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Abstract 

We examine the unsteady MHD free convective flow of a chemically reacting 
incompressible fluid over a vertical permeable plate under the influence of thermal 
radiation, Dufour and heat source/sink. The dimensionless governing equations are 
solved analytically using the three term perturbation method. Expressions for 
velocity, temperature and concentration for the flow are obtained and presented 
graphically. The analysis shows that Casson fluid parameter (𝛽) increases the 
velocity; Dufour number increases the velocity and velocity; magnetic field force 
decreases the velocity; Chemical reaction rate increases the temperature but 
decreases the velocity and concentration; Grashof numbers increase the velocity 
when their values are increasingly varied. Furthermore, skin fiction coefficient, 
Nusselt number and Sherwood number for different values of governing parameters 
are calculated and the results are summarized in tabular form. 

Keywords:  MHD, Casson fluid, Dufour effect, Free convection, Chemical reaction. 

I.    Introduction 
Non-Newtonian fluid flow occurs in various branches of chemical and 

material processing engineering. There are various types of non-Newton fluids such 
asmicropolar fluid, couple stress fluid, Viscoelastic fluid and power-law fluid and so 
on. Likewise, there is another non-Newtonian fluid model known as the Casson fluid 
model. It is a part of mechanics based mostly at the time conception that a fluid 
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particle could also be taken into thought as continuous in a very structure.  The 
Casson fluid model is one of the non-Newtonian fluid models that illustrate 
characteristics of the yield stress. Additionally, Casson fluid acts as a solid when the 
shear stress is applied less than the yield stress, and it moves if the applied shear 
stress is greater than the yield stress.There are important applications in the 
processing industry and biomechanics of polymers. The following are examples of 
Casson fluid: jelly, tomato sauce, honey, soup, concentrated fruit juices, gypsum 
paste etc. Alao et al. [I] studied the effects of thermal radiation, soret and dufour on 
an unsteady heat and mass transfer flow of a chemically reacting fluid past a semi-
infinite vertical plate with viscous dissipation. Charankumaret al. [II] suggested the 
work on chemical reaction and soret effects on cassonmhd fluid flow over a vertical 
plate. Choudhary et al. [III] discussed unsteady MHD casson fluid flow through 
porous medium with heat source/sink and time dependent suction.Falana et al. [IV] 
investigated the effect of brownian motion and thermophoresis on a nonlinearly 
stretching permeable sheet in a nanofluid.Ferdows et al. [V] developed the scaling 
group transformation for MHD boundary layer free convective heat and mass transfer 
flow past a convectively heated nonlinear radiating stretching sheet.Ibrahim et al. 
[VI] examined the unsteady MHD micropolar fluid flow and heat transfer over a 
vertical porous plate through a porous medium in the presence of thermal and mass 
diffusion with a constant heat source. Idowu and Falodun [VII] studied soret–dufour 
effects on mhd heat and mass transfer of walter’s viscoelastic fluid over a semi-
infinite vertical plate: spectral relaxation analysis.Kim et al. [VIII] studied Heat and 
mass transfer in MHD micropolar flow over a vertical moving porous plate in a 
porous medium.Mahmud and Sattar [IX] developed unsteady MHD free convection 
and mass transfer flow in a rotating system with hall current, viscous dissipation and 
joule heating.Mohan et al. [X] suggested an unsteady mhd free convection flow of 
casson fluid past an exponentially accelerated infinite vertical plate through a porous 
media in the presence of thermal radiation, chemical reaction and heat source or sink. 
Narayana et al. [XI] studied the effects of hall current and radiation absorption on 
MHD micropolar fluid in a rotating system.Ojjela and Naresh Kumar [XII] developed 
unsteady MHD mixed convective flow of chemically reacting and radiating couple 
stress fluid in a porous medium between parallel plates with soret and dufour 
effects.Okuyade et al. [XIII] studied the unsteady MHD free convective chemically 
reacting fluid flow over a vertical plate with thermal radiation, Dufour, Soret and 
constant suction effects.Pal et al. [XIV] examined perturbation technique for unsteady 
MHD mixed convection periodic flow, heat and mass transfer in micropolar fluid 
with chemical reaction in the presence of thermal radiation.Rajakumaret al. [XV] 
investigated radiation, dissipation and Dufour effects on MHD free convection 
Casson fluid flow through a vertical oscillatory porous plate with ion-slip current. 
Raju et al. [XVI] developed the analytical study of MHD free convective, dissipative 
boundary layer flow past a porous vertical surface in the presence of thermal 
radiation, chemical reaction and constant suction.Sattar and Maleque [XVII] studied 
unsteady MHD natural convection flow along an accelerated porous plate with Hall 
current and mass transfer in a rotating porous medium. Seth et al. [XVIII] proposed 
the Heat and Mass Transfer effects on unsteady MHD natural convection flow of a 
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chemically reactive and radiating fluid through a porous medium past a moving 
vertical plate with arbitrary ramped temperature.Seth et al. [XIX] investigated effects 
of hall current and rotation on unsteady MHD natural convection flow with heat and 
mass transfer past an impulsively moving vertical plate in the presence of radiation 
and chemical reaction. Sharma et al. [XX] investigated the soret and dufour effects on 
unsteady MHD mixed convection flow past a radiative vertical porous plate 
embedded in a porous medium with chemical reaction. Srinivas et al. [XXI] 
developed pulsating flow of casson fluid in a porous channel with thermal radiation, 
chemical reaction and applied magnetic field.Ullah et al. [XXII] developed soret and 
dufour effects on unsteady mixed convection slip flow of casson fluid over a 
nonlinearly stretching sheet with convective boundary condition. Vedavathi et al. 
[XXIII] chemical reaction and radiation and dufour effects on casson magneto hydro 
dynamics fluid flow over a vertical plate with heat source/sink.Venkateswarlu and 
satyanarayana [XXIV] studied the effects of thermal radiation on unsteady mhd 
micropolar fluid past a vertical porous plate in the presence of radiation absorption. 
Vijayaragavan et al. [XXV] examined Heat and Mass Transfer in radiative casson 
fluid flow caused by a vertical plate with variable magnetic field effect.  
Thus the present investigation is concerned with the study of variable magnetic field 
effect and radiative Casson fluid in two dimensional MHD flow, heat and mass 
transfer of viscous incompressible fluid pass a permeable vertical plate in a porous 
medium. The effects of various physical parameters on the velocity, temperature and 
concentration profiles as well as on local skin friction co-efficient, local Nusselt 
number and local Sherwood number are shown graphically. 

