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Abstract 

The Generalized Additive Model is found to be a convenient framework due 

of its flexibility in non-linear predictor specification.  It is possible to combine several 

forms of smooth plus Gaussian random effects and use numerically accurate and 

wide-ranging fitting smoothness estimates. The Newton interpretation of smoothing 

provides standardized interval approximations.  The Model assortment through 

additional selection penalties and p-value estimates is proposed along with bivariate 

combination of input variables capturing different non-linear relationship. The 

proposed extension includes, using non-exponential family distribution, orderly 

categorical models, negative binomial distributions, and multivariate additive 

models, log-likelihood based on Laplace and Newton models. The general problem is 

that there is not one particular architecture do everything with an exponential GAM 

family. 

Keywords : Generalized Additive Model, Diabetic Retinopathy, Laplace, Newton 

Approximation 

I.    Introduction  

Generalized additive models otherwise expand the standard linear models by 

making the association with non-linear predictor variables andthe expected value of 

Y. It implies that an alternate distribution can be connected in addition to the normal 

distribution for the essential random variants. The Gaussian representations could be 

used for various statistical applications, but it is to be noted that certain types of 

problems are not suitable.  GAM eases the normal parametric presumption and helps 

to discover the complexity in association among the dependent and the independent 

variable that might otherwise be neglected. Most nonparametric approaches such as 
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thin plate smoothing spline and local regression method do not work well if a great 

deal of stand-alone non-linear variables is present in the model [XI]. Information 

sparsity among the input variables in this setting inflates estimation uncertainty. The 

problem of rapidly increasing variance in the increasing dimension is sometimes 

called the "dimensionality curse." There are at least two benefits of an additive 

approximation. First, since every additional term is calculated by means of a simpler 

univariate when the data is not uniformly approximated and hence the issue of 

dimensionality is solved out. Second, individual term calculations describe about the 

dependent variable variation with respective to the independent variables. The 

generalized additive models were designed in order to extend the additive model to a 

wide range of distribution families [VI]. Such models presume that the mean of the 

dependent variable is dependent on a non-linear connected additive predictor through 

a link function. Generalized additive models allow any member of the exponential 

distribution family, permitting the probability distribution response to be non-linear. 

The normal distribution, for example, might not be suitable for modeling discrete data 

such as counts or restricting data like quantities. Generalized models can therefore be 

used for a broader range of problems of data science. An additive component, random 

component and a link function applied to the two components are the features of 

generalized additive model. In similar situations, the linear and generalized additive 

models may be used which serve different analytical resolutions. Generalized linear 

models stress the inference and estimation of model factors, while GAM focus on 

non-parametrical data exploration. The GAM is seemed to be more fitting for finding 

the insights of the data set and for visualizing the correlation between the independent 

variable on the dependent variable. GAM applies local regression methods and the B-

Spline with univariate smoothing elements and for bivariate smoothing modules. The 

generalized cross validation utility has been commonly used as a criterion for 

smoothing parameters for many non-parametric regression methods [II]. 

II.   Design of Non-Linear Model Using GAM 

Hidden patterns can be identified in the data by flexible predictor functions. 

Predictor function-regularization helps to avoid overfitting. The use of regularized, 

non-parametric functions eludes the pitfalls in linear models when dealing with 

higher order polynomial terms [XII]. This additive modeling process in which the 

effect of the predictive variables can be apprehended by a smooth function that can be 

nonlinear depending on the underlying pattern. The nonparametric terminology 

means that data defines the shape of the predictive functions as opposed to a typically 

small group of parameters as in case of parametric functions. This can enable the 

underlying predictive patterns to be more flexibly evaluated without knowing in 

advance what they are. If a regression model is additive, it doesn't rely on the values 

of the other variables in the model to interpret the marginal effect of the single 

variable. However, the ability to control the smoothness of predictor functions is an 

important feature of GAM. Through changing the degree of smoothness you can 

prevent wiggly illogical predictor functions [X]. In other words, we may create a 

predictive relationship essentially smooth in properties, although the dataset can 

imply it to be noisy. GAM can capture common nonlinear patterns missing from a 
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conventional linear model [I].  GAM could avoid issues where the nonlinear effects 

are typically identified by polynomials when parametric regression models are 

adapted. This leads to complicated model formulations with many terms that are 

correlated and conflicting outcomes. In addition, choosing the best model involves 

building a number of transformations, followed by a search algorithm for each 

predictor to select the best alternative. During model estimation, predictor functions 

are derived automatically. It is not essential learn what kind of functions that is 

needed upfront of data analysis. This approach saves time as well as allows finding 

patterns that a parametric model has skipped [XIII]. 

