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Abstract 

This study looks the steady problem which models the behavior of 
incompressible non-Newtonian viscoelastic Oldroyd-B fluid through a four-to-one 
abrupt contraction in a bidimensional domain  𝛺 ⊂ 𝑅 .The constitutive equations for 
the Oldroyd-B fluids consist of highly non-linear system of partial differential 
equations (PDE) of combined elliptic-hyperbolic type. The numerical results are 
obtained by a technique of decoupling the system into the Navier-Stokes like 
problems for the velocity and pressure (elliptic part of the system) and the steady 
tensorial transport equation for the extra stress tensor (hyperbolic part of the 
system). To approximate the velocity and pressure, 𝕡 − 𝕡  (Hood-Taylor) finite 
elements method is used whilethe discontinuous Galerkin finite element (𝕡 −
𝑑𝑐) method is used to solve the tensorial transport part to approximate the extra 
stress tensor. Through the flow over four-to-one abrupt contraction domain, the 
effects of varying the parameters, i.e., i.e., Reynolds number, Weissenberg number, 
relaxation and retardation time parameter, on the contours of the velocity profile, 
stream line, pressure and extra stress tensor are presented, analyzed and discussed 
graphically.   

Keywords: Viscoelastic fluid, Oldroyd-B fluid, Navier-Stokes equations, tensorial 
transport equations, finite element method, abrupt contraction. 

I.      Introduction 

This work aims to study the analysis (mathematical and numerical) and 
numerical simulations, using finite element methods (FEM), of the non-linear system 
of partial differential equations (PDE) of a combined elliptic-hyperbolic type, that 
models the non-Newtonian incompressible viscoelastic Oldroyd-B fluid flows over a 
four-to-one abrupt contraction in the steady case in a bi-dimensional domain Ω ⊂ R .  
We apply the fixed-point type method proposed by Najib and Sandri . 

In recent years, many researchers have shown their much interest in the study of non-
Newtonian fluids for their applications in the industry and engineering and biological 
sectors. In the non-Newtonian fluids, the relationship between the Cauchy stress and 
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strain rate tensor is not linear. The viscoelastic fluids, a particular type of non-
Newtonian fluids, have both the viscous (characteristics of fluids) and the elastic 
(characteristics of solids) properties. It cannot be explained by a single relationship 
between stress and strain rate tensor. Consequently, there are many models exist to 
describe the behavior of non-Newtonian viscoelastic fluids. The constitutive 
equations provide us to characterize the mechanical behavior of fluid which relates 
the Cauchy stress tensor with the kinematics of different quantities. The constitutive 
equations for non-Newtonian viscoelastic fluids consists of highly non-linear system 
of partial differential equations (PDE) of combined elliptic-hyperbolic or parabolic-
hyperbolic type, and the complexity of this system provides lack of analytical 
solutions, which makes the researchers interested in its numerical approximation.  
The Oldroyd-B fluid model is the constitutive model of rate type which is capable to 
describe the viscoelastic behavior of flows in the polymeric processing and it can 
describe both the relaxation and retardation time effects.. 

In this study, we start with the formulation of the constitutive equations of 
incompressible non-Newtonian Oldroyd-B fluids flows. Then the differential form of 
the constitutive equations of incompressible non-Newtonian fluids of Oldroyd-B type 
is deduced which describes the viscoelastic behavior of the fluid.  The Oldroyd-B 
constitutive equations for steady flow is a combined problem having two auxiliary 
problems, namely, the Navier-Stokes like problems for the velocity and pressure 
(elliptic part of the system) and the steady tensorial transport equation for the extra 
stress tensor (hyperbolic part of the system). Both of the auxiliary problems are 
studied separately in our previous works. Thiscombined Oldroyd-B model has three 
unknowns: the velocity components𝐮, the pressure𝑝,  and the viscoelastic extra stress 
tensor 𝝈 . We use iterative scheme to solve this system. If 𝝈  is fixed, the model 
defines a Navier-Stokes systems in the variables 𝐮and𝑝, which is analyzed using the 
Hood-Taylor (𝕡 − 𝕡  ) finite element method for the approximation of the velocity 
and the pressure field (𝐮, 𝑝). On the other hand, if 𝐮 (and𝑝) are fixed, then the model 
is transformed into a transport problem in the variable 𝝈. The approximation of 𝝈 is 
done by using discontinuous Galerkin finite element (𝕡 − 𝑑𝑐) method, as discussed 
in. 

