐾2 

𝐾1 

_ 

+ 
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 K3 =
1

[1−(xd−xd
′ )C2]

        (23) 

 K4 = −(xd − xd
′ )C1        (24)  

The equation (23) is represented in block diagram which is the representation of flux 

decay is shown in Fig.3. 

 

  

Fig. 3: Block diagram of Flux decay 

 

Representation of Excitation System:  

The block diagram of the excitation system is shown in Fig 2.4. The 

linearized equations involved in the analysis are described below and the terminal 

voltage ∆Vt can be expressed as” 

 ∆Vt =
vdo

Vto
∆vd +

vqo

Vto
∆vq        (25)  

Substituting from Equations. (2.12) and (2.13) in (2.31), we get” 

 ∆Vt = K5∆δ + K6∆Eq
′         (26)  

Where, 

 K5 = − (
vdo

Vto
) xqC3 + (

vqo

Vto
) xd

′ C1      (27)  

 K6 = − (
vdo

Vto
) xqC4 + (

vqo

Vto
) (1 + xd

′ C2)      (28)  

Using the equation (27) the block diagram of the excitation system is obtained which 

is shown below in fig. 2.4. 

𝐾3

1 + 𝑠𝑇𝑑𝑜
′ 𝐾3

 

𝐾4 ∆𝛿 

∆𝐸𝑓𝑑 
+ 

− 
∆𝐸𝑞

′  
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Fig. 4: Block diagram of Excitation loop 

 

Representation of Turbine Flow Control:  

The water flow through the penstock was modelled by considering the 

inelastic water column effect. Hence, the stiff water hammer equation can be given 

as” 

 
𝑑ℎ

𝑑𝑡 
 = -Tw 

𝑑𝑤

𝑑𝑡
         (29) 

The turbine flow “q” and the torque “m” in case of a Kaplan turbine are non-linear 

functions of head “h”, wicket gate opening “z”, machine speed w and runner blade 

position θ. For a given reference operating point, the partial derivative relationship 

between these variables is given as 

 q = 
𝛿𝑞

𝛿ℎ
 h + 

𝛿𝑞

𝛿𝑧
 z + 

𝛿𝑞

𝛿𝑤
 w + 

𝛿𝑞

𝛿𝜃
 θ       (30)  

 = T1h+T2z+T3w+T4θ       

 m = 
𝛿𝑚

𝛿ℎ
 h + 

𝛿𝑚

𝛿𝑧
 z + 

𝛿𝑚

𝛿𝑤
 w + 

𝛿𝑚

𝛿𝜃
 θ      (31) 

 = T5h+T6z+T7w+T8θ ;     

 
𝑑𝑞

𝑑𝑡
 = 

1

𝑇𝑊𝑇1 
 [T3 w+T2z - q+T4θ]       (32) 

The operation of Kaplan turbine involves control of the wicket gate and the runner 

blade position in order to regulate the water flow to the hydro-turbine. The 

corresponding servomotor equations are described as  

 
𝑑𝑧

𝑑𝑡
 = (Ugov -z)/Tgv        (33) 

 
𝑑𝜃

𝑑𝑡
 = (Ugov -θ)/Tr       

Where Tgv and Trb are wicket gate and runner blade servomotor constants 

respectively. The third order synchronous generator model is described by the 

following set of deferential and algebraic Equations: 
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 Ta
𝑑𝑤

𝑑𝑡
 = m - ml - Dw        (34) 

 
𝑑𝑒𝑞

′

𝑑𝑡
 = 

1

𝑇𝑑0
′  [EFD - 

1

𝐾3
 𝑒𝑞

′ - K4δl]       (35) 

 ml = K1δl + K2𝑒𝑞
′         

Expressing the exciter equations are as follows: 

 
𝑑𝐸𝐹𝐷

𝑑𝑡
 = 

1

𝑇𝐸
 [Va - KEEFD]        (36) 

 
𝑑𝑉𝑎

𝑑𝑡
 = 

1

 𝑇𝐴
[KA Vref +KA uex-KA Vt -KA Vf -Va]     (37) 

 Vt = K5 δl+K6         (38) 

 
𝑑𝑣𝑓

𝑑𝑡
 = 

1

𝑇𝐹
[

 𝐾𝐹𝐾𝐸

𝑇𝐹𝑇𝐸
 EFD+

𝐾𝐹

𝑇𝐸
 Va -Vf]       (39) 

The block diagram representation for turbine flow control is shown in fig.2.5, block 

diagram representation for runner blade position is shown in fig.2.6 and the block 

diagram representation for wicket gate opening is shown in above figure. 

