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Abstract 

In present paper, we give generalisation of inequalities of 𝐶ም eby 𝑠̆ev type 
involving weights for absolutely continuous functions whose derivatives belong to 
𝐿௥(𝑐, 𝑑)  (Lebesgue space), where r ≥ 1. Our results recapture many established 
results of different authors. Applications are also given in probability theory. 

Keywords: C෱ eby s෬ evInequality, Probability Density Function, Cumulative Density 
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I. Introduction 

In [XV], P. L. C෱ebys෬ev discovered one of the important and classical integral 
inequality (can also be seen in [XIII]). i. e. 

|𝑇(𝑔, ℎ)| ≤ భ

భమ
(𝑑 − 𝑐)ଶ‖𝑔ᇱ‖ஶ‖ℎᇱ‖ஶ ,    (1.1)            

where functions 𝑔, ℎ ∶ [𝑐, 𝑑] → ℝ, absolutely continuous whose derivatives𝑔ᇱ, ℎᇱ ∈
𝐿ஶ[𝑐, 𝑑] and 

|𝑇(𝑔, ℎ)| =
1

𝑑 − 𝑐
න 𝑔(⊺)

ௗ

௖

ℎ(⊺) 𝑑 ⊺ − ቆ
1

𝑑 − 𝑐
න 𝑔(⊺)

ௗ

௖

𝑑 ⊺ቇ ቆ
1

𝑑 − 𝑐
න ℎ(⊺)

ௗ

௖

𝑑 ⊺ቇ (1.2) 

is calledC෱ebys෬ev functional, provided that the above integrals exist. 

Many researchers have paid considerable attention on integral C෱ eby s෬ ev 
inequality due to fundamental importance of inequality (1.1) in analysis and 
applications andfor this reason, in the literature a number of generalizations, 
extensions and variants have made on it (see [I, II, III, IV, VI, VII, IX, X, XII, XIII]) 
and the references given therein. For more study about C෱ebys෬ev functional see [V]. 
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It is well known that the aboveC෱ebys෬ev functional is used in several branches 
of mathematics such as special functions, transformation theory, probability and 
statistical and numerical integration (see [XIV]). 

The C෱ebys෬ev-type inequality for r-norm is given by B. G. Pachpatte in his 
article[VIII] that is; 

Proposition1.1.Let functions 𝑔, ℎ ∶ [𝑐, 𝑑] → ℝ  be absolutely continuous and 
theirderivatives𝑔ᇱ, ℎᇱ ∈  𝐿௥(𝑐, 𝑑), 𝑟 > 1, then 

|𝑇(𝛼, 𝛽, 𝑔, ℎ)| ≤ భ

(೏ష೎)మ𝑀
మ

ೞ‖𝑔ᇱ‖௥‖ℎᇱ‖௥,                  (1.3)               

where 

𝛼 =  
1

3
ቈ
𝑔(𝑐) + 𝑔(𝑑)

2
+  2𝑔 ൬

𝑐 + 𝑑

2
൰቉ 

 

𝛽 =  
1

3
ቈ
ℎ(𝑐) + ℎ(𝑑)

2
+  2ℎ ൬

𝑐 + 𝑑

2
൰቉ 

𝑀 =  
(𝑑 − 𝑐)௦ାଵ(2௦ାଵ + 1)

3(𝑠 + 1)6௦
 

with 
ଵ

௥
+

ଵ

௦
= 1, 

‖𝑔‖௥ = ቆන |𝑔(⊺)|௥
ௗ

௖

𝑑 ⊺ቇ

భ

ೝ

 

and 

𝑇(𝛼, 𝛽, 𝑔, ℎ) = 𝛼𝛽 −
1

𝑑 − 𝑐
ቆ𝛼 න ℎ(⊺)𝑑 ⊺

ௗ

௖

+ 𝛽 න 𝑔(⊺)𝑑 ⊺
ௗ

௖

ቇ

+ ቆ
1

𝑑 − 𝑐
න 𝑔(⊺)𝑑 ⊺

ௗ

௖

ቇ ቆ
1

𝑑 − 𝑐
න ℎ(⊺)𝑑 ⊺

ௗ

௖

ቇ .                               (1.4) 

 

The generalization of (1.3) is stated by Zheng Liu in his article [XVII] which 
is as follows. 

