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Abstract 

The finite element (FE) solutions are different from the exact ones due to the 
presence of various error sources, such as computer round-off error, error due to 
discrete of the displacement field, etc. This paper uses the h- and p-refinement of the 
finite element method for the laser butt weld problem, with the base metal is AISI 
1018 steel highness 8 mm. The objective is to present estimation techniques the strain 
energy relative error  and evaluate its reliability through two indices: the affectivity 

index  and the uniformity index SD. The numerical results achieve to meet the 

conditions for reliability assessment. Specifically, the ,  , SD values of h- 
refinement, and p- refinement respectively: less than 6%, 0.535667, 0.019528, and 
less than 4%, 0.506616, 0.103834. 

Keywords: Finite element method (FEM), Laser butt weld, Relative error, 
Reliability, h- refinement, p- refinement 

I. Introduction 

In actual engineering analysis, some studies have developed error estimates, 
but calculations are very intensive, and the accuracy needs to be verified [V], [VI], 
[VII]. The finite element method (FEM) is also one of the common methods in this 
evaluation. Because the FEM based on the minimization of the total potential energy, 
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the error estimate of this method with refinement mesh is done in the form of energy 
norm. On this basis, to increase the efficiency of the refinement process, the 
evaluation of error for stress to achieve accurate results is essential [VII], [XIV], 
[XV]. This gives useful information regarding the convergence rate of stress. Within 
the scope of this article, we present two common techniques and have been published 
by many studies: h- and p- refinement of the FEM. 

[IX] Proposed error estimation of h-convergent approximations calculates only for 
element level and measure strain energy related to an element. [III]Continued to 
evaluate the strain energy error of p- convergence for two-dimensional LEFM 
problems, and the result of p-convergent was substantially faster. 

[VIII] Presented the convergence rate of the FEM. Some general conclusions relative 
computational efficiencies and reliability of the modes of convergence: the 
smoothness of the function affected the rate of convergence, the rate of convergence 
of h- refinement is slower of p- refinement sequences of meshes and p-distributions 
can be optimally designed at singularities, the p-version meets both efficient and 
reliable better than the h –version. 

[XVI] Presented local error evaluation for two 2D models (the Poisson problem in the 
plane and the plane elasticity problem) using the adaptive h-type FEM based on 
interpolation estimates and the 'extraction formulas' of BabuSka and Miller. The 
results compared with those obtained by the ‘ad-hoc’ methods. However, these 
formulas made more widespread for certain nonlinear cases, general elliptic boundary 
value problems. 

[II] Presented the meshes design guide for p-extension of the FEM in the evaluation 
and controlling error. This is very convenient, inexpensive, and the establishment of 
engineering data is calculated with accuracy and reliability. The results were proved 
by calculating stress at singularities in three applications: L-shaped plane-elastic 
body, plane-elastic body with many stress singularities, elliptic arch. 

[I] Compared the results of p-version with both h-version and adaptive h-refinement 
through the benchmarking problem for the deformation theory. The superiority and 
accuracy of p-version are very promising for more complex material models. 

[XX] Pointed out that the guidance of creating a finite element solution with high 
precision by the h-p-r-refinement through the problem of the planar four-bar 
mechanism undergoing high-speed motion but the cost of the computation can 
increase. Therefore, based on the accuracy and computational cost, users can choose 
the appropriate refinement methods. 

[XVIII] used h- and p- refinement of the FEM in estimating error and convergence 
rate for two-dimensional and three-dimensional elastic mechanical problems. 
Besides, based on the enrichment indicator or the ratio of error indicator, the 
refinement criteria for the adaptive strategy have also established. A correction for the 
technique was made to enhance the energy norm assessment, and the results were 
compared with the least square method. The results seem to suggest that the p-
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refinement and the h-p-refinement have reduced the best approximation error for 
problems without singularities, and the h-refinement is more effective at singularities. 

[XVII] has overcome the disadvantages of isogeometric analysis based on NURBS, 
and the effect was significantly improved. In this paper, an adaptive algorithm, h- 
refinement with T-splines, has been combined with a posteriori error estimation 
technique. The potential of IGA to T-splines is evident in numerical examples and 
paves the way for further developments. 

[IV] have approached Binev's algorithm to prove the convergence and design an 
optimal method through two examples: Lacunary Function and Non-degenerate 
Function, respectively were the self-adjoint elliptic problem (one dimension) and the 
Poisson problem (two-dimensions). The hinges of Claudio Canuto et al. is the hp-
AFEM. The algorithm of the hp-AFEM consists of two repetition routines: hp-
NEARBEST and REDUCE. The near-best hp-approximation of the current discrete 
solution and data is detected by hp-NEARBEST to achieve the desired accuracy. The 
error tolerances are reduced by REDUCE but are acceptable. This concatenation has 
created the converging sequence. 

II.   The General Theory of the Reliable Estimation the H- and P- Refinement of 
the Finite Element Method (FEM) 

As we know in the FEM, a continuum model presented by a certain number 
of elements with a simple approximation field causes the presence of discretization 
error in solutions. This error depends on many factors such as a number of elements, 
type of element, an order of interpolation functions, the shape of elements, singular 
points in a problem domain, and the representation of applied loads and support 
conditions.  