Nomenclature 

K Pemeability of the porous medium 

M Magnetic parameter 

Q Heat absorption parameter 

R Thermal radiation 

T Temperature on the plate[K] 

T୵ Temperature at the plate[K] 

g  Gravitational acceleration [ms-2] 

Prefix/Suffix 

SୡSchimdth number 

P୰Prandtle number 

K୰ Chemical reaction parameter 

G୰ Grashof number 

G୫ Modified Grashof number 

q୰  Thermal radiation 

Nu Nusselt number 

Sh Sherwood number 

Greek Symbols 

ρFluid density[kg/m] 

μ Viscosity 

β Casson fluid parameter 

τ Skin fiction 

II.    Formulation and Solution 

MHD Casson fluid of incompressible, viscous, electrically-conducting fluid 
over a vertical plate moving with radiation and chemical reaction in the presence of 
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Dufour effect is considered. The rheological equation of state for an isotropic and 
incompressible flow of Casson fluid is
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Where 𝜋 is the product based on the non

the fluid,𝜋௖ is a critical value of this product, 
the non-Newtonian fluid

Let the x − axis is taken along the plate in the vertically upward direction and 
 y − axis is taken normal to the plate. At time 
temperature Tஶ.  At time 
u = u଴eୟ୲in its own plane and the temperature of the plate is raised linearly with 
respect to time and the concentration level near the plate is raised to 
assumed that there is a first order chemical reaction between the fluid and the species 
concentration. The reaction is assumed to take place entirely in thestream
shown in Fig.1. Then under the usual Boussinesq 
governed by the following equations:
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The governing equations are
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effect is considered. The rheological equation of state for an isotropic and 
incompressible flow of Casson fluid is 
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is the product based on the non- Newtonian fluid, P୷ is the yield stress on 
is a critical value of this product, 𝜇஻ is the plastic dynamic viscosity of 

Newtonian fluid𝑒௜,௝ is the (i, j)୲୦ component of deformation rate. 

is taken along the plate in the vertically upward direction and 
is taken normal to the plate. At time t ≤ 0 the plate and fluid are at the same 

.  At time t > 0, the plate is exponentially accelerated with a velocity 
in its own plane and the temperature of the plate is raised linearly with 
time and the concentration level near the plate is raised to C

assumed that there is a first order chemical reaction between the fluid and the species 
concentration. The reaction is assumed to take place entirely in thestream

Then under the usual Boussinesq approximation the unsteady flow is 
governed by the following equations: 

Fig. 1: The Physical Model of the problem 

The governing equations are 
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The initial and boundary condition are 
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(5) 
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(6) 
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The Radiative heat flux 𝑞௥ can be expressed as the form 

4 44rq
a T T

z
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           

(8) 

Where 𝜎 is Stefan Boltzmann constant N and k is mean absorption coefficient. 

