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Abstract 

A set 𝑆 of vertices of a graph 𝐺 is said to be a decycling set if 𝐺 − 𝑆 is 

acyclic. The size of a minimum decycling set of 𝐺 is called the decycling number of 

𝐺 and it is denoted by 𝛻(𝐺). In this paper, our chief objectives are to obtain the 

upper bound of the decycling number of a graph by using graph chromatics number 

and its order. The relation of the genus of the surface 𝛴 and the decycling number of 

a graph embedded in surface 𝛴 is studied. The decycling number of a planar graph 

with 𝑛 vertices is conjectured to be 
𝑛

2
, which is shown in this paper if the girth of the 

graph is at least four. The decycling number of a graph with 𝑛  vertices and 

maximum degree three is proved to be at most ⌈
𝑛

3
⌉. Also, we completely investigate 

the decycling number of the hypercube 𝑄𝑛. 

Keywords : Decycling number, Chromatic number, Maximum degree, Embedding, 

Girth, hypercube. 

I.    Introduction   

Graphs throughout this paper are finite, undirected and simple. For general 

terminologies and theoretic notations, we follow [V]. Let 𝐺 = (𝑉, 𝐸) be a graph and 

𝑆 ⊂ 𝑉(𝐺) if 𝐺 − 𝑆  is forest, then 𝑆  is said to be a decycling set of 𝐺 . The 

cardinality of a smallest decycling set of 𝐺 is called the decycling number and it is 
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signified by ∇(𝐺). The decycling sets are also called feedback vertex sets, which are 

heavily in the area of circuit design and deadlock prevention [IX]. Clearly, ∇(𝐺) = 0 

if and only if 𝐺 is acyclic, and ∇(𝐺) = 1 if and if 𝐺 contains at least one cycle. In 

1997 Beineke and Vandell [III] gives an expository result on the decycling number of 

the complete graph 𝐾𝑛 is 𝑛 − 2 and the decycling number of the complete bipartite 

graph 𝐾𝑟,𝑡 is 𝑟 − 1 if 𝑟 ≤ 𝑡 and they developed a relation between the maximum 

degree, the order, the size and the decycling number of a graph. And they also proved 

that ∇(𝐺) =
𝑚−𝑛+1

∇−1
 if 𝐺  is a connected graph with 𝑛  vertices, 𝑚  edges, and 

maximum degree ∆. 

In 2006 Punnim [XVII] explored the relationship between the maximum degree, the 

order and the decycling number of a graph under the definite condition. Now the 

question is that, what will be the relationship if the imposed conditions are ignored? 

In the second part of this paper, firstly we develop the relationship between the 

chromatic number and the decycling number of a graph. Then we determine the upper 

bound for the decycling number of a graph using its order and maximum degree. Also, 

we find the lower bound for the decycling number of a graph using its order and 

minimum degree. 

The decycling number of a graph with maximum degree three has attracted much 

attention. Zheng et. al. [XXIII] shows that for any cubic graph 𝐺 of order 𝑛 without 

triangles, except for two cubic graphs with  𝑛 = 8, ∇(𝐺) ≤ ⌈
𝑛

3
⌉. Punnim [XVII] 

proved that the decycling number of a graph 𝐺 with maximum degree at most three, 

under the special conditions, for example, the condition says that G is not a cubic 

graph without triangles. In 2017 Ren et al [XIX] explored the relationship between 

the decycling number and maximum genus of a graph with maximum degree three. 

Whether the decycling number of a graph 𝐺 with order 𝑛 and maximum degree 

three is at most ⌈
𝑛

3
⌉? So, in the third part of this paper we give an affirmative solution.   

Albertson and Berman [I] and Erdös et al [VIII] introduced a conjecture on the 

decycling number of a planer graph, which implies the following 

Conjecture 1 ([I] [VIII]) If 𝐺 is a connected planar graph with 𝑛 vertices, then 

∇(𝐺) ≤
𝑛

2
. 
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This conjecture is still open. In the fourth part of this paper, we prove that the 

conjecture holds if 𝐺 is a planar graph with girth at least six. Also, we study the 

relationship between the decycling number of a graph and the genus of a surface Σ 

in which the graph is embedded.  

In 1997 Beineke and Vandell [III] gives the lower bound for the decycling number of 

hypercubes graph 𝑄𝑛 and they determined the decycling number of 𝑄𝑛 when n is 

a smaller number. Pike [XVI] discovered the relation between the decycling number 

of 𝑄𝑛 and Hamming code. In the fifth part of this paper, we show that an upper 

bound for the decycling number of 𝑄𝑛is the same as the lower bound in [III]. Thus, 

the decycling number of 𝑄𝑛 is determined.  

Before moving on to our main discussion, we go through some basic terminologies 

and theoretic notations.   

Preliminaries about Graph Theory      

Let G be a graph. The degree of 𝑣 in 𝐺, denoted by 𝑑𝐺(𝑣), is the number 

of edges incident with 𝑣 in G. The maximum degree and the minimum degree of G 

are denoted by ∆(𝐺) and 𝛿(𝐺), respectively. If 𝑣 is a vertex in 𝐺, then any other 

vertex which is adjacent to 𝑣 is called a neighbors of 𝑣. The set of neighbors of 𝑣 

is denoted by N(𝑣). A graph 𝐻 is called an irreducible graph if 𝐻 has not any cut 

edge. A matching 𝑀 in a graph 𝐺 is a set of edges in 𝐺 such that any two edges in 

𝑀 have not a common end. A cycle with 𝑛 vertices is said to be an 𝑛 − 𝑐𝑦𝑐𝑙𝑒𝑠. The 

girth of a graph is the length of its shortest cycle and if a graph has no cycle, then it 

girth will be considered as infinity. ⌈𝑥⌉ is the minimum number which is not less 

than 𝑥. In the field of topological graph theory, the graph embedding is a special type 

of drawing of a graph in the surface Σ in which embedded graph’s edges do not 

intersect to each other, except at their endpoints. A surface Σ is called orientable if a 

clockwise rotation can be made around all points consistently and is called 

non-orientable otherwise. All the orientable surfaces are homeomorphic to the sphere 

with 𝑘  handles, denoted by 𝑆𝑘 .  And all the non-orientable surfaces are 

homeomorphic to the sphere with ℎ crosscaps, denoted by 𝑁ℎ . Where 𝑘 and ℎ 

are said to be the genus of the orientable surface and non-orientable surface 

respectively.  