Thus, in practical engineering analysis, it is necessary to check the discretization 
error by observing the convergence of results. Of course, it must be sufficiently 
reliable. In order to evaluate its reliability, two simple indices can be introduced: the 
effectively index and the uniformity index SD. 

The equilibrium equation (the strong form): 

0; u    Lu f Lu f  (1) 

The principle of virtual work (weak form): 

( ) 0; u,

    v Lu f d v  (2) 

The homogenous Dirichlet’s boundary condition:  

0 Du on  (3) 

Find u V such that it satisfies equation (3): 

( , ) ( )  B u v L v v V  (4) 
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whereV is the infinite – dimension space, ( , )B u v is the virtual work of internal 
stresses, ( )L v is the virtual work of external forces. 

The energy norm: 

( )
( , )




E
u B u u  (5) 

The strain energy:  

1
( ) ( , )

2
U u B u u  (6) 

Denote by u  the exact displacement,   is the stress fields, and by hu and h  the 
ones obtained by the finite element method using a mesh of size h, then the point-
wise error in the displacement field is: 

( )h u he u u   (7) 

and the point-wise error in the stress field is: 

( )h he      (8) 

Since it is not convenient to describe such point-wise error, it is always hopeful of 
measuring the error by certain norms for practical considerations, such as for the 
determination of global precision and elemental ones. 

For problems for which a functional called total energy exists, the finite element 
solution can be shown to be the one which minimizes the global stress error of the 
structure in the energy sense [XIX], i.e., the solution hu  corresponds to: 

   





 dHMinimise h

T
h

Uu hh

 1  (9) 

where is the domain, H is the Hooke’s elastic matrix, and hU  is the finite 

element subspace. Consequently, the energy norm of the error: 

   
2/1

1

)( 







 






dHe h
T

hEh   (10) 

In most cases, the exact solution is unknown, so the error must be estimated. The 
a-posteriori error estimation consists in finding a procedure that can offer a reliable 
estimate of the exact energy norm of the error not only at the global level but also at 
the elemental level. Denote by  such as to estimate:  

( ) ( )h hE E
e u u

 
    (11) 

which is often called an error estimator. 

The algebraic rate of convergence: 
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( ) ( )       h E h E

k
e u u

N
 (12) 

wherek is a positive problem's dependent constant, N the number of degrees of 
freedom, and  the asymptotic rate of convergence. 

The error estimation using Richardson extrapolation technique: 
2

2
( ) ( ) 2

2       h E h E

k
e U U

N
 (13) 

The exact relative error:  

(%) 100%


 h
FEM

U U

U
 (14) 

The estimated relative error (using the Richardson extrapolation technique): 

1(%) 100% 
 h h

extra

h

U U

U
 (15) 

The effectivity index: 





 extra

FEM

 (16) 

The uniformity index: 

 
1

2 2

1

1 n

i
i

SD
n

 


 
  
 
  (17) 

where i is the index for elemental level,   is the average index for global level 

For the range 1 (%) 10  , an estimator is said reliable if: 0.8 1.2  and 

0.2SD  [VI] 

III.    The Problem of Laser-Welded butt Joints under Tensile Stress 

We consider the model of the laser butt weld (as shown in Fig. 1) 

 

1. Base Metal (BM)     2. HAZ 3. Weld Zone (WZ) 

Fig.1: The scheme of the weld 

The base metal is AISI 1018 steel. The modulus of elasticity E = 205 GPa and the 
Poissons ratio  = 0.29 ([X], [XIII]) 
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The length L = 100 mm, the high H = 8 mm, and the thick t = 1 mm 

The tensile strength of the laser weld after the test  = 562 MPa 

The volume V = L×H×t = 800 mm3 

The exact strain energy U by given ([XI], [XII]): 

21

2




V
U

E
 (18) 

⇒The value of the exact strain energy 

U = 0.616281 kJ (19) 

The finite element analyses were done in the case of plane strain. 

The analysis is implemented by Matlab code for not only the finite element 
analyses but also error estimation. The detail of the Matlab code program structure is 
shown in Fig.2. 

 

Fig.2: The Matlab code program structure 

 

IV.      Results and Discussion 

The results of the finite element analysis are shown in Fig. 3 and Fig. 4 
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h-refinement p-refinement 

 

20×20×1 uniform mesh 

 

4×4×8 uniform mesh 

Fig.3: The displacement field in the x-direction 

 

20×20×1 uniform mesh 

 

4×4×8 uniform mesh 

Fig.4: The stress field in the x-direction 

Corresponds to mesh, element numbers, and Dofs, the values of the strain energy and 
the error are presented in Tab. 1 and Tab. 2 

Table 1: The h- refinement estimation results with the uniform mesh 

Mesh 
Element 

numbers 
Dofs 

The FEM 

strain energy 

(kJ) 

The extra 

strain energy 

(kJ) 

CPU 

time 

(s) 