Regularization and Smoothing 

The GAM system enables to monitor the degree of smoothing for predictor 

functions in order to prevent overfitting. The predictor variance and bias could be 

explicitly tackled by regulating the wiggliness in the predictor functions. In addition, 

the type of penalties used in GAMs relate to the regression using Bayes and to the 

regularization in L2. Smoother curves have a higher bias, and reduced variance, 

allowing to clearly stabilizing the bias-variance balance [IX]. Curves having reduced 

variance are typically more significant in sample testing and validation. Nonetheless, 

we can skip a major trend if the curve is too smooth. 

The key foundations of GAM are smoothing and there exists various classes of 

smoothers for GAM that is used at a high level: smoothing splines, local regression, 

P-splines, B-splines and thin plate splines.  Loess is part of the smoothers class in the 

nearest neighborhood. The simplest member of this clan based on loess is namely the 

running mean smoother which are moving averages and symmetric. Smoothing is 

attained by sliding a window through the data and calculation of average Y each step 

on the basis of the closest neighbors and the smoothness degree is defined by the 

window width [III]. While they are appealing because of their simplicity, mean 

smoothers have key problems that they perform below par in smoothing especially at 

data boundaries. This key issue need to be addressed to develop predictive models 

and therefore more elaborate choices like loess are necessary. 

 Smoothing splines develop smooth curves entirely in a different way. The smooth 

function is approximated by reducing the penalized sum of squares instead of using 

the nearest neighbor approach [IV]. The term enacts smoothness in measurement of 

the second derivatives ' integrated square. A wiggly curve therefore has significant 

second derivatives, whereas a straight line has second derivatives of 0. Therefore the 

squared second derivatives are simply used to calculate the curve's wiggliness. The 

smoothing parameter controls the balance between model performance and 

smoothness. The smoothing parameter works differently from the loess span 

parameter, which governs the window width, although they both serve the same end 

purpose. A natural cubic slope with knots at each point of data is known as a 

smoothing spline, has been shown to reduce the penalized sum of squares to a 

minimum. Nonetheless, smoothing splines pose a significant downside for prediction 

modeling: when dealing with large models it is not feasible to have knots at each data 

point [VIII]. Regression splines provide a more convenient alternative to the 
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smoothing splines. The main advantage of Regression splines is that it could be 

characterized as a linear arrangement of finite functions that are not governed by on 

the dependent variable Y. 

Modeling Using MGCV 

Three main modeling functions exist: the "bam" package in R programming is used 

for larger datasets and “gamm” for the estimation of widespread mixed additive 

models via “nlme” package, which provide access to a wide range of random effects 

and correlated features.  The "jagam," package is used for Bayesian stochastic 

simulation.  The‘s’ function is used for isotropic, univariate smoothing of numerous 

variables and to apply randomized properties. The ‘te’ function specifies the smooths 

of the tensor product built from any marginal smooths that are individually penalized 

[IX]. The ‘ti’ function is employed for specifying excluded tensor product 

interactions, facilitating smooth ANOVA models and their lower order interactions. 

The initial parameters for these functions are covariates that are smooth. Some 

additional parameters control the degree of smoothing. The significant fact is that ‘bs’ 

is a string that shows the category of basis. For example, "ds", "cr" on the spline of 

Duchon and spline of cubic regression respectively. It could be a vector for the tensor 

product if various categories of basis for various margins are needed. K is the 

dimension of basis or the dimension of the basis margin. In the case of tensor it can 

also be a vector that specifies an area of each margin. In a particular way, m defines 

the order of penalty and basis. Smoothers being shared has the same smoothing 

parameter if they are of the same kind of smoother. The “by” parameter of the 

variable should multiply the smooth or have a separate smooth copy at each point. 

For the mgcv evaluation functions, only a set of model matrix columns and one or 

more related penalties are taken into consideration. However, each smooth has a 

matrix process prediction function, which generates the matrix that maps the smooth 

coefficients to different covariates [VII]. 

Preliminary Modelling 

The relatively skewed nature of the response values and its obviously positive amount 

indicate that some transformation may be appropriate for the use of a Gaussian error 

model. Taking a Gaussian model without transformation approves the GCV 

optimization having a successful convergence and the model to have a full rank. The 

constant assumption of variance presents clear hitches that the variance with the mean 

increases. The rate at which the variance of data increases with the mean is not easy 

to assess, but a simple informal approach can be used to obtain some guide, in the 

absence of a good physical model for the mechanism behind the relationship. In the 

diversified proportions, the major difference between models is in the 4th root of the 

response measure in which the model of the transformed data is approximately 

unbiased. The reaction scale itself is therefore downgrading. The log-gamma model is 

roughly unbiased just because the overall maximum penalized likelihood isn't 

necessarily unbiased, but consistent. 
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Variances of Non-Linear Functions 

