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Abstract 

The need of proper medical diagnosis and treatment has been need of the day 
to deal with various infections caused by viruses and micro-organisms. To prevent 
the spread of the disease we need proper scientific approach and methods in place. 
This paper suggests one such method using Markov Process technique, in particular 
deciding how many patients should be allocated to respective doctors in a hospital.  
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I.    Introduction  

In modern times, health care has become essential and one of the important 
factors. In fact, if we are safe enough with our health care systems, then it will 
minimize our chance of getting infected by various diseases. In pandemic situation 
like COVID – 19, if someone gets affected due to virus, he/she need extensive 
medical care for about two to three weeks time. If the infected people get proper 
treatment through careful medical diagnosis, then their lives can be saved. This paper 
discuss about the mathematical procedure using Markov Process to provide methods 
for deciding number of patients to be treated periodically. The word Markov in 
“Markov Process” was named after the Russian mathematician Andrey Markov.  

II.  Markov Models and Markov Process  

We begin with a collection of objects and a list of possible states for each 
object. For example, the object may be an individual who can be assigned with one of 
two states namely healthy or sick. The collection of all possible states that an object 
can take is called the state space. At each time interval, the model assigns every 
object in the system to exactly one state from the state space. At the end of each time 
period, the objects move from one state to the next according to transition 
probabilities (or transition rates) that depend only on the current state of the system.  
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A process is said to be a “Markov Process” if the transition probabilities depend only 
on the current state of the system and not on the previous states. This is the key aspect 
of Markov models and is generally referred to as the Markov assumption. Due to the 
Markov assumption, Markov models are “forgetful” in the sense that knowledge of 
the past states of the system is not required to predict the future.  

Even though the Markov assumption forces some level of forgetfulness on the 
models, it is nonetheless possible to build memory into a Markov model. The way 
this is done is to create new states that incorporate the memory for the desired trait. 
For example, in the case of modeling spread of disease through a population, one 
could create states labeled “susceptible”, “infected”, and “recovered”. The models 
considering these three states were called SIR models. The recovered state now 
effectively contains the memory that the individual was once infected. Markov 
models that incorporate memory in this manner are sometimes referred to as higher-
order Markov models.   

The Markov models discussed usually were Markov chains, meaning that all state 
transitions occur at fixed predefined time intervals. In the 1920s, a more general class 
of models, called 

Markov processes, in which transitions occur at arbitrary times was also developed. 
In these models, time is viewed as a continuous variable, so time steps can occur at 
any point. One classic example of such a process is the “random walk of a drunkard”, 
in which a point stumbles in a random direction for a random distance. In this case, 
the concept of time is incorporated into distance, and so the point can be thought to be 
traveling in a random direction for a random length of time. In literature, the random 
walk of a drunkard is usually referred to as a Wiener process or Brownian motion. 

III.    Markov Decision Processes 

An extension of Markov processes and Markov chains, called Markov 
Decision Processes (MDPs) is a process in which the modeler is allowed to interact 
with the objects in the system by applying actions to the system. Applying an action 
to the system can be thought of as altering the transition matrix for a selection of time 
steps. MDPs are used extensively in business to help examine the effect of decision 
making in situations where outcomes are partly random and partly under the control 
of the decision maker.  

IV.    Mathematical Description of the Model 

For a given situation corresponding to Markov model, let X0 be the column 
vector of length N that represents the initial state of the system. Let X1 is the column 
vector in the first state of system and P is the transition probability matrix or simply 
transition matrix whose entries are probabilities (hence they are non-negative) 
representing transition from state 0 to state 1. Moreover, the transition matrix is time 
invariant. Thus in the Markov Model, the first state components of the system is 
obtained from initial state through the equation  
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1 0X PX    (4.1)            (4.1) 

By Markov Assumption the current state components of the system depends only on 
the immediately previous state and not on other states. Hence we have the following 
equations.  

2 1 3 2 4 3 1, , , . . ., (4.2)n nX PX X PX X PX X PX               (4.2) 

These n – 1 equation in (4.2) can be put together in a compact form as  

0 (4.3)n nX P X             (4.3) 

In equation (4.3), we observe that nP is n times multiplying the transition matrix P.  

