

JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES www.journalimems.org

ISSN (Online) : 2454 -7190 Vol.-15, No.-5, May (2020) pp 82-89 ISSN (Print) 0973-8975

n-DISTRIBUTIVE NEARLATTICES

Shiuly Akhter¹, A.S.A. Noor²

¹Department of Mathematics, University of Rajshahi, Bangladesh.

²Department of ETE, Prime University, Dhaka, Bangladesh.

¹shiuly.mim@gmail.com, ²asanoor100@gmail.com

Corresponding author: Shiuly Akhter

https://doi.org/10.26782/jmcms.2020.05.00007

Abstract

For a neutral element $n \in L,[III]$ have introduced the concept of ndistributive lattices which is a generalization of both 0-distributive and 1-distributive lattices. For a central element n of a nearlattice S, we have discussed n-distributive nearlattices which is a generalization of both0-distributive semilattices and ndistributive lattices. For an element n of nearlattice S, a convex subnearlattice ofS containing n is called an n-ideal ofS. In this paper, we have given some properties of n-distributivenearlattices. Finally, we have included a generalization of prime Separation Theorem in terms of annihilator n-ideal.

Keywords: Central element, 0-distributive lattice, *n*-distributive lattice, *n*-annihilator, annihilator *n*-ideal, prime *n*-ideal, *n*-distributive nearlattice.

I. Introduction

J.C. Varlet has given the concept of 0-distributive and 1-distributive lattices. A lattice *L* with 0 is called 0-distributive if for all $a, b, c \in L$, $a \wedge b = 0 = a \wedge c$ imply $a \wedge (b \vee c) = 0$. Similarly, a lattice *L* with 1 is called 1-distributive if for all $a, b, c \in L$, $a \vee b = 1 = a \vee c$ imply $a \vee (b \wedge c) = 1$. Of course, every distributive lattice with 0 and 1 is both 0-distributive and 1-distributive. A pseudo complemented lattice *L* can be characterized by the fact that for each $a \in L$, the set of all elements which are disjoint with element *a* forms a principal ideal. But a 0-distributive lattice *L* says that for each $a \in L$, the set of all elements which are disjoint with *a* is simply an ideal not necessarily a principal ideal. Hence, every pseudocomplemented lattice is 0distributive. For detailed literature on 0-distributive lattice we refer the readers to consult [IV] and [I].

In this paper, we generalize the concept of 0-distributive lattice and n-distributive lattice and give the notion of n-distributive nearlattice where n is a central element of this nearlattice.

A nearlattice *S* is a meet semilattice with the property that, any two elements possessing a common upper bound, have a supremum. Nearlattice *S* is distributive if for all $x, y, z \in S, x \land (y \lor z) = (x \land y) \lor (x \lor z)$ provided $y \lor z$ exists. For detailed literature on nearlattices, we refer the reader to consult [V] and [VIII]. An element *n* of a nearlattice *S* is called medial if $m(x, n, y) = (x \land y) \lor (x \land n) \lor (y \land n)$ exists in *S* for all $x, y \in S$. A nearlattice *S* is called a medial nearlattice if m(x, y, z) exists for all $x, y, z \in S$.

An element *s* of a nearlattice *S* is called standard if forall *t*, *x*, *y* \in *S*, *t* \wedge [(*x* \wedge *y*) \vee (*x* \wedge *s*)] = (*t* \wedge *x* \wedge *y*) \vee (*t* \wedge *x* \wedge *s*). The element *s* is called neutral if (i) *s* is standard and (ii) for all *x*, *y*, *z* \in *S*, *s* \wedge [(*x* \wedge *y*) \vee (*x* \wedge *z*)] = (*s* \wedge *x* \wedge *y*) \vee (*s* \wedge *x* \wedge *z*).

In a distributive nearlattice, every element is neutral and hence standard. An element *n* in a nearlattice Siscalled sesquimedial if for all $x, y, z \in S$, $([(x \land n) \lor (y \land n)] \land [(y \land n) \lor (z \land n)]) \lor (x \land y) \lor (y \land z)$ exists in *S*.