II.   The Chromatic Number and the Decycling Number of A Graph 

A proper k-coloring of a graph G is a function 𝑓 from 𝑉(𝐺) to the set 

{1,2,…𝑘} such that any two vertices are received different colors if they are adjacent 
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to each other. The minimum number𝑘 of colors needed to color a connected graph 

𝐺  is called its chromatic number and it is denoted by 𝜒(𝐺). A Subset of vertices 

receives the same color is called color class, each of the forms an independent set.   

Theorem 2.1 Suppose that 𝐺 is a graph with 𝑛 vertices. If 𝜒(𝐺) = 𝛼, then, 

𝛻(𝐺) ≤
𝛼−1

𝛼
 𝑛 − 1  

Proof. Since 𝜒(𝐺) = 𝛼, 𝐺 has a proper coloring with 𝛼 colors. Let 𝑋1, 𝑋2, … , 𝑋𝛼 

be 𝛼 coloring classes. Without loss of generality, suppose that 𝑋𝛼 is the largest 

coloring class. Then 𝑋𝛼  contains 
𝑛

𝛼
 vertices. For any vertex 𝑣  in V(G)\

 𝑋1, 𝑋2, … , 𝑋𝛼 ∪ {𝑣} does not contain any cycle. So V(G)\ (𝑋𝛼 ∪ {𝑣}) is a decycling 

set of 𝐺. Since 𝑋𝛼 ∪ {𝑣} has at least in 
𝑛

𝛼
+ 1 vertices, we have that ∇(𝐺) ≤

𝛼−1

𝛼
 𝑛 − 1.         ∎ 

By a result in [III], the decycling number of the complete graph  ∇(𝐾𝑛) = 𝑛 − 2. So, 

the upper bound in Theorem 2.1 is tight. 

Theorem 2.2 Suppose that  𝐺 is a graph with  𝑛 vertices, and suppose that  𝛼 is a 

positive integer. If 𝛻(𝐺) ≤
𝛼−1

𝛼
 𝑛 − 1, then 𝜒(𝐺) ≥ 𝛼. 

Proof. Assume that 𝜒(𝐺) = 𝜃 < 𝛼. Then ∇(𝐺) ≤
𝜃−1

𝜃
 𝑛 − 1 by Theorem 2.1. Since 

𝜃−1

𝜃
< 

𝛼−1

𝛼
 if < 𝛼, we have that ∇(𝐺) ≤

𝛼−1

𝛼
 𝑛 − 1, a contradiction. So 𝜒(𝐺) ≥ 𝛼.

                 ∎ 

It is important to say that 𝜒(𝐺) must not be 𝛼  if ∇(𝐺) ≤
𝛼−1

𝛼
 𝑛 − 1.  Let us 

consider the following graphs.  

Example.1 Let 𝐻 be the graph obtained from 𝐾3,3 by adding an edge to connect 

two non-adjacent vertices, say 𝑥  and 𝑦 . Then ∇(H) = 2  and 𝑆 = {𝑥, 𝑦}  is a 

decycling set of 𝐻, but 𝜒(𝐻) = 3. 

Lemma 2.3 [VI] let 𝐺 be a connected graph. If 𝐺 is either complete graph nor an 

odd cycle, then 𝜒(𝐺) ≤  𝛻(𝐺).  
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The upcoming result follows from theorem 2.1 and lemma 2.3. 

Corollary 2.4 Suppose that 𝐺 is a graph which is neither complete graph nor an odd 

cycle. If 𝐺 has 𝑛 vertices with maximum degree ∆. Then  

∇(G) ≤
∆ − 1

∆
 n − 1 

Punnim [XVII] shows that if 𝐺 is a connected 𝑟 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 graph of order 𝑛 >

2𝑟 + 2, then ∇(𝐺) ≤
𝑟−2

𝑟
 𝑛 for all 𝑟 ≥ 4. We note that the condition 𝑛 > 2𝑟 + 2 

cannot be ignored in Punnim’s result. Otherwise, it would be wrong if 𝐺 is the graph 

𝐾𝑛 when 𝑛 ≥ 4. However, in our results, there is no restriction on order of the 

graph. 

 A forest  𝑘 -coloring of a graph  𝐺  is a function 𝑓  from 𝑉(𝐺 ) to the set 

{1,2,… , 𝑘}  such that each color class induces an acyclic subgraph. The 

vertex-arboricity of G, denoted by 𝑣𝑎(𝐺), is the minimum number of subsets in a 

partition of the vertex set of 𝐺 in such a way that each subset induces an acyclic 

subgraph (or forest k-coloring). In fact, 𝑣𝑎(𝐺) ≥ 1 for all non-empty graph 𝐺 and 

𝑣𝑎(𝐺) = 1 iff 𝐺 itself a forest. We now consider the relationship between the vertex 

arboricity and the decycling number of a graph.  

Theorem 2.5 Suppose that 𝐺 is a graph with 𝑛 vertices. If 𝑣𝑎(𝐺) = β,  then  

∇(G) ≤
β − 1

β
 n 

Proof.  Let us consider that 𝑓 is a forest β − coloring of 𝐺. Then there is a class 

𝑋 with at least 
𝑛

β
 vertices. So V(G)\X is a decycling set of G. Since V(G)\X 

contains at most (1 −
1

β
 )𝑛 vertices, we have that ∇(G) ≤

β−1

β
 n.       

   ∎ 

Lemma 2.6 [VII] For any graph 𝐺, 𝑣𝑎(𝐺) ≤ ⌈
1+∆(𝐺)

2
⌉ 

The Theorem 2.7 obtained from Theorem 2.5 and Lemma 2.6 

Theorem 2.7 Suppose that 𝐺 is a graph with 𝑛 vertices and maximum degree ∆. 

Then  
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∇(G) ≤
⌈
1 + ∆(G)

2 ⌉ − 1

⌈
1 + ∆(G)

2 ⌉
 n 

The upper bound in Theorem 2.7 is tight. It is sufficient to consider the complete 

graph 𝑘𝑛, where 𝑛  is a positive even number. Upon the relation between the 

minimum degree and the decycling number of a graph, we have the following 

theorem. 

Theorem 2.8 Suppose that 𝐺  is a graph with 𝑛  vertices. If 𝛿(𝐺) ≥ 4,  then 

𝛻(𝐺) ≤  𝛿(𝐺) − 1. 

Proof. Suppose on the contrary that ∇(G) ≤  𝛿(G) − 2. Let 𝑆 be a decycling set 

with 𝛿(G) − 2 vertices of 𝐺. Then the minimum degree of 𝐺 − 𝑆 is at least two. 