Now to identify the nature of the system for long period of time say a decade or 
several decades the computation from (4.3) becomes practically infeasible. Hence, we 
can think of what is called “Equilibrium Distribution” of the state system vector X.  

In view of (4.3), for long period of time, for attaining Equilibrium Distribution, we 
should have  

              (4.4) 

IV.i. Proposed Technique  

To overcome the computational problem of nP , I propose the idea of 
diagonalizing the transition matrix P by determining the Eigen Values of P and 
forming diagonal matrix D whose diagonal entries are Eigen Values of P and forming 
another invertible matrix Q whose columns are Eigen Vectors of the corresponding 
Eigen Values of the transition matrix P.  

By matrix diagonalization theorem, we then have  

1 (4.5)P QDQ               (4.5) 

Using (4.5) in the equation (4.4), we have  

 

 

We thus have,  
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          (4.6) 

In equation (4.6), we see the term nD . This is easy to compute as D is a diagonal 
matrix. In particular if D is a diagonal matrix whose diagonal entries are the N Eigen 

Values say 1 2 3, , , , N     then nD  would also be a diagonal matrix whose 

diagonal entries are 1 2 3, , , ,n n n n
N    .  

Through equation (4.6) it will be possible for us to compute the Equilibrium 
Distribution of components of the process in a long run. To illustrate the advantages 
and application of the technique described here, let us consider a practical example by 
considering a typical hospital.  

V.    Doctor – Patients Allocation Model  

Let us consider a hospital where appointments are not necessary for patients 
to meet the doctors in the hospital. Hence the patients may not see the same doctor on 
every visit. However, a patient who returns for further treatment is given an option of 
selecting a specific doctor of his/her choice. If that particular doctor is available on 
that day, the patient’s waiting time increases but considerations are usually made, for 
example, if the patient is of age more than 80 years, they are preferred to go quickly 
and meet the desired doctor.   

We assume that a patient’s preference for a doctor is completely determined by the 
doctor that he or she visited in his or her last visit and the random factor of when that 
doctor will be available. Let the probabilities of visiting a given doctor, given the 
doctor seen during the previous visit, are given as in Table 1. Notice that some 
doctors inspire more patient loyalty than others. 

Table 1: Assignment of Transition Probabilities of Doctor – Patients Model  

Previous  

Visit 

Next Visit choose 
Doctor 1 

Next Visit choose 
Doctor 2 

Next Visit choose 
Doctor 3 

Treated by Doctor 
1 

0.72 0.09 0.21 

Treated by Doctor 
2 

0.18 0.85 0.15 

Treated by Doctor 
3 

0.10 0.06 0.64 

We notice that the total probability for each doctor in the respective columns add up 
to 1. We also assume the patients arriving at the hospital choose the three doctors in 
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equally likely fashion, as they do not have any idea about their way of treatment 
during their first visit.  

We will also assume that 300 patients return on a regular basis for their continuous 
treatment and we wish to see how these patients impact each doctor’s workload in 
long period of time assuming Table 1 probability assignments for each of them. Since 
initially all the three doctors were equally likely to be chosen, we assume that each 
doctor would treat exactly 100 of the returning patients. Hence the initial state 
column vector of our system is given by  

0

100

100

100

X

 
   
  

. 

The transition matrix for this Markov chain is time invariant (because of long run 
consideration). Hence, the transition matrix for our Doctor – Patients Model through 
Table 1, is given by  

0.72 0.09 0.21

0.18 0.85 0.15 (5.1)

0 .10 0.06 0.64

P

 
   
                    (5.1)

 

The first state column vector of our model through equation (4.1) is given by  

1 0

0.72 0.09 0.21 100 102

0.18 0.85 0.15 100 118

0.10 0.06 0.64 100 80

X PX

     
             
          

 

Using Matrix multiplication operation successively, using equations in (4.2), we have 
the following results.  

1 2 3 50 100

102 100.86 98.7594 89.6414 89.6414

118 , 130.66 , 139.4878 , , 158.9641 , , 158.9641 (5.2)

80 68.48 61.7528 51.3944 51.3944

X X X X X

         
                            
                  

 

One can easily multiply a 3 × 3 matrix with a single column vector to get the results 
displayed in (5.2) or we can also use computer programming to perform matrix 

multiplication recursively to finally obtain the hundredth state Markov Chain 100X for 
our system.  