An element *n* of a nearlattice *S* is called a upper element if $x \lor n$ exists for all $x \in S$. Every upper element is of course a sesquimedial element. An element *n* is called a central element of *S* if it is neutral, upper and complemented in each interval containing it.

Let S be a nearlattice and $n \in S$. Any convex subnearlattice of S containing n is called an *n*-ideal of S. For two *n*-ideals I and J of a nearlattice S, [V] has given a description of $I \vee J$ while the set theoretic intersection is the infimum. Hence, the set of all *n*-ideals of a nearlattice S is a lattice which is denoted by $I_n(S)$. {n}andS are the smallest and largest elements of $I_n(S)$.

An *n*-ideal generated by a finite number of elements a_1, a_2, \dots, a_m is called a finitely generated *n*-ideal and it is denoted by $\langle a_1, a_2, \dots, a_m \rangle_n$. The set of all finitely generated *n*-ideals is denoted by $F_n(S)$. Clearly, $\langle a_1, a_2, \dots, a_m \rangle_n = \langle a_1 \rangle_n \vee \langle a_2 \rangle_n \vee \dots \vee \langle a_m \rangle_n$. An *n*-ideal generated by a single element *a* is called a principal *n*-ideal denoted by $\langle a \rangle_n$. The set of principal n-ideals is denoted by $P_n(S)$.

Let *S* be a nearlattice and $n \in S$. For any $a \in S$,

 $\langle a \rangle_n = \{ y \in S : a \land n \le y = (y \land a) \lor (y \land n) \}$

= { $y \in S$: $y = (y \land a) \lor (y \land n) \lor (a \land n)$ }whenever*n* is standard element in *S*.

If *n* is an upper element in a nearlattice *S*, then $\langle a \rangle_n = [a \land n, a \lor n]$.

We know that when *n* is standard and medial, the set of all principal *n*-ideals $P_n(S)$ is a meet semilattice and $\langle a \rangle_n \cap \langle b \rangle_n = \langle m(a, n, b) \rangle_n$ for all $a, b \in S$. Also, when *n* is neutral and sesquimedial, then $P_n(S)$ is a nearlattice. By[V] if S is medial nearlattice and *n* is a neutral element of S, then $P_n(S)$ is also a medial nearlattice.

For a distributive nearlattice *S* with an upper element *n*, $P_n(S)$ is a distributive nearlattice with the smallest element $\{n\}$.

A proper convex subnearlattice M of a nearlattice S is called a maximal convex subnearlattice if for any convex subnearlattice Q with $Q \supseteq M$ implies either Q = M or Q = S. A proper convex subnearlattice M of a medial nearlattice S is called a prime convex subnearlattice if for any $t \in M, m(a, t, b) \in M$ implies either $a \in M$ or $b \in M$. For a medial element n, an n-ideal P of a nearlattice S is a prime n-ideal if $P \neq S$ and $m(x, n, y) \in P$ $(x, y \in S)$ implies either $x \in P$ or $y \in P$. Equivalently, P is prime if and only if $\langle a \rangle_n \cap \langle b \rangle_n \subseteq P$ implies either $\langle a \rangle_n \subseteq P$.

Let *n* be a central element of a nearlattice *S*. For $a \in S$, we define $\{a\}^{\perp_n} = \{x \in S: m(x, n, a) = n\}$, known as an *n*-annihilator of $\{a\}$. Also for $A \subseteq S$, we define $A^{\perp_n} = \{x \in S: m(x, n, a) = n \text{ for all } a \in A\} \cdot A^{\perp_n} \text{ is always a convex subnearlattice containing$ *n*. If*S* $is a distributive nearlattice, then it is easy to check <math>\{a\}^{\perp_n}$ and A^{\perp_n} are *n*-ideals. Moreover, $A^{\perp_n} = \bigcap_{a \in A} \{\{a\}^{\perp_n}\}$. If *A* is an *n*-ideal, then A^{\perp_n} is called an annihilator*n*-ideal which is obviously the pseudocomplement of *A* in $I_n(S)$. Therefore, for a distributive nearlattice *S* with central element *n*, $I_n(S)$ is pseudocomplemented.