So 𝐺 − 𝑆 has at least one cycle, a contradiction. Hence ∇(G) ≤  𝛿(G) − 1.     

∎ 

The lower bound in Theorem 2.8 is also sharp. It is sufficient to consider for the 

complete graph 𝑘𝑛, where 𝑛 ≥ 5. Next, we determine the decycling number of two 

graphs. 

Theorem 2.9  Suppose that 𝑛 ≥ 5 is an integer. Let 𝐺 be the graph obtained from 

the complete graph 𝑘𝑛 by deleting a matching. Then 𝛻(𝐺) =  𝑛 − 3.   

Proof. Suppose that 𝑉(𝑘𝑛) = {𝑣1, 𝑣2, … , 𝑣𝑛}. Without loss of generality, suppose that 

the matching is {𝑣1𝑣2, 𝑣3𝑣4… , 𝑣2𝑘−1𝑣2𝑘}, where 2𝑘 ≤ 𝑛. Then {𝑣4, 𝑣5, … , 𝑣𝑛} is a 

decycling set of 𝐺. So ∇(G) ≤ 𝑛 − 3. Since 𝛿(𝐺) = 𝑛 − 2 we have that ∇(G) ≥

 𝑛 − 3 by Theorem 2.8. Hence ∇(G) =  𝑛 − 3.          ∎ 

Theorem 2.10 Suppose that 𝑛 ≥ 6 is an integer. Let 𝐺 be the graph obtained from 

the complete graph 𝑘𝑛 by deletion, all edges in a subgraph which is isomorphic to 

𝑘𝑟, where 2 ≤ 𝑟 ≤ 𝑛 − 4, then 𝛻(𝐺) =  𝑛 − 𝑟 − 1. 

Proof. Clearly, 𝛿 (𝐺) = 𝑛 − 𝑟. So ∇(G)  ≥  𝑛 − r − 1 by Theorem 2.8. Let 𝐻 be a 

subgraph of 𝑘𝑛 which is isomorphic to 𝑘𝑟. Let 𝑣 be a vertex in 𝑉 (𝑘𝑛)\𝑉 (𝐻). 

Then the graph induced by 𝑉(𝐻) ∪ {𝑣} does not contain any cycle. Since 𝑉 (𝐻) ∪

{𝑣} has 𝑟 + 1 vertices, we have that ∇ (G)  ≤ 𝑛 − r − 1. Hence ∇ (G) = 𝑛 − r −

1.    ∎ 

As we know that ∇(𝑘𝑛) = 𝑛 − 2 if 𝑛 ≥ 3. At the end of the section, we consider the 

inverse proposition. 
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Theorem 2.11  Let n ≥ 3 be an integer. If G has  𝑛  vertices and 𝛻(G) = n – 2, 

then G is isomorphic to the complete graph 𝐾𝑛. 

Proof. It is not difficult to find that 𝐺 is isomorphic to 𝑘𝑛 if ∇(G) = n – 2 for 𝑛 =

3  or 𝑛 = 4.  Now we suppose that 𝑛 ≥ 5 , ∇(𝐺) = 𝑛 − 2 , and 𝑉(𝐺) =

{𝑣1, 𝑣2, … , 𝑣𝑛}. If there are two vertices 𝑣𝑗 and 𝑣𝑘 belongs to graph 𝐺, in such a 

way that they are not adjacent to each other, then 𝐺 is a subgraph of the graph 

obtained from 𝐾𝑛 by removing the edge 𝑣𝑗𝑣𝑘. Theorem 2.9 implies that, ∇(𝐺) ≤

𝑛 − 3, a contradiction. So, any two vertices in 𝐺 are adjacent to each other. Hence 

𝐺 is isomorphic to the complete graph 𝐾𝑛.           

      ∎  

III.   Graph with Maximum Degree Three 

Let 𝐺 be a graph with maximum degree three. If a 3-cycle of 𝐺 contains a 

vertex with degree two, then the cycle is said to a singular 3-cycle. Let 𝑥𝑦 be an 

edge of 𝐺 the following procedure is called that 𝑥 is contracted into 𝑦 if 𝑥 is 

deleted and all neighbors of 𝑥 other than 𝑦 are adjacent to 𝑦 newly. 

Theorem 3.1 Let 𝐺 be a graph with 𝑛 vertices and ∆(𝐺) ≤ 3. Then  

𝛻(𝐺) ≤ ⌈
𝑛

3
⌉ 

Proof. Suppose that 𝐺 is a connected irreducible graph. If 𝐺 is non-connected, then 

we similarly consider its components. So 𝛿(𝐺) ≥ 2. If ∆(𝐺) = 2, then 𝐺 is the 

union of several cycles. Since each cycle has at least three vertices, we have that 

∇(𝐺) ≤ ⌈
𝑛

3
⌉. 

We now suppose that 𝐺 has at least one vertex with degree three. We use the 

induction on n to show the proposition. Clearly, 𝑛 ≥ 4 in this case. If 𝑛 = 4, then 

𝐺 is one of the 𝐺 looks like Figure 1. 
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Fig. 1: Two graphs with maximum degree three 

 

It easy to check that ∇(𝐺1) = 1 and ∇(𝐺2) = 2. So, the proposition holds.  

Assume that the proposition is true if 𝐺 has at most 𝑛 − 1 vertices, where 𝑛 ≥ 5. 

We now consider that 𝐺 has 𝑛 vertices. We claim that 𝐺 has no any cut vertex. 

Otherwise, 𝐺 has a cut edge, a contradiction. So 𝐺 is a 2 − 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 graph.  

Let us consider 𝑣 is a vertex of 𝐺 with degree three, and suppose that 𝑁(𝑣) =

{𝑣1, 𝑣2, 𝑣3}. If there are two vertices in 𝑁(𝑣), say 𝑣1𝑎𝑛𝑑  𝑣2, such that 𝑑𝐺(𝑣1) =

 𝑑𝐺(𝑣2) = 2, then we delete 𝑣. Thus, each of 𝑣1 and 𝑣2 has degree one in the 

present graph. Next, they are deleted. Note that this procedure does not affect the 

decycling number.  

Let 𝐺′ be the obtained graph. Then 𝐺′ is a graph with ∇(𝐺′) ≤ 3, and ∇(𝐺) ≤ 

∇(𝐺′)+1. By the induction assumption, ∇(𝐺′) ≤ ⌈
𝑛

3
⌉ − 1. So ∇(𝐺) ≤ ⌈

𝑛

3
⌉. 