It is assumed that the temperature differences within the flow are small and 𝑇ସmay be 
expressed as a linear function of the temperature. This is obtained by expanding 𝑇ସ in 
Taylor’s series about and neglecting the higher order terms, thus we get 
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In order to solve the coupled non-linear system of equations (11) to (13) with the 
boundary conditions (14) to (16), the following simple perturbation technique is used. 
The governing equations (11) to (13) are expanded in the powers of Eckert 
number𝜀(<< 1). 
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The analytical solutions of the equations (20)-(28) are given by 
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The skin friction co-efficient, Nusselt number and Sherwood number are important 
physical parameters for this type of boundary layer flow. These parameters can be 
defined and determined as follows. 
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III.   Results and Discussion 

In the present study, we have to select ϵ = 0.01, t = 0.1, n = 1while 
β, Du, Gm, Gr, Kr, M, R, Scare varied over a range, which are listed in the figures. Fig.2 
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shows that the variation in velocity profiles of zfor various values in Casson fluid 
parameter (β). Here we illustrate that as the values of Casson fluid parameter 
(β)increases it leads to increases in velocity. Fig.3 displays the velocity profile 
increases on increasing the dufour number (Du) in the region away from the plate. 
This implies that Dufour number (Du) tends to raises the fluid velocity in the region 
away from the plate. The variation in velocity profile with z for different values in 
Modified Grashof number(Gm) is shown in Fig.4. The modified Grashof number 
(Gm) defines the ratio of the species buoyancy force to the viscous hydrodynamic 
force. As expected, the fluid velocity increases as modified Grashof number (Gm) 
increases. Fig.5 depicts the various values of zfor various values in Grashof numbers 
(Gr). This figure reflects that with increase in Grashof numbers (Gr) there is increase 
in fluid velocity due to improvement of buoyancy force. Fig.6 witnesses the effect of 
chemical reaction parameter (Kr) on the profile of velocity distribution and it is 
indicated that as (Kr) increases the velocity profile decreases with the boundary layer 
thickness. Fig.7 demonstrates the velocity profiles against for various magnetic field 
parameters(M) and here we observed that the velocity decreases as the existence of 
magnetic field becomes stronger. This conclusion agrees with the fact that the 
magnetic field exerts retarding force on the free-convection law. From Fig.8 the effect 
of radiation parameter R on the velocity profiles increases with an increase in R.Fig.9 
depicts the value of Schmidt number(Sc) increase in the peak velocity is seen near the 
plate. Whereas for higher values of Schimth number (Sc) the peak velocity shifts 
closer to the plate. Fig.10 represents the effect of Dufour number(Du) on the 
concentration profile. As the Dufour number(Du) increases, the concentration 
profiles of the fluid increases in the boundary layer region.Fig.11 represent the 
variations in temperature profile for different value of chemical reaction 
parameter(Kr) , here we observe that the temperature decreases with a growing of 
chemical reaction parameter(Kr). Fig.12 shows that the temperature profile for 
different values of Prandtl number(Pr) , here we observe that the temperature 
decreases with a rising of Prandtl number(Pr). From figure 13, we observe that 
Schmidt number increases as the increasing of the various temperature profiles. 

Figure 14-15 depicts the variation of species concentration C versus Z under the 
influence of Chemical reaction paramer(Kr)  and Schmidt number(Sc). These figures 
indicates that the concentration level of the fluid falls due to increasing values of 
Chemical reaction paramer(Kr)  and Schmidt number(Sc). 
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Fig.2:Casson fluid (β) effect on velocity 

 

Fig.3: Dufour (Du) effect on velocity 

 

Fig.4: Modified grashof number (Gm) Effect on Velocity 
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Fig.5: Grashof Number (Gr) effect on velocity 

 

Fig.6: chemical reaction parameter (Kr) effect on velocity 

 

Fig.7: Magnetic field (M) effect on velocity 
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Fig.8: Radiation (R) effect on velocity 

 

Fig.9: Schimdth number (Sc) effect on velocity 

 

Fig.10: Dufour (Du) effect on Temperature 
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Fig.11: chemical reaction parameter (Kr) effect on Temperature 

 