We present the approach and discrete problem of Oldroyd-B model. Based on our 
previous works, the numerical simulations of Oldroyd-B fluids flows problem are 
discussed. The numerical results for the four-to-one abrupt contraction in a plane 
domain are analyzed. The behaviors of the solutions are discussed and are compared 
for different cases. The maximum limit points of the Weissenberg number are found 
from the solutions at various high values of the Weissenberg numbers. 

All the simulations are straightforwardly implemented with the script developed in 
finite element solver FreeFem++ . 
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II.     Nomenclature  

Before discussing the mathematical analysis of Oldroyd-B fluid flows,we introduce 
some notations of different function spaces in the following table, details of which 
can be found in.  

 

)(pL  : The Lebesgue spaces
 

)(mH : ),(, pmW for 2p
 

),(, pmW : The standard Sobolev 

spaces where 0m be an integer and 

 p1
 

)(pL : )(,0 pW  

pm,
  : Norms of )(, pmW

 
)(C : Vector space continuous functions  

𝑅𝑒: Reynolds number 𝑊𝑒: Weissenberg number 

III.    The Constitutive Law and Problem Formulation for Oldroyd-B Model 

The constitutive relations provide us to characterize the mechanical behavior 
of fluid. For simple, isotropic, incompressible fluid, the Cauchy stress tensor 𝐓 can be 
expressed as   

𝐓 = −𝑝𝐈 + 𝝉  

where𝑝is the hydrostatic pressure, 𝝉  is the extra stress tensor and 𝐈 is the identity 
matrix. 

Non-Newtonian Fluids 

If for a fluid, the dissipative effects of frictional forces can be described by a 
linear relation between the extra stress tensor and rate of strain tensor, i.e., 

𝜏 = 2𝜇𝐃(𝐮)(Stokes law)                                                                                            (1) 

then this fluid is called Newtonian fluid. In (1), 0 is the dynamic viscosity 
coefficient expressing the fluid’s resistance which  it offers to shear strain during the 

displacement ),]([ sPa ])([
2

1
)( tuuuD  is the symmetric part of the 

velocity gradient. On the other hand, the fluids for which the relation between the 
Cauchy stress tensor and the strain rate tensor is non-linear (doesn't obey the Stokes 
law) are called non-Newtonian fluids.  

Models of Viscoelastic Fluids of Oldroyd Type 

Oldroyd observed that the convected time derivative 
𝝅

=
𝝅

+ (𝐮. ∇)𝝅  of a 

tensor 𝝅 is not objective. The objective form of the time derivative of a tensor can be 
expressed as 

𝝅
=

𝝅
+ (𝐮. ∇)𝝅 + 𝝅𝐖(𝐮) − 𝐖(𝐮)𝝅 − 𝑎[𝝅𝐃(𝐮) + 𝐃(𝐮)𝝅]    (2) 
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where−1 ≤ 𝑎 ≤ 1  is a parameter, 𝐖(𝐮) = [∇𝐮 − (∇𝐮) ]  is the rate of vorticity 

tensor. 

The case with 𝑎 = −1, 𝑎 = 1 and 𝑎 = 0 are respectively called lower, upper and co-
rotational convected time derivative.  