Anearlattice*S* with central element *n*, iscalled an *n*-distributive nearlattice if for all $a, b, c \in S, < a >_n \cap < b >_n = \{n\}$ and $< a >_n \cap < c >_n = \{n\}$ imply $< a >_n \cap [< b >_n \lor < c >_n] = \{n\}$. Equivalently, *S* iscalled *n*-distributive nearlattice if $a \land b \le n \le a \lor b$ and $a \land c \le n \le a \lor c$ imply $a \land (b \lor c) \le n \le a \lor (b \land c)$.

II. Main results

To obtain the main results of this paper we need to prove the following lemmas.

Lemma (2.1): Every convex subnearlattice not containing n is contained in a maximal convex subnearlattice not containing n.

Proof:Let *F* be a convex subnearlattice such that $n \notin F$. Let *F* be the set of all convex subnearlattice containing *F* but not containing *n*. *F* is non-empty as $F \in \mathcal{F}$. Let *C* be a chain in \mathcal{F} and $M = \bigcup (X | X \in C)$. Let $x, y \in M$. Then $x \in X$ and $y \in Y$ for some $X, Y \in C$. Since *C* is a chain, so either $X \subseteq Y$ or $Y \subseteq X$. Suppose $X \subseteq Y$. Then $x, y \in Y$. Hence $x \land y, x \lor y \in M$. Thus *M* is a subnearlattice of a nearlattice containing *F*. Also it is convex as each $X \in C$ is convex. Clearly $n \notin M$. Hence *M* is a maximal element of *C*. Therefore, by Zorn's Lemma, \mathcal{F} has a maximal element, say *Q* with $F \subseteq Q$.

Lemma (2.2):Let *S* be a nearlattice with a central element *n*. A convex subnearlattice *M* not containing *n* is maximal if and only if for all $a \notin M$ there exists $b \in M$ such that m(a, n, b) = n.

Proof: Suppose *M* is a maximal convex subnearlattice and $n \notin M$. Also let $a \notin M$. Suppose for all $b \in M$, $m(a, n, b) \neq n$. Set $M_1 = \{y \in L: y \land n \leq (a \lor b) \leq (a \land b) \lor n \leq y \lor n\}$. Obviously, M_1 is convex subnearlattice as *n* is central. Moreover, $n \notin M_1$.For otherwise $n \land n \leq (a \lor b) \land n \leq (a \land b) \lor n \leq n \lor n$ implies m(a, n, b) = n which gives a contradiction to the assumption. For $b \in M$, $b \land n \leq (a \lor b) \land n \leq (a \land b) \lor n \leq (a \land b) \lor n \leq b \lor n$ implies $b \in M_1$ and so $M \subset M_1$. Also, $a \land n \leq (a \lor b) \land n \leq (a \land b) \lor n \leq a \lor n$ implies $a \in M_1$ but $a \notin M$ so $M \subset M_1$. Therefore, we have a contradiction to the maximality of *M* and so there exists some $b \in M$ such that m(a, n, b) = n. Conversely, if *M* is not maximal and $n \notin M$, then by Lemma (2.1), *M* properly contained in a maximal convex subnearlattice *N* not containing *n*. Then for any element $a \in N - M$ there exists an element $b \in M$ such that m(a, n, b) = n. Thus, by contvexity $a, b \in N$ and $a \land b \leq n \leq a \lor b$ imply $n \in N$ which is a contradiction. Hence, *M* must be maximal.

Following two lemmas are due to [VII]

Lemma(2.3): A proper subset *I* of a join semilattice *S* is a maximal ideal if and only if S - I is a minimal prime up set (filter).

Lemma (2.4):Let I be an ideal of a join semilattice S with 1. Then there exists a maximal ideal containing I.