The dynamic characteristics of the extended SMIB system are expressed in terms of 

constants K1 to K9. The constants K7, K8 and K9 are due to head h, wicket gate 

opening z, machine speed w and runner blade position θ and they are,” 

𝐾7 =𝑇7 –(𝑇3𝑇5)𝑇1         (40) 

𝐾8 =𝑇6 –(𝑇5𝑇2)/𝑇1        (41) 

𝐾8 =𝑇8 –(𝑇5𝑇4)/𝑇1        (42) 

 

 

Fig. 5: Block diagram of EXTENDED SMIB 
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Fig. 6: Turbine flow control q(s) 

 

Fig. 7: Runner blade position θ (s) 

 

 

Fig. 8: Wicket gate opening z(s) 

 

Where U gov , Uex are two input quantities 

 

𝑈𝑔𝑜𝑣 
1

1 + 𝑆𝑇𝑟𝑏
 

Z(s)
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Fig.  9: Over all block diagram of extended SMIB 

 

III.   Controller 

 A PID (proportional–integral–derivative) controller was prescribed based on 

its damping controller along with the tuned fixed-gain parameters. A detailed 

illustration of the PID controlled was explained below. 

 

 

Fig. 10: Block diagram of PID Controller 

 

𝐾𝐴𝐾5

𝑠𝑇𝐴 + 1
 

1

𝐾𝐸 + 𝑠𝑇𝐸

𝐾𝐴

1 + 𝑠𝑇𝐴

 

𝐾6𝐾𝐴

1 + 𝑠𝑇𝐴

 

𝐾3

1 + 𝑠𝑘3𝑇𝑑0
′  

𝑇5

𝑇1(𝑠𝑇𝑎 − 𝐾7)
 

1

1 + 𝑠𝑇𝑏

 

𝐾𝐴

1 + 𝑆𝑇𝐴

 

𝑈𝑔𝑜𝑣 

𝐾2

𝑠𝑇𝑎 − 𝐾7

 

𝑇2

1 + 𝑠𝑇𝑊𝑇1

 

𝜔0

𝑠
 

1

1 + 𝑠𝑇𝑔𝑣

 
𝑇4

1 + 𝑠𝑇𝑊𝑇1

 

𝑇3

1 + 𝑠𝑇𝑊𝑇1

 

𝐾𝐹

𝑇𝐸(1 + 𝑠𝑇𝐹)
 

𝐾𝐹𝐾𝐸

𝑇𝐸(1 + 𝑠𝑇𝐹)
 

𝐾1

−𝑠𝑇𝑎 + 𝐾7

 

+ 

+ 
+ 

+ 

+ 

- - 

- 

+ 

+ 

+ 

+ 
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A PID controller intends to rectify the error between a measured process variable and 

a desired set point by evaluating and then executing a necessary corrective action that 

can rectify the process in accordance with system stability. The PID controller 

evaluation/calculation (algorithm) consists 3 independent parameters; the 

Proportional, the Integral and the Derivative values. The Proportional value were 

used to determine the reaction to the speed deviation, the Integral value was used to 

determine the reaction based on the cumulative sum of recent errors, and the 

Derivative value was used to determine the reaction based on the rate of the 

variability of the error.” 

IV.   Simulation Result 

 Simulations are done by using MATLAB Simulink. The graph drawn 

between speed deviation (y-axis) and time x-axis). 

 

 

Fig. 11: speed deviation with respect to time for SMIB 

 

As we can see in the above figure that the speed deviation signal is completely 

unstable and it leads to power system failure. 

 

Fig. 12: Speed deviation with respect to time for extended SMIB without controller 

 

From the above figure Fig 12 it can clearly seen that the speed deviation with respect 

to time is stable and this improves or enhances the stability of the power system with 

high settling time. 
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Fig. 13: speed deviation with respect to time for EXTENDED SMIB with PID 

controller 

 

As we can see power system with Extended SMIB with PID controller in the above 

illustration, settling time was minimised along with in the limited speed deviation 

which inturn increases the power system stability with less settling time. 

 

 

Fig. 14: comparision between EXTENDED SMIB with PID controler and with out 

PID controler 

 

From the above illustration it can be clearly seen the comparision of Extended SMIB 

with and without PID controller, blue indicates more settling time and red indicates 

with less settling time using PID controller. It can be observed the greater reduction 

in settling time with reliability of power system. 

V.   Conclusion 

Dual regulation of extended low head hydro power plant is achieved by 

controlling both wicket gate opening and runner blade position, which is connected to 

single machine infinite bus system. From the step responses it has been observed that 

the speed deviation for EXTENDED SMIB with and without PID. Results are 

obtained that the desired speed could be reached in a short time by using controllers. 
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