Oldroyd suggested a general form of constitutive equation as 

 

𝜆
𝐷 𝝉

𝐷𝑡
+ 𝝉 + 𝛾(𝝉 , ∇𝐮) = 2𝜇 𝜆

𝐷 𝐃(𝐮)

𝐷𝑡
+ 𝐃(𝐮) , 0 ≤ 𝜆 < 𝜆               (3) 

where the tensor 𝝉  is the extra stress, 𝜆 ≥ 0 and 𝜆 ≥ 0 are the constants depend on 
the continuous medium, respectively, called the relaxation and retardation time of 
fluid, 𝛾(𝝉 , ∇𝐮)is a tensor defined by the traces of 𝝉𝒔 and /or 𝐃(𝐮). There are several 
types of general models with𝛾(𝝉 , ∇𝐮) = 0, e.g., 

 Maxwell type fluid models (𝜆 = 0). 
 Jeffreys type fluid models (𝜆 ≠ 0). 
 Oldroyd-A fluid  (𝜆 > 𝜆 > 0 and 𝑎 = −1). 
 Oldroyd-B fluid (𝜆 > 𝜆 > 0 and 𝑎 = 1). 

Models of the Fluids of Oldroyd-B Type 

Let𝜆  and 𝜆  are the measures of the time for which the fluid remembers the 
flow history. Decomposing the extra-stress tensor 𝝉  into the sum of its Newtonian 
part 𝝈  and its viscoelastic part 𝝈 , we can write 𝝉 = 𝝈 + 𝝈  

where  𝝈 = 2𝜇
 
𝐃(𝐮), with 𝜇 = 𝜇

 
the coefficient of Newtonian viscosity. 

Therefore, the Cauchy stress tensor can be written as 

           𝐓 = −𝑝𝐈 + 𝝈 + 𝝈 = −𝑝𝐈 + 2𝜇
 
𝐃(𝐮) + 𝝈 (4) 

From (3), for Oldroyd-B fluid, i.e., for 𝛾(𝜏 , ∇𝒖) = 0, 𝜆 > 𝜆 > 0 and 𝑎 = 1, the 
general form of the constitutive equation can be written as  

𝜆
𝝈

+ 𝝈 = 2𝜇 𝐃(𝐮)      (5) 

where𝜇 = 𝜇 − 𝜇  is the coefficient of elastic viscosity and  𝜇 = 𝜇 + 𝜇 . 

Finally, we can write by (2) 

𝜆
𝝈

+ (𝐮. ∇)𝝈 + 𝝈 = 2𝜇 𝐃(𝐮) − 𝜆 [𝝈 𝐖(𝐮) − 𝐖(𝐮)𝝈 − 𝝈 𝐃(𝐮) − 𝐃(𝐮)𝝈 ]  (6) 

Taking into account (2.24), the conservation law of momentum  can be written as 
follows 

                       𝜌
𝐮

+ 𝜌(𝐮. ∇)𝒖 = −∇𝑝 + 2𝜇 ∇. 𝐃(𝐮) + ∇. 𝝈 + 𝜌𝐟                                (7) 

If  ∇. 𝐮 = 0,  the conservation of momentum can be written as  
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𝜌
𝜕𝐮

𝜕𝑡
+ 𝜌(𝐮. ∇)𝐮 = −∇𝑝 + 𝜇  Δ𝐮 + ∇. 𝝈 + 𝜌𝐟 

For the simplicity, we write 𝝈 instead of 𝝈 . Oldroyd-B model can be described by 
the non-linear equations formed by the law of conservation of mass, the momentum 
equations and the form of transport equations, which can be written in the domain Ω 
as , 

⎩
⎪
⎨

⎪
⎧ 𝜌

𝜕𝐮

𝜕𝑡
+ 𝜌(𝐮. ∇)𝐮 − 𝜇  Δ𝐮 + ∇𝑝 = ∇. 𝝈 + ρ 𝐟 in Ω,

∇. 𝐮 = 0 in Ω,

𝜆
𝜕𝝈

𝜕𝑡
+ (𝐮. ∇)𝝈 + 𝝈 = 2𝜇 𝐃(𝐮) − 𝜆 [𝝈𝐖(𝐮) − 𝐖(𝐮)𝝈 − 𝝈𝐃(𝐮) − 𝐃(𝐮)𝝈]in Ω.