Now, from the final Markov Chain 100X , we can infer that in the long run, out of 300 
patients visiting the hospital regularly, Doctor 1 treats 90 patients, Doctor 2 will have 
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159 patients and Doctor 3 will treat 51 patients approximately. This is the usual 
observation done by actual available method.  

Now to confirm this result as per the proposed technique presented in section 4.1, we 
proceed as follows:  

The Eigen values of the transition matrix P obtained through the equation 

0P I  are 0.680, 0.531 and 1. The Eigen vectors for these Eigen values forming 

the invertible matrix Q given by   

0 . 5 8 3 0 . 8 6 7 0 . 4 8 1

0 . 8 2 0 0 . 1 5 4 0 . 8 5 4 ( 5 . 3 )

0 . 2 3 7 0 . 7 1 3 0 . 2 7 6

Q

   
   
              (5.3)

 

The diagonal matrix D is such that its diagonal entries are the Eigen Values of P (due 
to diagonalization theorem), given by  

0 . 6 8 0 0 0

0 0 . 5 3 1 0 ( 5 . 4 )

0 0 1 . 0 0

D

 
   
               (5.4)

 

Therefore from equation (4.6), we have  

 

Now to compute 100D , we first notice that both 0.680 and 0.531 are real numbers 
between 0 and 1. Hence, their hundredth powers will be very small and arbitrarily 

close to zero. Also, 1100 = 1. Hence we have 100

0 0 0

0 0 0

0 0 1

D

 
   
  

. Now computing the 

inverse of the matrix in equation (5.3) and finding the value of 100 1QD Q  we get  

100 1

0.30 0.30 0.30

0.53 0.53 0.53 (5.6)

0.17 0.17 0.17

QD Q

 
   
                 (5.6)

 

Hence from equations (5.5) and (5.6), we have  
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100 100 1 0

0.30 0.30 0.30 100 90

0.53 0.53 0.53 100 159 (5.7)

0.17 0.17 0.17 100 51

X QD Q X

     
             
              (5.7)

 

We notice that (5.7) provides with us the conclusion that Doctors 1, 2, 3 will have 90, 
159, 51 patients in long run respectively, ) exactly coincide with  that of direct matrix 
multiplication performed hundred times to arrive (5.2).   

As a bonus and distinctive advantage of the proposed method, we consider the 
following situation: If we assume instead of equally likely chance of 100 patients for 
each doctor initially, that the doctors 1, 2 and 3 were treating say p, q, r patients 
respectively, then we get                     p + q + r = 300. Hence, in this situation, using 
equations (5.5) and (5.6), we see that  

100 100 1 0

0.30 0.30 0.30 0.30( ) 90

0.53 0.53 0.53 0.53( ) 159 (5.8)

0.17 0.17 0.17 0.17( ) 51

p p q r

X QD Q X q p q r

r p q r



        
                    
               

 

Thus from equations (5.7) and (5.8) we notice that the initial assignment of patients to 
respective doctors is unimportant as through the transition matrix P provided in Table 
1, the system always settle down to the conclusion that Doctor 1 treats 90 patients, 
Doctor 2 treats 159 patients and Doctor 3 treats 51 patients amounting to 300 patients 
totally who visits the hospital for periodic treatment.  

VI.   Conclusion  

Using the concept of Markov process, in the long run, we proved that the 
initial distribution of patients is immaterial; eventually the system will always settle 
down to equilirbrium distribution of patients to respective doctors. This computation, 
allows us to decide many factors beyond this decision. For example, in the Doctor – 
Patients model discussed in section 5, we find that Doctor 2 is most preferred by 
many visiting patients and Doctor 1 is preferred next followed by the least preferred 
Doctor 3. This analysis can help the hospital management to provide additional 
benefits for Doctor 2 who does a very good job in treating patients. In a way, this 
method provides an idea of efficiency between doctors in the hospital.  

We can easily replace Doctor – Patient model to any other preferred practical life 
scenario like deciding which fertilizer is best suitable for crops, which player is best 
possible among available players and so on. Using this concept, we can come make a 
meaningful decision in choosing which among the available resource is best and how 
to allocate the available resources in long run. This kind of analysis will eventually 
enhance good performance of any system.  
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