Theorem (2.5): For a medial element n, any prime ideal P containing n of a nearlattice S is a prime n-ideal.

Proof: Since every ideal *P* is a convex subnearlattice, so any ideal *P* containing *n* is an *n*-ideal. To show the primeness, let $m(a, n, b) \in P$. Then $a \wedge b \leq m(a, n, b)$ implies $a \wedge b \in P$. Since *P* is prime ideal so either $a \in P$ or $b \in P$. Hence *P* is a prime *n*-ideal.

Following lemma is due to[VI] Copyright reserved © J. Mech. Cont.& Math. Sci. Shiuly Akhter et al **Lemma (2.6):** Every ideal disjoint from a filter F is contained in a maximal ideal disjoint from F.

Theorem(2.7):Let S be a nearlattice with a center element n . If the intersection of all prime *n*-ideals of S is $\{n\}$, then S is *n*-distributive.

Proof:Let $\langle a \rangle_n \cap \langle b \rangle_n = \{n\}$ and $\langle a \rangle_n \cap \langle c \rangle_n = \{n\}$. Let *P* be any prime *n*-ideal. If $a \in P$, then $\langle a \rangle_n \subseteq P$ and so $\langle a \rangle_n \cap [\langle b \rangle_n \vee \langle c \rangle_n] \subseteq P$. If $a \notin P$, then $\langle b \rangle_n$, $\langle c \rangle_n \subseteq P$ as *P* is prime *n*-ideal. Hence $\langle b \rangle_n \vee \langle c \rangle_n \subseteq P$. Therefore, $\langle a \rangle_n \cap [\langle b \rangle_n \vee \langle c \rangle_n] \subseteq P$. That is, in either case, $\langle a \rangle_n \cap [\langle b \rangle_n \vee \langle c \rangle_n] \subseteq P$. Therefore, $\langle a \rangle_n \cap [\langle b \rangle_n \vee \langle c \rangle_n] \subseteq P$. Therefore, $\langle a \rangle_n \cap [\langle b \rangle_n \vee \langle c \rangle_n] \subseteq P$ for all prime *n*-ideals *P*. Therefore, $\langle a \rangle_n \cap [\langle b \rangle_n \vee \langle c \rangle_n] = \{n\}$ and so *S* is *n*-distributive.

Lemma (2.8):Let *S* be a nearlattice with a central element *n*. Then $p \in \{x\}^{\perp_n}$ if and only if $p \land x \le n \le p \lor x$.

Proof: $p \in \{x\}^{\perp_n}$ if and only if m(p, n, x) = n if and only if $(p \land x) \lor (p \land n) \lor (x \land n) = (p \lor x) \land (p \lor n) \land (x \lor n) = n$, as *n* is central. This implies that $p \land x \le n \le p \lor x$.

Lemma (2.9): Let *S* be a nearlattice with a central element *n*. Then $p \in \{x\}^{\perp_n}$ if and only if $p \lor n \in \{x \lor n\}^{\perp_n}$ in [n) and $p \land n \in \{x \land n\}^{\perp^d}$ in (n].

Proof:Let $p \in \{x\}^{\perp_n}$. Then $p \wedge x \leq n \leq p \vee x$ and so $(p \vee n) \wedge (x \vee n) = (p \wedge x) \vee n = n$ and $(p \wedge n) \vee (x \wedge n) = (p \vee x) \wedge n = n$ as n is central element. Thus $p \vee n \in \{x \vee n\}^{\perp}$ in [n) and $p \wedge n \in \{x \wedge n\}^{\perp^d}$ in (n]. Conversely, let $p \vee n \in \{x \vee n\}^{\perp}$ in [n) and $p \wedge n \in \{x \wedge n\}^{\perp^d}$ in (n]. Then since n is central element, so $(p \vee n) \wedge (x \vee n) = n$ and $(p \wedge x) \vee n = n$. This implies $p \wedge x \leq n$. Also, $(p \wedge n) \vee (x \wedge n) = n$ implies $(p \vee x) \wedge n = n$ and so $n \leq p \vee x$. Hence $p \wedge x \leq n \leq p \vee x$. Therefore, by Lemma (2.8), $p \in \{x\}^{\perp n}$.