 

Proposition 1.2.  Let the assumptions of Proposition 1.1 be valid, where 𝑙 ∈ [0,1]. 
Then 

 |𝑇(Γ௟ , Δ௟ , 𝑔, ℎ)| ≤
ଵ

(ௗି௖)మ 𝑀௟

మ

ೞ‖𝑔ᇱ‖௥‖ℎᇱ‖௥  ,                          (1.5) 

where 
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𝑀௟  =  
𝑙௦ାଵ + (1 − 𝑙)௦ାଵ(𝑑 − 𝑐)௦ାଵ

(𝑞 + 1)2௦
 

and 

Γ௟ =  
𝑙

2
[𝑔(𝑐) + 𝑔(𝑑)] + (1 − 𝑙) 𝑔 ൬

𝑐 + 𝑑

2
൰ 

Δ௟ =  
𝑙

2
[ℎ(𝑐) + ℎ(𝑑)] + (1 − 𝑙)ℎ ൬

𝑐 + 𝑑

2
൰. 

In upcoming main section, we would obtain generalization of above 
inequalities (1.3) and (1.5) involving weights and then obtained inequalities would 
apply on probability density functions. 

II. Generalization of Weighted𝐂෰eby𝐬෬ev-Type Inequality 

From now onwards we define 𝑤: [𝑐, 𝑑] → [0,1]  be a probability density 
function.In the following, we define some notations for simplicity of the expression 
for suitable functions 𝑔 𝑎𝑛𝑑 ℎ ∶ [𝑐, 𝑑] → ℝ 𝑎𝑛𝑑 𝑙 ∈ [0,1]. 

 Γ௟,௫   = 𝑔(𝑥) ቆන 𝑤(⊺)𝑑 ⊺
(ଵି௟)(௫ି௖)

଴

− න 𝑤(⊺)𝑑 ⊺
(ଵି௟)(௫ିௗ)

଴

ቇ − 𝑔(𝑐) න 𝑤(⊺)
௟(௖ି௫)

଴

𝑑

⊺ +𝑔(𝑑) න 𝑤(⊺)
௟(ௗି௫)

଴

𝑑 ⊺,  

          Δ௟,௫   = ℎ(𝑥) ቆන 𝑤(⊺)𝑑 ⊺
(ଵି௟)(௫ି௖)

଴

− න 𝑤(⊺)𝑑 ⊺
(ଵି௟)(௫ିௗ)

଴

ቇ

− ℎ(𝑐) න 𝑤(⊺)
௟(௖ି௫)

଴

𝑑 ⊺ +ℎ(𝑑) න 𝑤(⊺)
௟(ௗି௫)

଴

𝑑 ⊺                            (2.1) 

and𝑇൫ Γ௟,௫ , Δ௟,௫, 𝑔, ℎ൯ is defined as follows. 

𝑇൫ Γ௟,௫, Δ௟,௫, 𝑔, ℎ൯ =

ቀ𝑔(𝑥) ቀ∫ 𝑤(⊺)𝑑 ⊺
(ଵି௟)(௫ି௖)

଴
− ∫ 𝑤(⊺)𝑑 ⊺

(ଵି௟)(௫ିௗ)

଴
ቁ − 𝑔(𝑐) ∫ 𝑤(⊺)

௟(௖ି௫)

଴
𝑑𝑇 + 𝑔(𝑑) ∫ 𝑤(⊺)

௟(ௗି௫)

଴
𝑑 ⊺

− ∫ 𝑔(⊺)𝑤(⊺)𝑑 ⊺
ௗ

௖
ቁ ×

ቀℎ(𝑥) ቀ∫ 𝑤(⊺)𝑑 ⊺
(ଵି௟)(௫ି௖)

଴
− ∫ 𝑤(⊺)𝑑 ⊺

(ଵି௟)(௫ିௗ)

଴
ቁ − ℎ(𝑐) ∫ 𝑤(⊺)

௟(௖ି௫)

଴
𝑑 ⊺ +ℎ(𝑑) ∫ 𝑤(⊺)

௟(ௗି௫)

଴
𝑑 ⊺ − ∫ ℎ(⊺)𝑤(⊺)𝑑 ⊺

ௗ

௖
ቁ

                      (2.2) 

The upcoming result holds for the generalization of weighted C෱ebys෬ev-type 
inequality. 