                 (8)  

Assuming  𝐡(𝝈, ∇𝐮) = 2𝜇 𝐃(𝐮) − 𝜆 [𝝈𝐖(𝐮) − 𝐖(𝐮)𝝈 − 𝝈𝐃(𝐮) − 𝐃(𝐮)𝝈] 

= 2𝜇 𝐃(𝐮) + 𝜆 [(∇𝐮)𝝈 + 𝝈(∇𝐮) ],  

equations (8) can be written as  

⎩
⎪
⎨

⎪
⎧𝜌

𝜕𝐮

𝜕𝑡
+ 𝜌(𝐮. ∇)𝐮 − 𝜇  Δ𝐮 + ∇𝑝 = ∇. 𝝈 + ρ 𝐟 in Ω,

∇. 𝐮 = 0 in Ω,

𝜆
𝜕𝝈

𝜕𝑡
+ (𝐮. ∇)𝝈 + 𝝈 = 𝐡(𝝈, ∇𝐮), in Ω.

                                                                           (9)  

We observe that the conservation of momentum leads the symmetry properties of the 
tensor 𝝈, i.e., 𝝈 = 𝝈. 

The problem (9) is a mixed problem. The first two equations form a parabolic system 
for (𝐮, 𝑝)which is in the form of Navier-stokes equation. The last equation has a 
hyperbolic characteristic which is in the form of Transport equation. 

In case of steady flow, the Oldroyd-B constituive equations can be written as 

𝜌(𝐮. ∇)𝐮 − 𝜇  Δ𝐮 + ∇𝑝 = ∇. 𝝈 + 𝜌𝐟 in Ω,
∇. 𝐮 = 0 in Ω,

𝜆 (𝐮. ∇)𝝈 + 𝝈 = 𝐡(𝝈, ∇𝐮)in Ω.
                                                                                            (10)  

Let 𝐿 be the characteristic length, 𝑈 represents a characteristic velocity of the flow 
and 𝜇 = 𝜇 + 𝜇  be the viscosity coefficient, 𝑅𝑒 be the Reynolds number, and 𝑊𝑒  
be Weissenbergnumber. To obtain a system of dimensionless variables, let us use the 
following transformations: 

𝐱 =
𝐱

𝐿
,  𝑡 =

𝑡

𝑇
=

𝑈𝑡

𝐿
,  𝐮 =

𝐮

𝑈
 ,  𝝈 =

𝝈 𝐿

𝜇 𝑈
 , 𝑝 =

𝑝 𝐿

𝜇 𝑈
 𝐟 =

𝐟 𝐿

𝜇 𝑈
 

𝑅𝑒 = 𝜌
𝑈𝐿

𝜇 
=

𝑈𝐿

𝜈
, 𝑊𝑒 = 𝜆

𝑈

𝐿
 

where the symbol ′ is attached to dimensional parameters.  

The dimensionless form of the system (8) can be written as  

𝑅𝑒[
𝐮

+ ( 𝐮 ⋅ ∇)𝐮] + ∇𝑝 = (1 − 𝜆) Δ𝐮 + ∇. 𝝈 + 𝐟, in Ω,

∇ ⋅ 𝐮 = 0, inΩ,

𝑊𝑒
𝝈

+ 𝝈 = 2𝜆 𝐃(𝐮), inΩ.                                                

     (11) 
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where 𝜆 = 1 − = , is the retardation parameter (0 < 𝜆 < 1), and 𝜆 ≥ 0 is 

the retardation time of fluid. 