The prediction matrix parameters β do in fact provide an easy and general method to 

obtain variance estimates in conjunction with the simulation from the post-

distribution of parameters, for any quantity as a consequent from the model, not just 

the measures which are linear in β. Initially the posterior distribution of the average 

response variable in the experimental interest region is assessed. As the measure of 

interest is on a response scale and not the linear predictor scale, the quantity of 

interest is not linear in β. A prediction matrix is acquired first to address this problem, 

which records the parameters in order to form the average of the non-linear predictor 

values. This method of simulation is quite universal: measurements of any 

predetermined quantity from the fitted model can easily be obtained from the 

posterior distribution. Therefore, the method is highly efficient in contrast to 

bootstrapping. One drawback is that the parameters for smoothing are considered to 

be fixed rather than uncertain in their estimation. This is corrected using the 

smoothing parameter uncertainty evaluated using maximum likelihood technique 

[XIV]. 

Methodology for Likelihood Estimations 

It is assumed that the annotations of random variables is indicated as ...i nX X

and the joint p.d.f. specified as ( )...x ;i nf x   where  is a vector of unfamiliar 

constraints of the probability function f. The perceived values could be derived into 

( )f and the result is observed as a function of . The p.d.f with the statistics worked 

is identified as “likelihoods" of the factors.  Assume that the n data xiwhich is 

modelled as annotations of random independent variables Xi  by the p.d.f. 

( )
( )1 0 1

0

x x
f x

otherwise

 +  
= 


         (1) 

where is an indefinite bound.  The p.d.f. ( )f having the perceived data worked is 

measured as a utility of  is entitled the likelihood utility of . 

( ) ( )
1

1
n

k

k

L x  
=

= +
       

(2) 

The most likely value of the   is to be evaluated using the hypothesis having  = 0:1 

in relation to the unconventional form that the value of  taking other values. The 

range of ideals of should be consistent with the statistics having a rational likelihood 

and it should be that the range of ideals has the likelihood at minimum of 10% of the 

MLE. 

Maximum Likelihood with Penalized GAM 

( )i i ik k

k

g m P NF f= +
      

(3) 
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where ( )~ ,i iy Exp   . Let yi be the response variable following exponential family of 

distribution, Pibe a matrix representing parametric model having random coefficients 

µ, the function fk be a smooth function of predictors, and NFik represent the non-linear. 

The model consist of altering coefficient regression models. The prototype is 

comprehensive as ( )k kg m X = where X is a matrix holding P and the assessed forms 

of NFik, and bk covers µ and the fk where bk (x) represents basis functions.  

To elude over fitting, approximation is penalized likelihood by 

( )minimise T

d j i

j

M S   + where is Md indicates deviance. Asymptotic MSE is 

improved by cross validation; nevertheless GCV  converges gradually when 

compared to maximum likelihood. GCV has superior affinity to several minima and 

stark under smoothing. 

Laplace Approximate of Likelihood 

The function ( ),F D   indicates the joint distribution data D and

representing the parameter.  To develop the likelihood, the  term is approximately 

integrated out.  Substitute ( ),F D  with exponential log f of Taylor expansion about 

. Estimate is locally sufficient for a Normal distribution to be integrated. The log 

estimated likelihood is indicated by  

( )2 2 log log log 2

T

j e i

f f f
I I H M

 
 

  

   
= + − − + +   

       

(4) 

where Heis the Hessian matrix  of thelog f function based on  . 

 

Newton Reweighted Least Squares 

Newton reweighted least squares includes minimizing: 

( )
2 T

i i i

i

L d y X L  = − +
      

(5) 

In this case dicould be negative. The prescribed solution ( )T T

i i iX DX L X Dy+ =  is 

accustomed to be optimized. The value ( )log =  is approximated using Newton’s 

technique of optimization for the likelihood, lr. It is to be noted that the  vector is 

parameterized for the log L+ to be computable. The value for   is solved by Newton 

reweighted least squares. The derivatives of  is solved using inherent 

differentiation. Drag the derivatives out of lr to compute the update for  . 
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Case Study: Diabetic Retinopathy 

The data is part of “gss” package in R that provides clinical data as to whether or not 

diabetic patients have diabetic retinopathy [V]. There are three predictor variables 

namely: illness year’s length (dur), body mass index (bmi), and percent blood-

glycosylated hemoglobin (gly). The data reflects an overall hemoglobin concentration 

of glucose that is below 6 percent for non-diabetics, representing the normal long-

term glucose levels. 

III.   Simulation Results and Analysis 

Likelihood provides a good overall results using point estimation approach. The 

parameter values that optimize the likelihood function would be determined to be 

most consistent with the data based on the magnitude of the likelihood of evaluating 

how compatible the parameter values are with the data. The likelihood design is to 

consider the parameter values to optimize the likelihood and use them as the best 

parameter estimates. The solution refers to general approaches with the only 

distinction that it needs to consider more parameters than just one. 