If there is only one neighbor of 𝑣, say 𝑣1, which has degree two, then we consider 

two cases. If the neighbor of 𝑣1 other than 𝑣 is one of 𝑣2 and 𝑣3, say 𝑣2, then we 

delete 𝑣 at first. Thus, the degrees of 𝑑(𝑣1) = 1 and 𝑑(𝑣2) =2, in the present 

graph. Next, we delete 𝑣1, then 𝑣2. Let 𝐺′′ be the obtained graph. Then 𝐺′′ is a 

graph with ∇(𝐺′′) ≤ 3. By the similar argument as that in the above paragraph, 

∇(𝐺) ≤ ⌈
𝑛

3
⌉. If 𝑣1 is not adjacent to anyone of 𝑣2 and 𝑣3, then there is no any 

singular 3-cycle passing through 𝑣1. In this case 𝑣1 is contracted into 𝑣. If the 

neighbor of 𝑣1 other than 𝑣 has degree two, then we proceed the similar argument, 

and so on. In the end, we have ∇(𝐺) ≤ ⌈
𝑛

3
⌉ or each neighbor of 𝑣 has degree three. 
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We now suppose that 𝑑𝐺(𝑣𝑖) = 3 for 𝑖 = 1,2,3. Let 𝐻 be the graph obtained from 

𝐺 by deleting 𝑣. Then 𝑑𝐻(𝑣𝑖) = 2 for 𝑖 = 1,2,3. If 𝑣𝑖 is not in any 3-cycle in 𝐻 

for 𝑖 = 1,2,3, then it is contracted it’s a neighbor. Need to say that if 𝑣𝑖 is adjacent 

to one of {𝑣1, 𝑣2, 𝑣3}\{𝑣𝑖}, say 𝑣𝑗, then 𝑣𝑖  is contracted into 𝑣𝑗  firstly, and 𝑣𝑗 

contracted into it’s a neighbor, and so on. Let 𝐻′ is a graph with ∇(𝐻′) ≤ 3. By the 

induction hypothesis ∇(𝐻′) ≤ ⌈
𝑛

3
⌉ − 1. So ∇(𝐺) ≤  ∇(𝐻′) + 1 ≤  ⌈

𝑛

3
⌉.  

If there is a vertex in 𝑣1, 𝑣2 and 𝑣3, say 𝑣1,  such that it is in some singular 

3-cycle 𝐶 , suppose that the neighbors of 𝑣1  are 𝑥1  and  𝑥2 . Then 𝐶 =

 𝑥1 𝑣1 𝑥2 𝑥1.We delete 𝑥1 at first. Then the degree of 𝑣1 is one and the degree of 

𝑥2. is at most two in the present graph. Next, 𝑣1 and 𝑣2 are deleted in this same 

order. Note that the deletion of 𝑣1 and 𝑥2 does not affect the decycling number. Let 

𝐻′′ be the obtain graph. If 𝐻′′ also has a singular 3-cycle, then the cycle is dealt 

with as C, and so on. Suppose that k singular 3-cycles are being deleted. Let 𝐹 be 

the obtained irreducible graph, i.e., 𝐹 has not any cut edge. 

If 𝐹 has not any vertex, then 𝑛 = 3𝑘 + 1. Considering that 𝑘 vertices are deleted, 

we have that ∇(𝐺) ≤ k + 1, we have that ∇(𝐺) ≤  ⌈
𝑛

3
⌉. If 𝐹 has at least one vertex 

and any edge, then ∇(𝐺) ≤  ⌈
𝑛

3
⌉ by a similar argument. If 𝐹 has at least one edge, 

then 𝛿(𝐹) ≥ 2, since 𝐹 is an irreducible graph. In this case, we claim that 𝐹 is not 

a 3-regular graph. Otherwise, 𝐺 is not connected, which violates the assumption. So 

𝐹 has at least one vertex with degree two. If 𝐹 has only one vertex with degree two, 

then 𝐺 has a cut edge or is not connected, a contradiction. Hence 𝐹 has at least two 

vertices with degree two. Let 𝑦1 and 𝑦2 be two vertices with degree two if 𝐹. Then 

each of them is not in a 3-cycle. Otherwise, 𝐹 has a singular 3-cycle. Let ≥ 4 −

𝑐𝑦𝑐𝑙𝑒 be a cycle whose length no less than four. If both 𝑦1 and 𝑦2 are not in the 

same ≥ 4 − 𝑐𝑦𝑐𝑙𝑒, then they are contracted respectively. Let 𝐹′ be obtained graph. 

By the induction hypothesis, ∇(𝐹′) ≤ ⌈
𝑛−3𝑘−1−2

3
⌉, that is  ∇(𝐹′) ≤   ⌈

𝑛

3
⌉ − 𝑘 − 1. 

Thus ∇(G) ≤  ⌈
𝑛

3
⌉. 

Otherwise, suppose that 𝐶′ is the ≥ 4 − 𝑐𝑦𝑐𝑙𝑒 which contains 𝑦1 and 𝑦2. If the 

length of 𝐶′ is at least five, then 𝑦1 and 𝑦2 are contracted. By a similar argument 

as the above, we have that ∇(G) ≤ ⌈
𝑛

3
⌉. 
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If 𝐶′ is a 4-cycle, let 𝑧, 𝑤 be two vertices in 𝑉(𝐶)\{𝑦1, 𝑦2 }. If 𝐶′ = 𝑧𝑦1 𝑦2𝑧, 

then 𝑑𝐹(𝑧) = 𝑑𝐹(𝑤) = 2 or 𝑑𝐹(𝑧) = 𝑑𝐹(𝑤) = 3. Otherwise, one of 𝑧 and 𝑤 is 

incident with a cut edge in 𝐹, a contraction. If 𝑑𝐹(𝑧) = 𝑑𝐹(𝑤) = 2, there are two 

cases to consider. If 𝐹 is exactly the cycle 𝐶′, then n ≥ 3k + 5 and ∇(F) = 1. So 

∇(G) ≤  𝑘 + 2. Since ⌈
𝑛

3
⌉ = ⌈

3𝑘+5

3
⌉ = 𝑘 + 2, we have that ∇(G) ≤ ⌈

𝑛

3
⌉. 