10×10 500 1122 0.614324438 0.6151587149 4.311 

11×11 605 1344 0.614415158 0.6151357316 6.466 

12×12 720 1586 0.614489235 0.6151203606 10.007 

13×13 845 1848 0.614550606 0.6151100296 15.431 

14×14 980 2130 0.614602102 0.6151028451 23.057 

15×15 1125 2432 0.614645795 0.6150978253 33.682 

16×16 1280 2754 0.614683239 0.6150942646 49.702 

17×17 1445 3096 0.614715611 0.6150917687 66.657 

18×18 1620 3458 0.614743821 0.6150899289 92.058 

19×19 1805 3840 0.614768580 0.6150885422 122.959 

20×20 2000 4242 0.614790452 0.6150875415 166.091 
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Dofs 
FEM  

(%) 

extra  

(%) 
    SD 

1122 5.634525995 3.682658519 0.653588 

0.535667 0.019528 

1344 5.502347809 3.422580574 0.622022 

1586 5.392015867 3.203154843 0.594055 

1848 5.298867385 3.015739461 0.569129 

2130 5.219426836 2.853210237 0.546652 

2432 5.151060698 2.710887540 0.526278 

2754 5.091743887 2.585019044 0.507688 

3096 5.039898373 2.472948899 0.490674 

3458 4.994279531 2.372119294 0.474967 

3840 4.953894817 2.280763997 0.460398 

4242 4.917944624 2.197735303 0.446881 

Table 2: The p- refinement estimation results with 4×4 uniform mesh 

Degree 

p 

Element 

numbers 
Dofs 

The FEM 

strain energy 

(kJ) 

The extra 

strain energy 

(kJ) 

CPU 

time 

(s) 

3 

80 

946 0.6153716271 0.6162412117 1.338 

4 1474 0.6155020466 0.6155621713 2.509 

5 2162 0.6155502623 0.6155911812 5.415 

6 3010 0.6155853998 0.6157916617 11.768 

7 4018 0.6156130668 0.6158877709 24.952 

8 5186 0.6156326251 0.6157169343 49.870 

 

Dofs 
FEM  

(%) 

extra  

(%) 
    SD 

946 3.841329993 3.756475407 0.977910103 

0.506616 0.103834 

1474 3.555218998 0.988304002 0.277986814 

2162 3.443430762 0.815296901 0.23676878 

3010 3.359622269 1.830174929 0.544756161 

4018 3.292131168 2.111941071 0.641511824 

5186 3.243573294 1.170165056 0.360764179 

The values of the exact relative errorFEM (%) are calculated from Eq. 14 between the 

exact U = 0.616281 kJ (Eq. 20) and the FEM (in Tab. 1 and Tab. 2) strain energy 
values. The values of the estimated relative error extra (%)in Tab. 1 and Tab. 2 are 

calculated from Eq. 15 between the FEM and the extra strain energy values. 

This value ranges of the exact relative error:  
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5.634525995 4.917944624(%)   h FEM &

3.841329993 3.243573294(%)   p FEM  

and the estimated relative error: 

3.682658519 2.197735303(%)   h extra &

3.756475407 0.815296901(%)   p extra  

The relationships between the number of Dofs and (the strain energy U, the relative 
error  , the convergence rate  ) of the h- and p- refinement are shown in Fig. 5, Fig. 
6 and Fig. 7 

Although the convergence curve of h- refinement is more smooth, the advantage of p-
refinement shows that the convergence rate is much faster with only fewer element 
numbers and degrees of freedom, and lower computational costs. 

Fig.5: The Dofs and U graph 

  

Fig.6: The Dofs and  graph 

h-refinement p-refinement 
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Fig.7: The Dofs and   curve 

V. Conclusion   

In this paper, the reliability assessment for the h- and p-refinement of the finite 
element method with the quadrilateral element has performed. The two-dimension 
laser-welded butt joints under tensile stress for the AISI 1018 steel highness 8mm has 
considered. The number of mesh surveyed for h- and p-refinement were 11 (degree p is 
1) and 6 (degree p is 3 to 8). The relative error value in assessing the error is within the 
permitted range, less than 10%. Besides, using the Richardson extrapolation 

technique has brought very feasible error values: (%) 3.756475407
extra

max  and 

(%) 0.815296901
extra

min  . Moreover, with the values of two indicators: the effectivity 

index 0.535667h refinement    0.506616p refinement   and the uniformity index 

0.019528h refinementSD    0.103834p refinementSD    (satisfying Eq. 18 and can extend 

the lower bound of  to 0.5), the goal of the paper is confirmed in the specific technical 
problem. 

Abbreviations 

FEM Finite Element Method 

BM Base Metal 

HAZ Heat-Affected Zone 

WZ Weld Zone 

AISI American Iron and Steel Institute 

Dof(s) Degree(s) of freedom 

LEFM Linear Elastic Fracture Mechanics 

IGA IsoGeometric Analysis 

NURBS Non-Uniform Rational B-Splines 

hp-AFEM Adaptive hp-Finite Element Method 
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