Fig.12: Prandtl number (Pr) effect on Temperature 

 

Fig.13: Schmidt number (Sc) effect on Temperature 
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Fig.14: chemical reaction parameter (Kr) effect on Concentration 

 

Fig.15: Schmidth number (Sc) effect on Concentration 

 

Fig.16:Schmidt Number (Sc) effect on velocity 
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Fig.17:Schmidt Number (Sc) effect on temperature 

For comparison purpose, the method proposed by Mohan et al. [X] is deliberated. The 
profiles of fluid velocity and concentration versus boundary layer coordinate is shown 
in the Fig.16 and Fig.17 for a numerous estimations of Sc by taking Du=0. Our 
results are in good agreement with the performance of Mohan et al. [X] without 
Dufour effect. 

Table 1:The influence of different parameters on 𝐍𝐮𝐬𝐬𝐞𝐥𝐭 𝐍𝐮𝐦𝐛𝐞𝐫 (𝐍𝐮)with 
fixed values of other parameters. 

𝐊𝐫 𝐏𝐫 𝐃𝐮 𝐒𝐜 𝐑 Nusselt Number(Nu) 

1 

2 

3 

1 

0.71 

 

 

1 

2 

3 

 

0.60 

 

 

 

 

 

0.2 

0.4 

0.5 

0.22 

 

 

 

 

 

 

 

 

0.3 

0.4 

0.5 

1 

 

 

 

 

 

 

 

 

 

 

 

2 

3 

4 

-0.9865 

-0.9380 

-0.8958 

-0.9767 

-0.9443 

-0.9141 

-1.0287 

-1.0046 

-0.9970 

-0.9677 

-0.9459 

-0.9255 

-1.4077 

-1.7312 

-2.0037 
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Table 2:The influence of different parameters on the Skin fiction coefficient (𝛕) 
with fixed values of other parameters. 

𝐌 𝐊𝐫 𝐆𝐫 𝐆𝐦 𝐒𝐜 𝐏𝐫 𝐑 𝛃 𝐃𝐮 Skin fiction (𝛕) 

5 

2.5 

3.5 

1.5 

1 

 

 

2 

3 

4 

10 

 

 

 

 

 

8 

9 

10 

 

 

 

 

 

 

 

8 

9 

0.22 
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0.4 

0.5 

0.71 
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3 

1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 

3 

4 

0.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 

2 

3 

0.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.2 

0.4 

0.5 

0.5583 

0.3959 

0.2442 

0.4742 

0.4197 

0.3790 

0.3276 

0.4430 

0.2809 

0.4196 

0.5221 

0.4861 

0.4569 

0.5641 

0.5826 

0.5996 

0.4160 

0.3281 

0.2650 

0.8366 

1.0804 

1.1929 

0.5390 

0.5487 

0.5535 
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Table 3:The influence of different parameters on 𝐒𝐡𝐞𝐫𝐰𝐨𝐨𝐝 𝐍𝐮𝐦𝐛𝐞𝐫(𝐒𝐡)with 
fixed values of other parameters. 

𝐊𝐫 𝐒𝐜 𝜺 𝐧 Sherwood Number(Sh) 

1 

2 

3 

0.22 

 

 

0.3 

0.4 

0.5 

0.01 

 

 

 

 

 

0.02 

0.03 

0.04 

1 

 

 

 

 

 

 

 

 

2 

3 

4 

-0.4765 

-0.6724 

-0.8229 

-0.5564 

-0.6425 

-0.7183 

-0.4841 

-0.4919 

-0.5000 

-0.4791 

-0.4819 

-0.4850 

 
IV.    Conclusion 

 In this study, we examined the Dufour effects on unsteady MHD free 
convection flow fast a vertical plate through porous medium in the slip regime with 
heat source/sink. The governing equations are solved analytically by three term 
harmonic and non-harmonic perturbation method. Presently, we illustrate the flow 
characteristics for velocity, temperature and concentration and show the how the flow 
fields are influenced by the parameters. 

1. When the values of Casson fluid parameter(β), Modified Grashof number 
(Gm), Grashof number (Gr), Dufour number (Du) are increases, the velocity fields 
are increases while an increase in the chemical reaction parameter(Kr), magnetic 
field (M), R and Sc, the velocitydecreases. 
2. An increase in the chemical reaction 
parameter(Kr),Dufour number (Du),Prandtl number (Pr), the temperature increases 
while an increasing the values of R decreases the temperature. 
3. An increase in Schmidt number (Sc) and chemical reaction parameter(Kr) 
decreases the concentration fields. 
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