If 𝑑𝐹(𝑧) = 𝑑𝐹(𝑤) = 3, then we delete the vertex 𝑧 the degrees of 𝑦1, 𝑦2 and 𝑤 

are 1,1, and 2, respectively, in the present graph. Next, 𝑦1, 𝑦2 and 𝑤 are deleted in 

this order. The most interesting point is that this procedure does not affect the 

decycling number. Let 𝐵 be the obtained irreducible graph. If  𝐵 has not any edge, 

then ∇(G) ≤  ⌈
𝑛

3
⌉. Otherwise, B has at least two vertices with degree two by a similar 

argument as F. Next, a vertex with degree two is contracted into its a neighbor. Let 

𝐵′ be the obtained graph. So ∇(G) ≤  ∇(𝐵′) + k + 2. Since 𝐵′ has at most 𝑛 −

3𝑘 − 6 vertices, ∇( 𝐵′) ≤  ⌈
𝑛

3
⌉ − 𝑘 − 2 by the induction hypothesis. Hence ∇(G) ≤

 ⌈
𝑛

3
⌉.  

If 𝐶′ = 𝑧𝑦1𝑤 𝑦2𝑧, then we proceed the similar arguments as the above paragraph. So 

∇(G) ≤  ⌈
𝑛

3
⌉.              ∎  

IV.   Graphs on Surfaces  

A surface Σ  is a compact connected 2-dimensional manifold without 

boundary. The orientable surface 𝑆k  (𝑘 ≥ 0) can be obtained from the sphere by 

attaching 𝑘 handles, where 𝑘 is called the genus of the orientable surface. The 

non-orientable surfaces 𝑁ℎ(ℎ ≥ 1) can be obtained from the sphere by attaching ℎ 

crosscaps, where ℎ is said to be the genus of the non-orientable surface. The 

classical examples of orientable and non-orientable surfaces are tours 𝑆1  and 

projective plane 𝑁1 .  

A graph embedding is a special type of drawing of a graph G on the surface in 

which embedded graphs edges do not intersect to each other, except at their endpoints. 

The chromatics number 𝜒(Σ)  of a surface Σ is the largest 𝜒(𝐺) such that 𝐺 can 

be embedded in Σ.  

Let Σ be a surface and 𝛾 be a simple closed curve in Σ. A simple closed curve 
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𝛾 is said to be non-contractible if it is not null-homotopic. Let Ψ be an embedding 

of a graph 𝐺  on a non-spherical surface Σ. The face-width of Ψ  denoted by 

𝑓𝑤(Ψ), is 𝑚𝑖𝑛{|𝛾 ∩ 𝑉(𝐺)| ∶  γ is a non-contactable simple close curve in Σ and 

𝛾 ∩ 𝐺 ⊂ 𝑉(𝐺)}.  

Theorem 4.1 [X] (Heawood Map Color Theorem) 

(i) 𝜒(𝑆𝑘) = ⌊
7+√1+18𝑘

2
⌋ , 𝑓𝑜𝑟  𝑘 > 0, 

(ii) (𝑁ℎ) = ⌊
7+√1+24ℎ

2
⌋ , 𝑓𝑜𝑟  ℎ = 1    𝑎𝑛𝑑  ℎ ≥ 3,   𝑎𝑛𝑑   (𝑁ℎ) = 6.  

The coming up theorem follows from Theorem 2.1 and Theorem 4.1 

Theorem 4.2 Let 𝐺 be a connected graph with 𝑛 vertices. 

 If 𝐺 is embedded in the orientable surface 𝑆𝑘, where 𝑘 > 0, then  

∇(𝐺) ≤

⌊
7 + √1 + 48𝑘

2 ⌋ − 1

⌊
7 + √1 + 48𝑘

2 ⌋

 𝑛 − 1 

(1)   Suppose that 𝐺 is embedded in the non-orientable surface 𝑁ℎ . Then                                                    

𝛻(𝐺) ≤

⌊
7 + √1 + 24ℎ

2 ⌋ − 1

⌊
7 + √1 + 24ℎ

2 ⌋

 𝑛 − 1,    𝑖𝑓  ℎ = 0  𝑜𝑟 ℎ > 3, 

And ∇(𝐺) ≤
5

6
 𝑛 − 1,    𝑖𝑓  ℎ = 2. 

Let  𝐺 be a graph embedded on a surfaceΣ. A cycle 𝐶of 𝐺 in the surface Σ is 

called non-contractible if it is not null-homotopic.  

The length of the shortest non-contractible cycle is said to be the edge-width. 

Under the condition of the large edge-width, Thomasson [20] showed the following 

result. 

Theorem 4.3 [XX] Let G be a graph which is embedded in an orientable surface such 

that the edge-width is at least 214𝑘+6. Then 𝜒(𝐺) ≤ 5. 

By combining Theorem 2.1 with Theorem 4.3, we get the following result. 
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Theorem 4.4 Let G be a graph with n vertices is embedded in an orientable surface 

𝑆𝑘 in such a way that the edge-width is at least 214𝑘+6. Then 𝛻(𝐺) ≤
4

5
 𝑛 − 1. 

 An embedding of a planar graph in the plane is said to be a plane graph. Let us 

give a lemma at first. 

Lemma 4.5 If G is a plane graph with girth at least six, then G has a vertex with a 

degree at most two. 

Proof. Suppose on the contrary that 𝛿(𝐺) ≥ 3. Let 𝑆𝑖 be the number of vertices 

with degree 𝑖 ≥ 3. The 𝐺 has 𝑛 = ∑ 𝑛𝑖𝑖≥3  vertices, and 𝑚 = ∑ 𝑖𝑛𝑖𝑖≥3  edges. Let 

𝑓 be the number of faces of 𝐺. By Euler’s formula, we have that  

𝑛 −𝑚 + 𝑓 =∑𝑛𝑖 −
1

2
∑𝑖𝑛𝑖
𝑖≥3

+ 𝑓 = 2.

𝑖≥3

 

So 𝑓 = 2 +
1

2
∑ 𝑖𝑛𝑖 − ∑ 𝑛𝑖𝑖≥3 .𝑖≥3  Thus  

6𝑓 − 2𝑚 = 12 +∑(2𝑖 − 6)

𝑖≥3

𝑛𝑖 > 0 

Since the girth of G is at least six, we have that 6𝑓 ≤  2𝑚 , a contradiction.  ∎ 

 

We now consider the decycling number of a plane graph with girth at least six. 

Theorem 4.6 If 𝐺 is a plane graph with 𝑛 vertices and girth at least six, then 

∇(𝐺) ≤
𝑛

2
 . 

Proof. Assume that the theorem does not hold. Let 𝐺 be a plane graph with the girth 

at least six and decycling number more than 
|𝑉(𝐺)|

2
 which has as fewer vertices as 

possible. By lemma 4.5, 𝐺 has a vertex 𝑣 such that 𝑑(𝑣) ≤ 2. If 𝑑(𝑣) = 2, then 

the vertex 𝑣 will be deleted. This procedure does not affect the decycling number, 

there is a clear contradiction. So, we can suppose that 𝑑(𝑣) = 2.  