Theorem 2.1.Let the suppositions of Proposition 1.1 be valid, where 𝑥 ∈

[𝑐, 𝑑] 𝑎𝑛𝑑 𝑙 ∈ [0,1]. Then we have for 
ଵ

௥
+

ଵ

௦
= 1 (𝑟 ≥  1) 

ห𝑇(Γ௟,௫, Δ௟,௫ , 𝑔, ℎ)ห ≤  𝑀௟,௫

మ

ೞ ‖𝑔ᇱ‖௥‖ℎᇱ‖௥  ,             (2.3) 

where𝑇(Γ௟,௫ , Δ௟,௫, 𝑔, ℎ) is stated as in (2.2) and 
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M௟,௫ = න ቤන 𝑤(𝑢)𝑑𝑢
⊺ି(ଵି௟)௖ି௟௫

଴

ቤ

௦

𝑑 ⊺
௫

௖

+ න ቤන 𝑤(𝑢)𝑑𝑢
⊺ି(ଵି௟)ௗି௟௫

଴

ቤ

௦

𝑑 ⊺
ௗ

௫

 .     (2.4) 

Proof. We begin the proof of this theorem by defining the required kernal 

𝑘(𝑥,⊺; 𝑙) =

⎩
⎪
⎨

⎪
⎧න 𝑤(𝑢)𝑑𝑢

⊺ି(ଵି௟)௖ି௟௫

଴

, 𝑖𝑓 ⊺ ∈ [𝑐, 𝑥],

න 𝑤(𝑢)𝑑𝑢
⊺ି(ଵି௟)ௗି௟௫

଴

, 𝑖𝑓 ⊺ ∈ [𝑥, 𝑑],

 

where 𝑥 ∈ [𝑐, 𝑑]. 

Then the following identities are obtained 

Γ௟,௫ − ∫ 𝑤(⊺) 𝑔(⊺)𝑑 ⊺
ௗ

௖
= ∫ 𝑘(𝑥,⊺; 𝑙)

ௗ

௖
𝑔ᇱ(⊺)𝑑 ⊺,                                                   (2.5) 

Δ௟,௫ − න 𝑤(⊺) ℎ(⊺)𝑑 ⊺
ௗ

௖

= න 𝑘(𝑥,⊺; 𝑙)
ௗ

௖

ℎᇱ(⊺)𝑑 ⊺ .                                           (2.6) 

By multiplying the L.H.S and R.H.S of (2.5) and (2.6), we get 

𝑇൫Γ௟,௫ , Δ௟,௫, 𝑔, ℎ൯ = ቀ∫ 𝑘(𝑥,⊺; 𝑙)
ௗ

௖
𝑔ᇱ(⊺)𝑑 ⊺ቁ ቀ∫ 𝑘(𝑥,⊺; 𝑙)

ௗ

௖
ℎᇱ(⊺)𝑑 ⊺ቁ, 

now by applying absolute value property we obtain 

ห𝑇൫Γ௟,௫ , Δ௟,௫, 𝑔, ℎ൯ห ≤ ቆන |𝑘(𝑥,⊺; 𝑙)|
ௗ

௖

|𝑔ᇱ(⊺)| 𝑑 ⊺ቇ ቆන |𝑘(𝑥,⊺; 𝑙)|
ௗ

௖

|ℎᇱ(⊺)|𝑑 ⊺ቇ . (2.7) 

Thus, by applying the integral Hölder’s inequalityfor 𝑟 ≥  1 we get 

ห𝑇൫Γ௟,௫ , Δ௟,௫, 𝑔, ℎ൯ห                                                                         

≤ ቎ቆන |𝑘(𝑥,⊺; 𝑙)|௦ 𝑑 ⊺
ௗ

௖

ቇ

భ

ೞ

ቆන |𝑔ᇱ(⊺)|௥𝑑 ⊺
ௗ

௖

ቇ

భ

ೝ

቏

× ቎ቆන |𝑘(𝑥,⊺; 𝑙)|௦ 𝑑𝑡
ௗ

௖

ቇ

భ

ೞ

ቆන |ℎᇱ(⊺)|௥𝑑 ⊺
ௗ

௖

ቇ

భ

ೝ

቏ 

                                              = ቆන |𝑘(𝑥,⊺; 𝑙)|௦ 𝑑 ⊺
ௗ

௖

ቇ

మ

ೞ

‖𝑔ᇱ‖௥‖ℎᇱ‖௥,                         (2.8) 