In case of stationary motion, the problem can be written as 

find(𝐮, 𝑝, 𝝈) defined in Ω such that, 

𝑅𝑒[(𝐮. ∇)𝐮] + ∇𝑝 = (1 − λ)Δ𝐮 + ∇. 𝝈 +  𝐟 in Ω,
∇. 𝐮 = 0 in Ω,

𝑊𝑒[(𝐮. ∇)𝝈] + 𝝈 = 2𝜆 𝐃(𝐮) + 𝑊𝑒[(∇𝐮)𝝈 + 𝝈(∇𝐮) ]in Ω.
                                                     (12)  

The above equation is composed of a Navier-Stokes like system for (𝐮, 𝑝) and a 
transport equation for extra stress tensor 𝝈.  

Finally, the system (10) should be completed with a set of initial and boundary 
conditions, which depend on the considered geometry. In our case, we consider four-
to-one abrupt contraction. Taking Ω ⊂ R   a bounded, simply connected domain, the 
boundary conditions ensuring feasibility of numerical solution are: 

(i) Dirichlet boundary conditions for the velocity on the boundary 𝜕Ω 
𝐮 = 𝐠 on 𝜕Ω 

with compatibility condition  

𝐠. 𝐧 = 0, 

where𝐧 is the unit outward normal vector to Ωat the boundary 𝜕Ω. For homogeneous 
case, 𝐠 = 0. 
(ii) For the stress, a condition on the upstream boundary section  

𝜕Ω = {𝐱 ∈ 𝜕Ω: 𝐮(𝐱). 𝐧(𝐱) < 0} 
𝝈 = 𝝈 on𝜕Ω . 

With the homogeneous Dirichlet boundary conditions, the Oldroyd-B fluid model 
problem is well-posed. 

With the homogeneous Dirichlet boundary conditions defined over Ω, the Oldroyd-B 
problem can be reformulated as follows: 

find the quantities 𝝈, 𝐮 and 𝑝 defined in Ω such that 

𝜌(𝐮. ∇)𝐮 − 𝜇  Δ𝐮 + ∇𝑝 = ∇. 𝝈 + ρ 𝐟, in Ω,
∇. 𝐮 = 0, in Ω,

𝜆 (𝐮. ∇)𝝈 + 𝝈 = 𝐡(𝝈, ∇𝐮), in Ω,
𝐮 = 0, on𝜕Ω

                                                                                         (13) 

subject to the boundary condition (ii). 
For non-dimensional case, the problem (13) can be read as the form of (12) as 
follows: 
Find the non-dimensional quantities,denoted by 𝝈, 𝐮 and p, defined in Ω such that, 

𝑅𝑒[(𝐮. ∇)𝐮] + ∇𝑝 = (1 − λ)Δ𝐮 + ∇. 𝝈 +  𝐟, in Ω,
∇. 𝐮 = 0 in Ω,

𝑊𝑒[(𝐮. ∇)𝝈] + 𝝈 = 2𝜆 𝐃(𝐮) + 𝑊𝑒[(∇𝐮)𝝈 + 𝝈(∇𝐮) ], in Ω.

    (14) 

subject to the boundary conditions in (i) and (ii). 
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Variational Formulation 

In this work, we consider the fluid confined into a rectangular domain Ω with 
fixed boundary 𝜕Ω. Mathematically, we write the steady Oldroyd-B equations with 
the Dirichlet boundary conditions, i.e., 𝐮 = 𝐮 such that 𝐮 . 𝐧 = 0 on𝜕Ω. So, given an 
external force field 𝐟 ∈ 𝐇 (Ω)  and 0 < 𝜆 < 1  the viscoelastic fraction of the 
viscosity, the steady Oldroyd-B problem is defined by, 