 Let 𝑢 be a neighbor of 𝑣 and now we remove 𝑢 at first, then 𝑣 is removed, 

in such a way we obtain a new graph 𝐺′. If 𝐺′ has not to cycle, then ∇(𝐺) ≤ 1. 
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Obviously, ∇(𝐺) ≤
𝑛

2
 . Otherwise 𝐺′ has at least one cycle, and the girth of 𝐺′is at 

least six. So ∇(𝐺′) ≤
|𝑉(𝐺′)|

2
. Since 𝐺′ has 𝑛 − 2 vertices and ∇(𝐺) ≤ ∇(𝐺′) + 1, 

we have that ∇(𝐺) ≤
𝑛

2
 , a contradiction.          ∎ 

For a graph with girth at least six which is embedded in the projective plane, we have 

the following result. 

Theorem 4.7 Let 𝐺 be a graph with 𝑛 vertices and girth at least six. If 𝐺 is 

embedded into the projective plane with face-width 𝑘, then 𝛻(𝐺) ≤
𝑛+𝑘−1

2
 . 

Proof.  Let Σ contains a non-contractible closed curve that intersects the graph at  

𝑘 vertices. Then 𝑘 − 1 ones in those 𝑘 vertices are eliminated. Thus, we obtained 

an embedding 𝛱  of a graph 𝐺′  with 𝑛 −  𝑘 +  1  vertices. Obviously, the 

face-width of 𝛱 is one. So 𝐺′ is a planar graph with girth at least six (𝛱 can be 

changed into an embedding in the plane by cutting the surface along a 

non-contractible closed curve passing the rest one of those 𝑘 vertices and identifying 

the vertex with its copy). By Theorem 4.6, ∇(𝐺′) ≤
𝑛−𝑘+1

2
. Since ∇(𝐺) ≤ ∇(𝐺′) +

(𝐾 − 1), thus we have that ∇(𝐺) ≤
𝑛+𝑘−1

2
.            

          ∎ 

Theorem 4.8 Let 𝐺 be a graph with 𝑛 vertices and girth at least six. If 𝐺 is 

embedded in the torus with face-width 𝑘, then 

𝛻(𝐺) ≤
𝑛 + 𝑘

2
. 

Proof. Let 𝜌 be a non-contractible closed curve such that it crosses 𝑘 vertices in 𝐺. 

Then those 𝑘 vertices are deleted. Thus, we obtain an embedding 𝛱 of a graph 𝐺′ 

with 𝑛 −  𝑘 vertices. Moreover, 𝐺′ is a planar graph with girth at least six. Next, 

we proceed the similar argument as that in the proof of Theorem 4.7.      

∎ 

V.  The Decycling Number of the Hypercube 𝑸𝒏 

The hypercube 𝑄𝑛 is an important regular graph which has numerous definitions. 

For 𝑛 ≥ 2, it can be reclusively defined as the Cartesian product of 𝑘2 and 𝑄𝑛−1, 
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that is 𝑄𝑛 = 𝑘2 × 𝑄𝑛−1. Beinke and Vandell [III] has been determined the decycling 

number of 𝑄𝑛 for 𝑛 ≤ 8, and they also showed that ∇𝑄𝑛 ≥ 112. 2
𝑛−8 if 𝑛 ≥ 8. 

Since 112 = 27 − 24, in such a way that we have the following result. 

Lemma 5.1 [III] 𝛻(𝑄𝑛) ≥ 2
𝑛−1 − 2𝑛−4  𝑓𝑜𝑟 𝑛 ≥ 8. 

The hypercube 𝑄𝑛 is an n-regular graph with 2𝑛 vertices. For the convenience, the 

vertices in 𝑄𝑛 can be treated as binary words of length 𝑛. If 𝑢 is a binary word, the 

number of 1’s is said to be the Hamming weight of 𝑢. For two binary words 𝑥 and 

𝑦, the hamming distance between 𝑥 and 𝑦 in 𝑄𝑛, denoted by 𝜏𝑄𝑛(𝑥, 𝑦), is the 

number of bits in which 𝑥 and 𝑦 differ. Two vertices of 𝑄𝑛are adjacent to each 

other if and only if Hamming distance between them is one. 

 Since 𝜒(𝐾2) = 2, it is easy to show that 𝜒(𝑄𝑛) = 2 by the induction on 𝑛. 

Since 𝑄𝑛 = 𝑘2 × 𝑄𝑛−1, 𝑄𝑛 can obtain from  𝑄𝑛−1 and its copy 𝑄𝑛−1
′  by adding 

2𝑛−1 edges. A vertex (𝑒1, 𝑒2,…𝑒𝑛−1, 𝑒𝑛) in 𝑄𝑛 is define as follows. If (𝑒1, …, 𝑒𝑛−1) 

is in 𝑄𝑛−1, then 𝑒𝑛 = 0. if (𝑒1, …, 𝑒𝑛−1) is in 𝑄𝑛−1
′ , then 𝑒𝑛 = 1. So a 2-coloring 

of 𝑄𝑛 can be obtained recursively. Any vertex in 𝑄𝑛−1 with even Hamming weight 

is colored by 1, and any vertex in 𝑄𝑛−1 with odd Hamming weight is colored by 2. 

However, any vertex in 𝑄𝑛−1
′  with odd Hamming weight is colored by 1, and any 

vertex in 𝑄𝑛−1
′  with even Hamming weight is colored by 2. For the convenience let 

𝐴𝑛 be the set of all vertices in 𝑄𝑛 in which each is colored by 1, and let 𝐵𝑛 the set 

of all vertices in 𝑄𝑛 in which each is colored by 2. In the following discussion the 

2-coloring 𝐶(𝑄𝑛) is always the above coloring.  

Lemma 5.2 For any two words 𝑥 and 𝑦 in the same coloring class in the 2-coloring 

𝐶(𝑄𝑛), if 𝜏𝑄𝑛(𝑥, 𝑦)  ≥ 3, 𝑡ℎ𝑒𝑛 𝑁(𝑥) ∩ 𝑁(𝑦) = ∅. 

