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Abstract 

In this article, we study the diversity in generalized reverse derivation by 
defining L*, R* and (𝛼,𝛽)-*- Generalized reverse derivation in rings. We introduce 
some conditions which make these generalized reverse derivations and their 
associated *-reverse derivations to be commuting. Moreover, we discuss the 
conditions on these mappings that enforce the rings to be commutative. 
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I.    Introduction 

The derivation is defined as additive mappings d: R → R (i.e., endomorphism 
of the additive group of R) such that d(xy) = d(x)y + xd(y) for all x,y ∈ R. Herstein, 
introduced reverse derivation as additive mappings d: R → R if d(xy) = d(y)x+yd(x) 
for all x,y ∈ S and study the commutatively of rings with reverse derivations (see [VI, 
VII]).Furthermore, Brˇesar[XV]generalize the concept of derivation by introducing an 
additive mapping D: R → R associated to a derivation d: R → R such that D(xy) = 
D(x)y + xd (y) for all x,y ∈ R, and D is termed as generalized derivation on R. Such 
mappings were studied by several authors and obtained commutatively of prime and 
semiprime rings in which derivations or generalized derivations satisfy certain 
functional identities or have some additional properties (see [XII, XIII, XVI, XVIII]). 
Gölbasi and Kaya [V] represent the definition of Breˇsargeneralized derivation as 
left-generalized derivation associated to a derivation d and discriminate it from right-
generalized derivations associated to d, termed as the additive mappings ∆ : R → R 
satisfying ∆(xy) = d(x)y + x∆(y) for all x,y ∈ R.In [XIV], Bre ̆sar and Vukman 
defined *-derivation to be an additive map d of R satisfying d(xy)=d(x)y* +xd(y) for 
all x,y∈R, where * is an anti-automorphism of period 2 on a ring R and is said to be 
an involution. A ring R equipped with * is called a ring with involution or *- ring.S. 
Ali [XVII] defined the generalized *-derivation as an additive mapping F:R→R 
associated with a *-derivationd of RifF (xy)=F(x)y* +xd(y) for all x,y∈R. 

Recently, Aboubakr and Gonzalez [I] generalized the notion of reverse derivation to 
generalized reverse derivation defined as an additive mapping ∆ : R → R, termed as 
left generalized reverse derivation (right generalized reverse derivation) associated 
with reverse derivation δ, if it holds ∆(ab) = ∆(b)a + bδ(a) ( ∆(ab) = δ(b)a + b∆(a)) for 
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all a, b∈ R. The reverse derivations in the case of prime Lie and prime Malcev 
algebras were studied by Hopkins and Filippov. Those papers provided some 
examples of nonzero reverse derivations for the simple 3-dimensional Lie algebra sl-2 
(see VIII) and characterized the prime Lie algebras admitting a nonzero reverse 
derivation (see [II, III]). In particular, Filippov proved that each prime Lie algebra, 
admitting nonzero reverse derivation is a PI-algebra. Filippov also described all 
reverse derivations of prime Malcev algebras [IV]. The supercase of reverse 
derivations (anti super derivations) of simple Lie super algebras was studied by 
Kaygorodov in [IX, X]. He proved that every reverse superderivation of a simple 
finite-dimensional Lie superalgebra over an algebraically closed field of characteristic 
zero is the zero mapping. After that, Kaygorodov proved that every r-generalized 
reverse (or l-generalized) derivation of a simple (non-Lie) Malcev algebra is the zero 
mapping (see [XI]). 

We extend the idea of Gölbasi and Kaya [V] to reverse derivations in ring with 
involution and define the additive mapping dfrom a ring R to R which is termed as *-
reverse derivation satisfying d(xy)=d(y)x*+yd(x) for all x,y∈R. The notion of L*- 
generalized reverse derivation (R*- generalized reverse derivation) are introduced and 
denotes for additive mappings ∆: R → R associated with *-reverse derivation 
δsatisfies∆(xy) = ∆(y)x* + yδ(x) (∆(xy) = δ(y)x* + y∆(x))for all x,y ∈R. 
Furthermore, the additive mapping ∆: R → R is termed to be (α,β)-*- generalized 
reverse derivation ((α,β) generalized reverse derivation) if it satisfies ∆(xy) = 
∆(y)α(x*) + β(y)δ(x) (∆(xy) = ∆(y)α(x) + β(y)δ(x))for all x, y ∈R. 