Now, we give somecharacterizations of *n*-distributive nearlattices.

Theorem (2.10): For a nearlattice S with a central element n, the following conditions are equivalent:

- (i) *S* is *n*-distributive
- (ii) For every $a \in S$, $\{a\}^{\perp_n}$ is an *n*-ideal
- (iii) For any $A \subseteq S$, A^{\perp_n} is an *n*-ideal
- (iv) $I_n(S)$ is pseudocomplemented.
- (v) $I_n(S)$ is 0-distributive
- (vi) Every maximal convex subnear lattice not containing n is prime.

Proof: (i) \Rightarrow (ii). Let $x, y \in \{a\}^{\perp_n}$. Then $a \land x \le n \le a \lor x$ and $a \land y \le n \le a \lor y$. Since S is distributive, so $a \land (x \lor y) \le n \le a \lor (x \land y)$. Then $a \land (x \lor y) \le n \le a \lor (x \lor y)$ and $a \land (x \land y) \le n \le a \lor (x \land y)$ imply $x \land y, x \lor y \in \{a\}^{\perp_n}$ [by

Lemma (2.8)]. Since m(x, n, a) = n, so $n \in \{a\}^{\perp_n}$.

Again, let $x, y \in \{a\}^{\perp_n}$ and $x \le t \le y$. Then $a \land x \le n \le a \lor x$ and $a \land y \le n \le a \lor y$ so $a \land t \le n \le a \lor t$ which implies that $t \in \{a\}^{\perp_n}$. Hence $\{a\}^{\perp_n}$ is an *n*-ideal.

(ii) \Rightarrow (iii). Since $\{a\}^{\perp_n}$ is an *n*-ideal and $A^{\perp_n} = \bigcap_{a \in A} \{\{a\}^{\perp_n}\}$, so A^{\perp_n} is an *n*-ideal.

(iii) \Rightarrow (iv) is trivial as for any *n*-ideal $A \in I_n(S)$, A^{\perp_n} is the pseudocomplement of A in $I_n(S)$.

 $(iv) \Rightarrow (v)$ is also trivial because every pseudocomlemented lattice is 0-distributive.

(v) \Rightarrow (vi). Suppose *F* is maximal convex subnearlattice not containing *n*. Since $F = (F] \cap [F)$ and $n \in F$, so either $n \notin (F]$ or $n \notin [F)$. Hence by the maximality of *F*, either *F* is an ideal or a filter. Let $x \notin F$ and $y \notin F$. Then by Lemma (2.2), there exist $a \in F$ and $b \in F$ such that m(x, n, a) = n = m(y, n, b). This implies $x \land a \le n \le x \lor a$ and $y \land b \le n \le y \lor b$. Hence $x \land a \land b \le n$, $y \land a \land b \le n$ and $x \lor a \lor b \ge n$, $y \lor a \lor b \ge n$ and so $a \land b, a \lor b \in F$. Then $\langle x \lor n \rangle_n \cap \langle a \land b \rangle_n = [n, x \lor n] \cap [a \land b \land n, (a \land b) \lor n]$

= $[n, (x \land a \land b) \lor n] = [n, n] = \{n\}$ asn is central.

Similarly, $\langle y \lor n \rangle_n \cap \langle a \land b \rangle_n = \{n\}$. Since $I_n(S)$ 0-distributive, so $\langle a \land b \rangle_n \cap (\langle x \lor n \rangle_n \lor \langle y \lor n \rangle_n) = \{n\}$. This implies $[n, (a \land b \land (x \lor y)) \lor n] = \{n\}$. Hence $a \land b \land (x \lor y) \le n$. Dually, $\langle x \land n \rangle_n \cap \langle a \lor b \rangle_n = \{n\}$ and $\langle y \land n \rangle_n \cap \langle a \lor b \rangle_n = \{n\}$. Without loss of generality, suppose F is filter. If $x \lor y \in F$, then $a \land b \land (x \lor y) \le n$ implies $n \in F$ which is a contradiction. Hence $x \lor y \notin F$. Therefore, F is prime filter. Similarly, if F is an ideal, then it is a prime ideal