Proof. Assume that 𝑁(𝑥) ∩ 𝑁(𝑦) = ∅. Let 𝑧 be a word in 𝑁(𝑥) ∩ 𝑁(𝑦). Then 

𝜏𝑄𝑛(𝑥, 𝑧) = 1 and 𝜏𝑄𝑛(𝑦, 𝑧) = 1. So 𝜏𝑄𝑛(𝑥, 𝑦) ≤ 2,  a contradiction.    ∎ 

Lemma 5.3 Suppose that 𝑆 is subset of 𝐴𝑛( 𝑜𝑟 𝐵𝑛) in the 2-coloring 𝐶(𝑄𝑛). If 

𝑁(𝑥) ∩ 𝑁(𝑦) = ∅ for any two words 𝑥 and 𝑦 in 𝑆, then 𝐴𝑛 − 𝑆 ( 𝑜𝑟 𝐵𝑛 − 𝑆) is a 

decycling set of 𝑄𝑛. 

Proof. Let 𝐻 = 𝑄𝑛 − (𝐴𝑛 − 𝑆). The 𝑉(𝐻) = 𝑆 ∪ 𝐵𝑛. Clearly, both 𝑆 and 𝐵𝑛 are 

independent set. If 𝑁(𝑥) ∩ 𝑁(𝑦) = ∅ for any two words 𝑥 and 𝑦 in 𝑆. Similarly 

𝐵𝑛 − 𝑆 is a decycling set of 𝑄𝑛.             ∎ 

We now give a subset 𝑆1 in 𝑄1 and a subset 𝑆1
′  in 𝑄8

′ . 
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𝑆1 =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
(1   1   0   0   0   0   0   0), 𝑆
(0   0   1   1   0   0   0   0),
(1   0   1   0   1  1   0   0),
(0   1   0   1   1  1   0   0),
(0   0   0   0   1  0   1   0),
(1   1   1   1   1  0   1   0),
(0   1   1   0   0  1   1   0),
(1   0   0   1   0  1   1   0),
(1   1   0   0   0  0   1   1),
(0   0   1   1   0  0   0   1),
(1   0   1   0   1  1   0   1),
(0   1   0   1   1  1   0   1),
(0   0   0   0   1  0   1   1),
(1   1   1   1   1  0   1   1),
(1   0   0   1   0  1   1   1),
(1   1   0   0   0  0   1   1), }

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

𝑆1
′ =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
(1   1   0   0   0   0   0   1),
(0   0   1   1   0   0   0   1),
(1   0   1   0   1  1   0   1),
(0   1   0   1   1  1   0   1),
(0   0   0   0   1  0   1   1),
(1   1   1   1   1  0   1   1),
(0   1   1   0   0  1   1   1),
(1   0   0   1   0  1   1   1),
(1   1   0   0   0  0   1   0),
(0   0   1   1   0  0   0   0),
(1   0   1   0   1  1   0   0),
(0   1   0   1   1  1   0   0),
(0   0   0   0   1  0   1   0),
(1   1   1   1   1  0   1   0),
(1   0   0   1   0  1   1   0),
(1   1   0   0   0  0   1   0),}

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

We now recursively define a subset of 𝑉(𝑄1) (or 𝑉(𝑄1
′) based on 𝑆1 ( 𝑜𝑟 𝑆1

′) for 

𝑛 ≥ 9.  Suppose that 𝑆𝑛−8  and 𝑆𝑛−8
′  have been constructed. For a word 

(𝑒1 , … . 𝑒𝑛−1, 𝑒𝑛 )  in 𝑆𝑛−7 , if (𝑒1 , … . 𝑒𝑛−1)  in 𝑆𝑛−8 ,  then 𝑒𝑛 = 0 ; if 

(𝑒1 , … . 𝑒𝑛−1)  in 𝑆𝑛−8
′ ,  then 𝑒𝑛 = 1.  So |𝑆𝑛−7| = |𝑆𝑛−8| + |𝑆𝑛−8

′ |  (|𝑋|  is the 

cardinality of 𝑋). For a word (𝑒1 , … . 𝑒𝑛−1, 𝑒𝑛 ) in 𝑆𝑛−7
′  if (𝑒1 , … . 𝑒𝑛−1) in 𝑆𝑛−8 , 

then 𝑒𝑛 = 1;  if (𝑒1 , … . 𝑒𝑛−1)  in 𝑆𝑛−8
′ ,  then 𝑒𝑛 = 0.  So |𝑆𝑛−7

′ | = |𝑆𝑛−8| +

|𝑆𝑛−8
′ |.  

 Using the induction on 𝑛, it is easy to show the following result. 
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Lemma 5.4 For 𝑛 ≥ 8, |𝑆𝑛−7| = |𝑆𝑛−7
′ | = 2𝑛−4. 

𝑆𝑛−7 and 𝑆𝑛−7
′  has the following properties. 

Theorem 5.5 Suppose that 𝑛 ≥ 8. 

(1) For any two words 𝑥  and 𝑦  in 𝑆𝑛−7  ( 𝑜𝑟 𝑆𝑛−7
′ ), 𝜏𝑄𝑛 (𝑥, 𝑦)  ≥ 3  and  

𝜏𝑄𝑛
′ (𝑥, 𝑦)  ≥ 3), 

(2) If 𝑢 is a word in 𝑆𝑛−7 , then there is only one-word 𝑣  in  𝑆𝑛−7
′  such that 

𝜏𝑄𝑛+1 (𝑢, 𝑣) = 2. For any word 𝑤 in 𝑆𝑛−7
′ \{𝑣}, 𝜏𝑄𝑛+ (𝑢, 𝑤) ≥ 3. 

(3) If 𝑢′  is a word 𝑤  𝑆𝑛−7
′ ,  then there is one word 𝑣′  in 𝑆𝑛−7  such that 

𝜏𝑄𝑛+1 (𝑢
′, 𝑣′) = 2. For any word 𝑤′ in 𝑆𝑛−7\{𝑣

′}, 𝜏𝑄𝑛+1 (𝑢
′, 𝑤′) ≥ 3. 

Proof. We use the induction on 𝑛. If 𝑛 = 8, it can be checked that the proposition 

holds. Assume that the proposition is true for 𝑛 = 𝑘. We now consider the case that 

𝑛 = 𝑘 + 1. 