Taylor's theorem assures that the Newton equation can measure the optimum in case 

the original parameter values are close enough to maximum likelihood.  Unluckily, 

this differs between problems. The preliminary approximation if in case is outlying 

from the likelihood then the Newton iteration may be divergent with calculations 

actually going beyond the likelihood. However, if log based likelihood is of a difficult 

form then the Hessian may not be definitely negative in some parameter space 

regions and therefore the quadratic estimate has no particular limit. In addition, if the 

initial parameter approximation is unfavorable i.e. both divergence and infinite 

Hessians can be present in the log-based model. 

This could be avoided by considering   not specifying the phase to be taken but 

merely to describe the path in the space of parameters to look for better parameter 

values. The calculation of log based characteristics at a couple of locations along the 

k spectrum typically shows parameter values of a higher probability even if the 

addition of k +  the chance.  In this case, g can be viewed as the direction to find 

better parameters. This stage comes into role only if the initial value be unsuccessful 

i.e. the hessian is indefinite and the eigenvalue being positive. If the likelihood is 

found, this will appreciate the probability by a sufficiently minor step in the direction 

of g. Because the computational methods of the Newton kind are almost always 

implemented very easily it also requires numerically measuring the necessary 

derivatives rather than creating precise expressions for it. 
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Fig. 1: bmi vs gly and dur vs gly: Non-Linear Predictor Surface with standard errors 

 

Fig. 2: A  dur vs gly Non-Linear contour   Fig. 3: B Smoothing Function for bmi vs gly 

 

Fig. 4: Pairwise Smoothing Function for (dur vs gly) and (dur vs bmi) 

 

Fig. 4.A:  Histogram of Residuals                   Fig. 4.B: Predictor vs Residual 
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Table 1: Statistical validation for Smoothing Variables 

 
k' edf k-

index 

p-

value 

s(dur) 9.00E+00 3.45E+00 1 0.52 

s(gly) 9.00E+00 9.89E-01 0.96 0.13 

s(bmi) 9.00E+00 2.36E+00 0.98 0.34 

ti(dur,gly) 8.10E+01 2.10E-04 0.98 0.28 

ti(dur,bmi) 8.10E+01 2.17E-04 1.01 0.62 

ti(gly,bmi) 8.10E+01 1.76E+00 0.95 0.07 

 

The GAM is found to be a convenient framework because of the flexibility in non-

linear predictor specification.  It is possible to combine several forms of smooth plus 

Gaussian random effects and use numerically accurate and wide-ranging approaches 

for fitting smoothness estimates. The Bayesian interpretation of smoothing provides 

standardized interval approximations.  The Model assortment through additional 

selection penalties or p-value estimates is proposed over theAIC criteria which is 

otherwise prone to errors. Figure 1 indicates that “bmi vs gly” models the non-linear 

predictor surface with least standard error. The Figure 2.A indicates “dur vs gly” 

capturing marginal non-linearity when compared to other combination of variables. 

The Figure 2.B captures multiple nonlinear relationships indicating more confidence 

in “gly and bmi” to be used as a tensor product when compared to other variable 

combinations which can be seen in the Figure 3.  GAM is executed with full 

convergence after 15 iterations. Gradient range was found to be [-3.065529e-05, 

1.057611e-05] with score 385.7915 and scale 1. The Hessian is found to be positive 

definite and the eigenvalue was found to have a range of [2.734779e-07, 0.9274749]. 

Table I indicates the tensor product interaction with ‘gly’ and ‘bmi’ is statistically 

significant.The Histogram and QQ graph in Figure 4A and 4B is very evident to be a 

line indicating that the distribution is marginally normal. Variance is also suggested 

to be around constant as the mean rises. It is seen to have a positive non-linear 

correlation for response against formfitting values with a great deal of dispersion. 

Clearly, the likelihood model is preferably used to the model established on the norm 

of the transformed data if the response scale is of prime interest.  

V.   Conclusion   

A common framework is build that is as practically useful framework using 

the multiple GAM extensions based on Laplace and Newton models. The multi-

penalty smoothing approach is proposed that makes numerically accurate estimation 

of the smoothing function offering an extensive series of smoothness. The inferential 
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machinery is expanded for smooth configurations to include a stronger AIC model 

framework. This approach enables computationally accurate inferencing mechanisms 

using the GAM extensions. The approach also provides the benefit of allowing access 

for exponential family GAMs to the inferential machinery as proposed. The downside 

of this technique is that it requires derivatives of the likelihood of the parameters in 

the higher order to be evaluated. The simple penalty approach offers a wide range of 

seamless smoothing elements like random Gaussian model. The AIC measure 

estimates for the penalized regression is yet to be worked on in the near future. 
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