(vi) \Rightarrow (i). Let $a \land b \le n \le a \lor b$ and $a \land c \le n \le a \lor c$ provided $a \lor b$ and $a \lor c$ exist. We need to show that $a \land (b \lor c) \le n \le a \lor (b \land c)$. If not, without loss of generality, let $a \land (b \lor c) \notin n$. Consider $F = [a \land (b \lor c)]$, when $b \lor c$ exists. So $n \notin F$. Then by Lemma 1, there exists maximal convex subnearlattice $M \supseteq F$ and $n \notin M$. But a convex subnearlattice containing a filter is itself a filter. Then by (vi), M is a filter. Now, $a \in M$ and $b \lor c \in M$

imply $a \land b \in M$ or $a \land c \in M$ as M is prime. This implies $n \in M$ which is a contradiction. Hence $a \land (b \lor c) \le n \le a \lor (b \land c)$. Therefore, S is n-distributive.

Corollary(2.11): In an *n*-distributive nearlattice every filter not containing *n* is contained in a prime filter.

Proof: This is trivial by Lemma (2.1) and Theorem (2.10).

Theorem (2.12):Let *S* be an *n*-distributive nearlattice. If $A \neq \{n\}$ and $A = \cap \{I \in I_n(S): I \neq \{n\}\}$, then $A^{\perp_n} = \{x \in S: \{x\}^{\perp_n} \neq \{n\}\}$.

Proof:Let $x \in A^{\perp_n}$. Then m(x, n, a) = n for all $x \in A$. Since $A \neq \{n\}$ so $\{x\}^{\perp_n} \neq \{n\}$. Hence $x \in \mathbb{R}$.H.S.So $A^{\perp_n} \subseteq \mathbb{R}$.H.S.Conversely, let $x \in \mathbb{R}$.H.S. Since S is *n*-distributive so $\{x\}^{\perp_n}$ is an *n*-ideal and so $\{x\}^{\perp_n} \neq \{n\}$. Then $A \subseteq \{x\}^{\perp_n}$ and so $A^{\perp_n} \supseteq \{x\}^{\perp_n \perp_n}$. Therefore, $A^{\perp_n} = \{x \in S: \{x\}^{\perp_n} \neq \{n\}\}$.

Theorem (2.13): Let S be a nearlattice with a central element n. Then S isndistributive if and only if for a convex subnearlattice F disjoint with $\{x\}^{\perp_n} (x \in S)$, there exists a prime convex subnearlattice $P \supseteq F$ and disjoint with $\{x\}^{\perp_n}$.

Proof:Let *S* be *n*-distributive and *F* be a convex subnearlattice disjoint from $\{x\}^{\perp n}$. Then by Zorn's Lemma, there exists a maximal convex subnearlattice *P* disjoint from $\{x\}^{\perp n}$. Since $P = (P] \cap [P)$ so either $(P] \cap \{x\}^{\perp n} = \phi$ or $[P) \cap \{x\}^{\perp n} = \phi$. Thus by the maximality of *P*, it is either an ideal or a filter. Without loss of generality, let *P* be a filter. We claim that $x \in P$. If not $P \vee [x] \supset P$. Then by the maximality of *P*, $(P \vee [x)) \cap \{x\}^{\perp n} \neq \phi$.Let $t \in (P \vee [x)) \cap \{x\}^{\perp n}$. Then $t \ge p \land x$ for some $p \in P$ and $t \land x \le n \le t \lor x$. Thus $p \land x \le t \land s \le n$. hence $m(p \lor n, n, x) = n$ which implies $p \lor n \in \{x\}^{\perp n}$. But $p \lor n \in P$ as *P* is a filter. This gives a contradiction to the fact that $P \cap \{x\}^{\perp n} = \phi$. Therefore $x \in P$.Let $z \notin P$, then $(P \lor [z)) \cap \{x\}^{\perp n} \neq \phi$.Let $y \in (P \lor [z)) \cap \{x\}^{\perp n}$. Then $y \land x \le n \le y \lor x$ and $y \ge p_1 \land z$ for some $p_1 \in P$ so $p_1 \land x \land z \le y \land x \le n$. Hence $m(z, n, (p_1 \land x) \lor n) = n$ where $(p_1 \land x) \lor n \in P$ as *P* is a filter. Then by $\nabla n \in P$ as *P* is a maximal filter not containing *n*. Therefore, by **Theorem (2.10)**, *P* is Prime.