(1) Suppose that 𝑥 = (𝑒1 , … . , 𝑒𝑘 , 𝑒𝑘−1) and 𝑦 = (𝑓1 , … . , 𝑓𝑘, 𝑓𝑘−1) are two words in 

𝑆𝑘−6 . If 𝑒𝑘+1 = 0, then (𝑒1 , … . , 𝑒𝑘  ) ∈  𝑆𝑘−7. If 𝑓𝑘+1 = 0, then (𝑓1 , … . , 𝑓𝑘) ∈

 𝑆𝑘−7 . By the induction assumption, 𝜏𝑄𝑘((𝑒1 , … . , 𝑒𝑘  ), (𝑓1 , … . , 𝑓𝑘)) ≥ 3.  So 

𝜏𝑄𝑘+1(𝑥, 𝑦)  ≥ 3.  If 𝑓𝑘+1 = 1 , then (𝑓1 , … . , 𝑓𝑘) ∈ 𝑆𝑛−7
′ .  By the induction 

assumption, 𝜏𝑄𝑘((𝑒1 , … . , 𝑒𝑘  ), (𝑓1 , … . , 𝑓𝑘)) ≥ 2. So 𝜏𝑄𝑘+1(𝑥, 𝑦)  ≥ 3.  If 𝑒𝑘+1 =

1 , then (𝑒1 , … . , 𝑒𝑘  )  ∈ 𝑆𝑛−7
′ .  Proceeding the similar argument, we have that 

𝜏𝑄𝑘+1(𝑥, 𝑦)  ≥ 3. If 𝑥 and 𝑦 are two words in 𝑆𝑘−6
′ (x, y) ≥ 3.     

  By the similar argument. 

(2) Suppose that 𝑢 = (𝑆1 , … . , 𝑆𝑘 , 𝑆𝑘−1) and 𝑣 = (𝑡1 , … . , 𝑡𝑘 , 𝑡𝑘−1) are two words in 

𝑆𝑘−6 and 𝑆𝑛−6
′ , respectively. If 𝑆𝑘+1 = 0, then (𝑆1 , … . , 𝑆𝑘)  ∈  𝑆𝑘−7. If 𝑡𝑘+1 = 0, 

then (𝑡1 , … . , 𝑡𝑘) ∈ 𝑆𝑛−7
′ .  By the induction assumption, 

𝜏𝑄𝑘((𝑆1 , … . , 𝑆𝑘  ), (𝑡1 , … . , 𝑡𝑘)) ≥ 3.  So 𝜏𝑄𝑘+1(𝑢, 𝑣)  ≥ 3  if 𝑡𝑘+1 = 1 , then 

(𝑡1 , … . , 𝑡𝑘)  ∈  𝑆𝑘−7 . If (𝑆1 , … . , 𝑆𝑘  ) =  (𝑡1 , … . , 𝑡𝑘),  then 𝜏𝑄𝑘+1(𝑢, 𝑣) = 2 . If 

(𝑆1 , … . , 𝑆𝑘  ) ≠  (𝑡1 , … . , 𝑡𝑘) , then 𝜏𝑄𝑘((𝑆1 , … . , 𝑆𝑘  ), (𝑡1 , … . , 𝑡𝑘)) ≥ 3.  So 

𝜏𝑄𝑘+1(𝑢, 𝑣) ≥ 3.  If 𝑡𝑘+1 = 1,  then (𝑆1 , … . , 𝑆𝑘 )  ∈ 𝑆𝑛−7
′ .  Continue the similar 

argument, we got that 𝜏𝑄𝑘+1(𝑢, 𝑣) = 2  if (𝑆1 , … . , 𝑆𝑘  ) =  (𝑡1 , … . , 𝑡𝑘)  and  

𝑄𝑘+1(𝑢, 𝑣) ≥ 3 otherwise.  

(3)  Suppose that 𝑢′ 𝑎𝑛𝑑 𝑣′  are two words in 𝑆𝑛−7
′  and 𝑆𝑘−7 , respectively. By a 

similar argument, as we have given in (2), we get the desired result.   ∎ 

Theorem 5.6 𝛻(𝑄𝑛)  ≤  2
𝑛−1 − 2𝑛−4  𝑓𝑜𝑟 𝑛 ≥ 8. 

Proof. We use the induction on 𝑛. The base case is that 𝑛 =  8. Since each word in 
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𝑆1 has even Hamming weight, 𝑆1 is a subset of 𝐴8 in the 2-coloring 𝐶(𝑄8). By 

lemma 5., for any two words 𝑥  And 𝑦 in 𝑆1, 𝜏𝑄𝑘+1(𝑥, 𝑦) ≥ 3. By lemma 5.2, 

𝑁(𝑥) ∩ 𝑉(𝑦) = ∅. So 𝐴8-𝑆1 is a decycling set of 𝑄8 by lemma 5.3. Similar, 𝐵8-𝑆1
′  

is a decycling set of 𝑄8
′ . By lemma 5.4, 𝐴8 -𝑆1  has 27 − 24  words. So, the 

proposition holds.  

Assume that the proposition is true for 𝑛 = 𝑘. We now consider the case that 

𝑛 = 𝑘 + 1. 

Since each word in 𝑆𝑛−6 has even Hamming weight, 𝑆𝑛−6 is a subset of 𝐴𝐾+1 

in the 2-coloring 𝐶(𝑄𝑘+1).  By Lemma 5.5, for any two words 𝑢  and 𝑣  in 

𝑆𝑛−6,  𝜏𝑄𝑘+1(𝑢, 𝑣) ≥ 3. By Lemma 5.2, 𝑁(𝑢) ∩  𝑁(𝑣) = ∅. So 𝐴𝑄𝑘+1 − 𝑆𝑘−6 is a 

decycling set of 𝑄𝑘+1 by lemma 5.3. Similarly, 𝐵𝑘+1- 𝑆𝑘−6
′  is a decycling set of 

𝑄𝐾+1
′ . By Lemma 5.4, 𝐴𝑄𝑘+1 − 𝑆𝑘−6  has  2𝑘 − 2𝑘+3  words. Hence ∇(𝑄𝑛)  ≤

 2𝑘 − 2𝑘+3 . Thus, the proof is completed.                 

∎ 

 The theorem below follows from Theorem 5.1 and Theorem 5.6. 

Theorem 5.7 ∇(𝑄𝑛)  ≤  2
𝑛−1 − 2𝑛−4  for n≥ 8.  

VI.   Conclusion  

In this contribution, we successfully obtained the upper bound of the 

decycling number of a graph by using graph chromatics number and its order, and the 

relation of the genus of the surface and the decycling number of a graph embedded in 

surface has been studied. The decycling number of a planar graph with n vertices is 

conjectured to be 
n

2
, which is shown in this paper if the girth of the graph is at least 

four. The decycling number of a graph with n vertices and maximum degree three is 

proved to be at most ⌈
n

3
⌉. Also, we have been investigated the decycling number of 

the hypercube graphs. 
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