Here, we study the discrimination in characteristics of L* and R*-generalized reverse 
derivations in semiprime rings. We prove that if there exist non-zero L*-generalized 
reverse derivations with associated *-reverse derivation δ in semiprime ring then 
δ(R) contain in Z(R). On the other hand, the existence of R*-generalized reverse in 
semiprime rings ensure that ∆(R) contain in centre Z(R). We proved that if ∆ is a L*-
generalized reverse (or R*-generalized reverse)derivation on a prime ring R, then it is 
L*- generalized (or R*-generalized) derivation. Also, we discuss the functional 
condition ∆([x,x*] ) = 0for commutatively in prime rings byR*-reverse generalized 
derivation. Furthermore, we study that(α, β)-generalized reverse derivation and (α, β)-
*-generalized reverse derivation enforces the prime ring to be commutative. 

Throughout this paper R denotes an associative ring with involution and its centre is 
denoted by Z(R). Recall that R is prime if aRb = {0} implies that a = 0 or b = 0. The 
ring R is semiprime if aRa = 0 implies a = 0.As usual, [x,y] denotes the 
commutatorxy−yx. We will make extensive use of the basic Jacobi identities [xy,z] = 
x[y,z] + [x,z]y and [x,yz] = y[x,z] + [x,y]z.  

Theorem I 

 Suppose that R is a semiprime rings with involution and ∆ is a L*-
generalized reverse derivation associated with *- reverse derivation δ, then δ maps R 
into the centre Z (R). 
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Proof 

By assumption, we have 

∆(xy) = ∆(y)x* + yδ(x),      for all x,y∈ R     (1) 

On substituting xz in place of x in (1), we have 

∆(xzy) = ∆((xz)y) = ∆(y)(xz)* + yδ(xz) 

∆(xzy) = ∆(y)z*x* + yδ(z)x*+ yzδ(x)       (2) 

Also,∆(xyz) = ∆((x(zy)) = ∆(zy)x* + zyδ(x), this implies that 

∆(xyz) = ∆(y)z*x* + yδ(z)x* + zyδ(x)               (3) 

From (2) and (3), we get 

 [y,z]δ(x) = 0        (4) 

On replacing y by δ(x)y in (4) to obtain[δ(x)y,z]δ(x) = 0 or 

δ(x)[y,z]δ(x) + [δ(x),z]yδ(x) = 0         (5) 

By using (4), we get 

 [δ(x),z]yδ(x) = 0                                      (6) 

Now replacing y by yz in (6), we have 

[δ(x),z]yzδ(x) = 0                                       (7) 

On multiplying (6) by z, implies  

[δ(x),z]yδ(x)z = 0                             (8) 

From (7) and (8) we get  [δ(x),z]y[δ(x),z] = 0. By using semi primeness of R, we 
have[δ(x),z] = 0 for all 𝑧 ∈ R. Hence δ(R) contain in Z(R). 

Theorem II 

 Suppose that R is a prime ring with involution. If there exists a L*- 
generalized reverse derivation ∆associated with *- reverse derivation, then ∆ is L*-
generalized derivation.  

Proof 

From theorem I, we have 

 [y,z]δ(x) = 0, ∀ x,y,z ∈ R                          (9)  

On replacing  xy instead of y in (9), we havex[y,z]δ(x) + [x,z]yδ(x) = 0. By using (9) 
again we have [x,z]yδ(x) = 0. This implies that 

[x,z] Rδ(x) = 0                      (10) 

By primeness, we have [x,z] = 0 or δ(x) = 0.Therefore, we have two subsetsA = {x ∈
 R|[x,z]=0, z ∈ R} and  B = {x ∈ R |δ(x) = 0}which are subgroups  such that AUB = 
R, this leads to contradiction therefore  we get either A = R or B = R. If A =R, i.e 
δ(x)=0, x ∈ R which is contrary to assumption, therefore A = R implies that 
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[x,z]=0,for all x,z∈ R.Thus R is commutative.Hence  ∆(xy) = ∆(yx) = ∆(x)y*+ xδ(y) 
which is L*- generalized derivation. 