where the integral of the function|𝑘(𝑥,⊺; 𝑙)|௦ is defined as 

M௟,௫ = ∫ |𝑘(𝑥,⊺; 𝑙)|௦ 𝑑 ⊺
ௗ

௖
=

                  ∫ ቚ∫ 𝑤(𝑢)𝑑𝑢
⊺ି(ଵି௟)௖ି௟௫

଴
ቚ

௦

𝑑 ⊺
௫

௖
+ ∫ ቚ∫ 𝑤(𝑢)𝑑𝑢

⊺ି(ଵି௟)ௗି௟௫

଴
ቚ

௦

𝑑 ⊺
ௗ

௫
.     (2.9) 

Using (2.8) and (2.9), we obtain our desired result (2.3).                                      

Remark 2.2. For 𝑤(𝑡) =
ଵ

ௗି௖
 in Theorem 2.1, Theorem 4.3 of [XI] is recaptured. 
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Remark 2.3. For 𝑤(𝑡) =
ଵ

ௗି௖
 , 𝑥 =

௖ାௗ

ଶ
, 𝑙 =

ଵ

ଷ
in (2.3),inequality(1.3) is recaptured. 

Remark 2.4. For 𝑤(𝑡) =
ଵ

ௗି௖
 , 𝑥 =

௖ାௗ

ଶ
 in (2.3), inequality (1.5) is recaptured. 

In the following corollaries, we present some special cases of Theorem 2.1. 

Corollary 2.5.Let the suppositions of Theorem 2.1 be valid. Then for 𝑠 =  1 we get 

ห𝑇(Γ௟,௫, Δ௟,௫ , 𝑔, ℎ)ห ≤  ቈන |𝑘(𝑥,⊺; 𝑙)| 𝑑 ⊺
ௗ

௖

቉

ଶ

‖𝑔ᇱ‖ஶ‖ℎᇱ‖ஶ. 

Corollary 2.6.  Let the suppositions of Proposition 1.1 be valid, then 

ฬ𝑇(Γ
ଵ,

೎శ೏

మ

 , Δ
ଵ,

೎శ೏

మ

, 𝑔, ℎ)ฬ ≤  𝑀
ଵ,

೎శ೏

మ

మ

ೞ ‖𝑔ᇱ‖௥‖ℎᇱ‖௥  ,                                                (2.10) 

where 

𝑀
ଵ,

೎శ೏

మ

= ∫ ฬ∫ 𝑤(𝑢)
⊺ି 

೎శ೏

మ
଴

𝑑𝑢ฬ
௦

𝑑 ⊺
ௗ

௖
          (2.11) 

and 

Γ
ଵ,

೎శ೏

మ

= −𝑔(𝑐) ∫ 𝑤(⊺)𝑑 ⊺
೎ష೏

మ
଴

+ 𝑔(𝑑) ∫ 𝑤(⊺)𝑑 ⊺
೏ష೎

మ
଴

, 

Δ
ଵ,

೎శ೏

మ

= −ℎ(𝑐) ∫ 𝑤(⊺)𝑑 ⊺
೎ష೏

మ
଴

+ ℎ(𝑑) ∫ 𝑤(⊺)𝑑 ⊺
೏ష೎

మ
଴

.   (2.12) 

 

Remark 2.7. For 𝑤(𝑡) =
ଵ

ௗି௖
 in Corollary 2.6, Corollary 4.1 of [XI] is recaptured. 

Now, in the following section we would present applications to probability 
density functions (PDF) and cumulative distribution functions (CDF). 