Conversely, let $\langle x \rangle_n \cap \langle y \rangle_n = \{n\}$ and $\langle x \rangle_n \cap \langle z \rangle_n = \{n\}$. We need to prove that $\langle x \rangle_n \cap (\langle y \rangle_n \vee \langle z \rangle_n) = \{n\}$. That is, $x \wedge (y \vee z) \leq n$. Then $[y \vee z) \cap \{x\}^{\perp_n} = \phi$. Otherwise $t \in [y \vee z) \cap \{x\}^{\perp_n}$ implies $t \wedge x \leq n \leq t \vee x$ and $t \geq y \vee z$. These imply $x \wedge (y \vee z) \leq t \wedge x \leq n$ is a contradiction. So there exists a prime filter *P* containing $[y \vee z)$ disjoint with $\{x\}^{\perp_n}$. Since $z \in \{x\}^{\perp_n}$ so $y, z \notin P$. Hence $y \vee z \notin P$ as *P* is aprime filter. This implies $P \not\supseteq [y \vee z]$ is a contradiction. Dually by taking $x \vee (y \wedge z) \geq n$, we would have another contradiction. Therefore, $x \wedge (y \vee z) \leq n \leq x \vee (y \wedge z)$ and so *S* is *n*-distributive.

III. Conclusion

In this paper, we generalize the concept of 0-distributive lattice and ndistributive lattice where n is a neutral element of this lattice and give the notion of n-distributive nearlattice where n is a central element of this nearlattice. We also include several nice characterizations of n-distributive nearlattices and prove some interesting results on n-distributive nearlattices.

References

- I. A. S. A. Noor and M. A. Latif, *Finitely generated n-ideals of a lattice*, SEA Bull. Math., 22(1998), pp. 73-79
- II. M. A. Latif and A. S. A. Noor, A generalization of Stone's representation theorem, The Rajshahi University Studies(Part-B),31(2003), pp. 83-87.
- III. M. AyubAli , A.S.A. Noor and Sompa Rani Poddar, *n-distributive lattice*, Journal of Physical Sciences, 16(2012), pp. 23-30.
- IV. P. Balasubramani and P.V. Venkatanarasimhan, *Characterizations of the 0*distributive Lattices, Indian J. Pure Appl. Math., 32(3)(2001), pp. 315-324.
- V. S. Akhter, A Study of Principal n-Ideals of a Nearlattice, Ph.D. Thesis, Rajshahi University, Bangladesh(2003).
- VI. S. Akhter and A. S. A. Noor, Semi Prime Filters in Join Semilattices, Annals of Pure and Applied Mathematics, 18(1)(2018), pp. 45-50. DOI: http://dx.doi.org/10.22457/apam.v18n1a6
- VII. S. Akhter and A. S. A. Noor, *1-distributive join semilattice*, J. Mech. Cont. & Math. Sci., 7(2)(2013), pp. 1067-1076.
- VIII. W. H. Cornish and A. S. A. Noor, *Standard elements in a nearlattice*, Bull. Austral. Math. Soc. 26(2)(1982), pp. 185-213.
- IX. Y. S. Powar and N. K. Thakare, *0-distributive semilattices*, Journal of Pure and Applied Algebra, 56(1978), 469-475.