Theorem III 

 Suppose that R is a semiprime ring with involution. If ∆ is R*- generalized 
reverse derivation associated with *-reverse derivation δ, then ∆ maps R into centre 
of R. 

Proof 

By hypothesis, we have 

∆(xy) = δ(x)y*+ y∆(x)                      (11) 

Replacing y by yz in (11), we have∆(xyz) = δ(z)(xy)* + z∆(xy) or 

∆(xyz) = δ(z)y*x* + zδ(y)x + zy∆(x)                              (12) 

On the other hand, by associativity of R, we get ∆(xyz) = δ(yz)x* + yz∆(x) or 

∆(xyz) = δ(z)y*x*+ zδ(y)x* + yz∆(x)         (13) 

From (12) and (13), we have 

[y,z]∆(x) = 0                                   (14) 

By replacing y with ∆(x)y, we get 

∆(x)[y,z]∆(x) + [∆(x),z]y∆(x) = 0 

By using (14), we obtain 

 [∆(x),z]y∆(x) = 0                        (15) 

On substituting yz in place of y yields  

[∆(x),z]yz∆(x) = 0                             (16) 

Multiplying (15) by z from right to get 

[∆(x),z]y∆(x)z = 0         (17)   

From (16) and (17), we get[∆(x),z]R[∆(x),z] = 0. Since R is semiprime, we get that 
[∆(x),z] = 0, ∀ x,z ∈ R. Hence ∆(R) contain in Z(R). 

Theorem IV 

               Consider R is prime ring with involution. If R admits R*-generalized 
reverse derivation ∆, associated with *-reverse derivation δ, then ∆ is R*-generalized 
derivation. 

Proof 

From (14) of Theorem III, we have 

[y,z]∆(x) = 0                                (18) 

Replace y by xy in (18) and using it again, we get[x,z]y(x) = 0for all y∈ R or 
[x,z]R∆(x) = 0. 
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By primeness of R, we get, [x,z] = 0 or ∆(x) =0, therefore we have two subsetsA = {x 
∈ R|[x,z] = 0, ∀ z ∈ R} and B = {x ∈ R|∆(x) = 0}. Then by Brauer’s trick, either A = 
R or B =R.Here B = R gives contradiction. Therefore, we have A = R then [x,z] = 
0,∀ x,z∈ R, i.e R is commutative. Hence ∆(xy) = ∆(yx) = δ(x)y* + x∆(y), which is 
R*-generalized derivation. 

Theorem V 

 Let R be prime ring with involution with char(R) ≠ 2 and S∩Z ≠ {0}.and ∆ 
is a R*- generalized reverse derivation associated with any *-reverse derivation δ, if it 
satisfies ∆([x,x*] ) = 0, then R is commutative. 

Proof 

Replace x with k+h, with h ∈ H, k ∈ S,  

∆([h,k]) = 0                         (19) 

Taking h = k0k1, where k0∈ S, k1∈ S ∩ Z, we get, ∆([k0k1,k] = 0. This implies that 
∆([k0,k]k1) = 0, therefore α(k1)[k0,k] + k1∆([k0,k]) = 0 or 

∆[k0,k]k1 + δ(k1)[k0,k] = 0               (20) 

Substitute h0k1 fork in (20), where h0∈ H, K1∈ S∩Z, we get 

∆([k0,h0k1])k1 + [k0,h0k1] δ(k1) = 0 

∆([k0,h0]k1)k1 + [k0,h0] δ(k1)k1 = 0 

k1 δ(k1)[k0,h0]* + k1
2∆([k0,h0]) + [k0,h0] δ(k1)k1 = 0 

By using (19), we have k1δ(k1)[k0,h0] + k1 δ(k1)[k0,h0] = 0. Since char(R) ≠ 2, this 
implies that 

[k0,h0] δ(k1)k1 = 0,  k0∈ S, h0∈ H, k1∈ S∩Z. As centre of prime ring is free of zero 
divisor, therefore, [k0,h0] = 0 or δ(k1)k1 = 0. 