III. Applications for PDF and CDF 

Throughout this section we consider 𝑤 ∶ [𝑐, 𝑑] → [0,1] . Suppose random 
variable X is continuous with PDF 𝑔 ∶  [𝑐, 𝑑] → ℝା and the expectationofX is stated 
as 

ℰ௪(𝑋) = න ⊺  𝑤(⊺) 𝑔(⊺)
ௗ

௖

𝑑 ⊺  .                                                                           (3.1) 

In the similar way we state cumulative distribution function (CDF) in 
thefollowingand denoted by G as 

𝐺(𝑥) = න 𝑤(⊺)𝑔(⊺)
௫

௖

 𝑑 ⊺ ,                                                                                  (3.2) 

∀ 𝑥 ∈ [𝑐, 𝑑]. 
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Further that let another random variable Y be continuous with another PDF 
ℎ: [𝑐, 𝑑] → ℝା and the expectation of Y is stated as 

ℰ௪(𝑌) = න ⊺  𝑤(⊺)ℎ(⊺)
ௗ

௖

𝑑 ⊺  .                                                                           (3.3) 

Again in the similar way we state CDF of H as 

𝐻(𝑦) = න 𝑤(⊺)ℎ(⊺)
௬

௖

 𝑑 ⊺ ,                                                                                 (3.4) 

∀ 𝑦 ∈ [𝑐, 𝑑]. Then 

න 𝐺(𝑥)
ௗ

௖

 𝑑𝑥 = 𝑑 − ℰ௪(𝑋), 

𝐺(𝑐) = 0, 𝐺(𝑑) = 1   (3.5) 

and 

න 𝐻(𝑦)
ௗ

௖

 𝑑𝑦 = 𝑑 − ℰ௪(𝑌), 

𝐻(𝑐) = 0, 𝐻(𝑑) = 1.   (3.6)  

Theorem 3.1.Let X,Y,G and H be stated as above. Further we assume that the 
probability density function 𝑤 ∶ [𝑐, 𝑑] → [0,1] is differentiable. Then we have 

ቮቌන 𝑤(⊺)𝑑 ⊺

೎ష೏

మ

଴

+ න ⊺  𝑤′(⊺) 𝐺(⊺)
ௗ

௖

𝑑 ⊺ +ℰ௪(𝑋) − 𝑤(𝑑)ቍ ቌන 𝑤(⊺)𝑑 ⊺

೎ష೏

మ

଴

+ න ⊺  𝑤′(⊺) 𝐻(⊺)
ௗ

௖

𝑑 ⊺ +ℰ௪(𝑌) − 𝑤(𝑑)ቍቮ ≤ 𝑀
ଵ,

೎శ೏

మ

మ

ೞ ‖𝐺ᇱ‖௥‖𝐻ᇱ‖௥. 

Proof.By choosing g = G and h = H in (2.10)−(2.12) and simplifying with the help of 
(3.1)−(3.6), we get the required inequality.     □ 

Remark3.2.By putting 𝑤(⊺) =
ଵ

ௗି௖
in Theorem 3.1 we get following result whichis in 

fact Proposition 4.1 of [XI]. 

Corollary3.3.Let X,Y,G and H be stated as above. Then 

ቤቆ
1

2
+

ℰ(𝑋) − 𝑑

𝑑 − 𝑐
ቇ ቆ

1

2
+

ℰ(𝑌) − 𝑑

𝑑 − 𝑐
ቇቤ ≤

1

4
൬

𝑑 − 𝑐

𝑠 + 1
൰

మ

ೞ

‖𝑔‖௥‖ℎ‖௥ 

holds. 

Remark 3.4. If we select G = H in Corollary 3.3, then we obtain 

ቚ
ଵ

ଶ
+

ℰ(௑)ିௗ

ௗି௖
ቚ ≤

ଵ

ଶ
ቀ

ௗି௖

௦ାଵ
ቁ

భ

ೞ ‖ℎ‖௥. 
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In literature, this is said to be “Trapezoid inequality” for CDF (see [XVI], p. 
34 for𝑔=H). 

Remark 3.5. In similar manner we can state applications in case of 𝐿ஶ- norm as well. 

IV. Conclusion 

Inpresent paper, we established generalization of C෱ebys෬ev-type inequalities 
involving weights for absolutely continuous functions whose first derivatives belong 
to𝐿௥(𝑐, 𝑑) for 𝑟 ≥  1 with a couple of corollaries. We also recaptured some results 
stated in [VIII], [XI] and [XVII] as our special cases.Moreover, we have given an 
application for expectation of a continuous random variable and probability density 
function. 
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