If [k0,h0] = 0, k0∈ S, h0∈ H, then by lemma2.1 [7], we have R is commutative. On the 
other hand, let δ(k1)k1 = 0,  k1∈ S∩Z therefore,   δ(k1) = 0 or k1 = 0. Since k1 = 0 also 
implies that, δ(k1) = 0  for all k1 ∈ S∩Z. Thus (20), reduces to  

∆ ([k0,k])k1 = 0, for all k0 ,k ∈ S 

∆([k0,k]) = 0                           (21) 

By taking 2x = h + k, for all h ∈ H, k ∈ S, therefore, from (19) and (21), we get 

∆([x,k]) = 0, for all k ∈ S, x ∈ R           (22) 

By substituting k = hk1 in (22), we have ∆([x,hk1]) = 0 or ∆([x,h]k1) = 0, where k1∈ 
S∩Z. This implies that δ(k1)[x,h]* + k1∆([x,h]) = 0. By assumption δ(k1) = 0, 
therefore k1∆([x,h]) = 0. By using primeness of R, we get 

∆([x,h]) = 0                            (23) 

From (22) and (23), we get that 

∆([x,y]) = 0, for all x,y ∈ R                (24) 
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this implies that ∆([x,yx]) = 0 or ∆([x,y]x) = 0 or δ(x)[x,y]* + x∆([x,y]) = 0. This 
yields that δ(x)[x,y]* = 0 or [x,y]( δ(x))* = 0. By taking  x=xr, we get [xr,y]( δ(x))* = 
0 or [x,y]r(δ(x))* = 0 or 

[x,y]R(δ(x))* = 0 

this implies that  [x,y] = 0 or (δ(x))* = 0 i.e, δ(x) = 0. If δ(x) = 0, for all x ∈ R then, 
∆(xy) = δ(y)x* + y∆(x) = y∆(x). Hence  ∆([x,yz]) = 0 or ∆([x,y]z + y[x,z]) = 0 or 

δ(z)[x,y] + z∆[x,y] + δ[x,z]y + [x,z]∆(y) = 0 

    [x,z]∆(y) = 0 

Hence, ∆(y)R[x,z] = 0, for all  x,y∈ R. By primeness of R, we have, ∆ = 0 or R is 
commutative. 

Theorem VI 

 Suppose that R is prime ring and ∆ is (α, β)-generalized reverse 
derivation and if βis an automophism on R, then R is commutative.  

Proof 

By hypothesis, we have  ∆(xy) = ∆(y)α(x) + β(y)δ(x) 

Now consider∆(x(yz)) = ∆(yz)α(x) + β(yz)δ(x), this gives 

 ∆(x(yz)) = ∆(z)α(y)α(x) + β(z)δ(y)α(x) + β(y)β(z)δ(x)    (25) 

Also, by associativity of R, we get ∆((xy)z) = ∆(z)α(xy) + β(z)δ(xy) 

∆((xy)z) = ∆(z)α(x)α(y) + β(z)δ(y)α(x) + β(z)β(y)δ(x)       (26) 

From (25) and (26), we get 

∆(z)α([x,y]) + β([z,y])δ(x) = 0               (27) 

By taking y = x, we have 

β([z,x])δ(x) = 0                    (28) 

Replace z by zy in (28) and using it again, we getβ([z,x])β(y)δ(x) = 0. Hereβ is an 
automophism, therefore we can write[z,x]Rδ(x) = 0. By using primeness, we get, x ∈ 
Z(R) or δ(x) = 0, ∀ x ∈ R. This implies that we have two setsA = {h∈ R|h∈ Z} and B 
= {h∈ R|δ(h) = 0}where either R=A or R=B.If R=B, then δ= 0, which is a 
contradiction.Hence R=A, therefore R is commutative and∆(xy) = ∆(yx) = ∆(x)α(y) + 
β(x)δ(y) is an (α,β) generalized derivation. 

Corollary VII 

                If α, β are automorphisms in the (α, β)-generalized reverse derivation ∆, 
then in non-commutative prime ring the ∆= 0. 

Proof 

By taking y = z in  (21), we get∆(z)α([x,z]) = 0. After replacing z by yz, we obtain 

∆(z)α(y)α([x,z]) = 0 
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Hereα is automorphism, therefore we have∆(z)R[x,z] = 0. By primeness of R, and 
using Brauer’s trick either∆(z)=0 or [x,z]=0, here R is non-commutative this implies 
that ∆ = 0. 

Theorem VIII 

Suppose that R is prime ring with involution and  ∆ be (α,β)-*- generalized reverse 
derivation on R, then R is commutative. 

Proof 

Consider 

∆(x(yz)) = ∆(yz)α(x*) + β(yz)δ(x) 

∆(x(yz)) = ∆(z)α(y*)α(x*) + β(z)δ(y)α(x*) + β(y)β(z)δ(x)      (29) 

On the other hand 

∆((xy)z) = ∆(z)α((xy)*) + β(z)δ(xy) 

 ∆((xy)z) = ∆(z)α(y*)α(x*) + β(z)δ(y)α(x*) + β(z)β(y)δ(x)                    (30) 

From relations (29) and (30), we have β([y,z])δ(x) = 0. On substituting y = xy, we get 

β([x,z])β(y)δ(x) = 0 

Here β is automorphism, then by primeness of R we have [x,z] = 0 or δ(x) = 0. 

Using Brauer’s trick, we get that if δ ≠ 0, then R is commutative. 

Theorem IX 

 Let R be semi prime, α is homomorphism and β is automophism in 
(α,β)-*-reverse generalized derivation ∆ on R, then Δ(R) contain in Z(R). 

Proof 

Consider 

∆(r(st)) = ∆(st)α(r*) + β(s)β(t)δ(r) 

∆(r(st)) = ∆(t)α(s*)α(r*) + β(t)δ(s)α(r*) + β(s)β(t)δ(r)    (31) 

On the other hand, 

∆((rs)t) = ∆(t)α((rs)*) + β(t)δ(rs) 

∆((rs)t) = ∆(t)α(s*)α(r*) + β(t)δ(s)α(r*) + β(t)β(s)δ(r)                          (32) 

From (31) and (32), we obtain 

β([s,t])δ(r) = 0                  (33) 

Replacing s by β-1(δ(r))β-1(s), we have β[β-1(δ(r))β-1(s),t]δ(r) = 0.By Jacobi identity, 
we have 

β(β-1(δ(r))[β-1(s),t] + [β-1(δ(r)),t]β-1(s))δ(r) = 0 

This implies that 
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(δ(r)β([β-1(s),t]) + β([β-1(δ(r),t])s)δ(r) = 0 

By using (33), we getβ([β-1(δ(r)),t])sδ(r) = 0.Now taking t = β-1(t), we have, 

β([β-1(δ(r)), β-1(t)])sδ(r) = 0 

δ(r),t]sδ(r) = 0                       (34) 

Replace s by st, we have 

[δ(r),t]stδ(r) = 0              (35) 

On multiplying (34) by t from right to get 

[δ(r),t]sδ(r)t = 0           (36) 

From (35) and (36), we have[δ(r),t]s[δ(r),t] = 0. By primeness of R, we get [δ(r),t] = 
0, that is δ(R) contain in Z(R). 

         The following result can be easily shown by taking ∆ = δ. 

Corollary X 

             If R is semi prime and δ is (α,β)-*- reverse derivation, then δ is (β,α)-*- 
derivation. 

Conclusion 

We have discussed the commutatively of rings and commuting conditions on reverse 
derivations from different types of Generalized reverse derivations defined here. 
These Generalized reverse derivations pave new paths of research on reverse 
derivations in prime rings. These derivations may also be helpful for prime Lie 
algebra to bring it to be PI-algebra. Furthermore the characterization of these 
mappings in Malcev algebra and BCK algebra would be interesting for researchers. 
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