𝑅𝑒[(𝐮. ∇)𝐮] + ∇𝑝 = (1 − λ)Δ𝐮 + ∇. 𝝈 +  𝐟, in Ω,
∇. 𝐮 = 0, in Ω,

𝑊𝑒[(𝐮. ∇)𝝈] + 𝝈 = 2𝜆 𝐃(𝐮) + 𝑊𝑒[(∇𝐮)𝝈 + 𝝈(∇𝐮) ], in Ω
𝐮 = 𝐮 , 𝐮 . 𝐧 = 0, on𝜕Ω 

    (15) 

Considering 𝐯 ∈ 𝐇 (Ω),  𝑞 ∈  𝐿 (Ω), and 𝝉 ∈  𝐋 (Ω) as arbitrary test functions, and 
taking the scalar product between the momentum equation and 𝐯 , between the 
transport equation and 𝝉, and multiplying the continuity equation by 𝑞 and finally 
integrating all of them over Ω, we obtain the variational form to Oldroyd-B problem 
as, 

Given𝐟 ∈ 𝐇 (Ω),  find (𝐮, 𝑝, 𝝈) ∈ 𝐇 (Ω) × 𝐿 (Ω) × 𝐋 (Ω) such that  

⎩
⎪
⎨

⎪
⎧ ∫ 𝑅𝑒[(𝐮. ∇)𝐮. 𝐯] + ∫ (1 − λ)∇𝐮: ∇𝐯 + ∫ 𝜎: ∇𝐯 − ∫ 𝑝∇ ⋅ 𝐯 = + ∫ 𝐟. 𝐯

∫ q∇. 𝐮 = 0

∫ 𝝈: 𝛕 + ∫ 𝑊𝑒[(𝐮. ∇)𝝈]: 𝛕 − ∫ 𝑊𝑒[(∇𝐮)𝝈 + 𝝈(∇𝐮) ]: τ = ∫ 2𝜆 𝐃(𝐮): 𝛕
    (16) 

for all  (𝐯, 𝑝, 𝝉) ∈ 𝐇 (Ω) × 𝐿 (Ω) × 𝐋 (Ω) 

Finite Element Approximation of Oldroyd-B Problem 

In this section, we study the approximation of the problem (13) using finite 
element method. The system (13) is a composed problem for the three unknowns 
(𝐮, 𝑝, 𝝈). If 𝝈 is fixed, the first two equations of (13) defines a Navier-Stokes system 
in the variables 𝐮and𝑝. As in, we use the Hood-Taylor finite element method for the 
approximation of the velocity and the pressure field (𝐮, 𝑝).  If 𝐮 (and𝑝) are fixed, 
then the third equation of (13) is a transport equation in the variable 𝝈 . The 
approximation of 𝝈  will be done by using discontinuous Galerkin finite element 
method, as in. 
Consider the case where 0 < 𝜆 < 1. 
Let  𝒯 , ℎ > 0, where , ℎ is discretization parameter, be a non-degenerated regular 
triangulation of Ω such that Ω  = ∪

∈𝒯
𝐾. 

Let hV and hQ  be two finite-dimensional spaces for the velocity and the pressure, 

respectively, such that )(1 HVh  and ).(2
0  LQh We define the pair of discrete 

space )(1
0

0  HVV hh and )(2
0  LQM hh  which correspond to Hood-

Taylor finite element method.  We also consider the space  
𝐓  = {𝜎 ∈ 𝐓 ∩ 𝐂(Ω)|𝝈 | ∈ 𝕡 , ∀𝐾 ∈ 𝒯 ⊂ S × ,    

𝑇 = {𝝈 ∈  𝐿 (Ω)|𝐮 ⋅ ∇𝝈 ∈  𝐿 (Ω), 𝜎 = 𝜎 }. 

The Oldroyd-B model is approached by the following problem: 
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Given𝐟 ∈ 𝐇 (Ω),  find (𝐮 , 𝑝 , 𝜎 ) ∈ 𝐕 × 𝑀 × 𝐓  such that  

𝑎(𝐮 , 𝐯 ) + 𝑐(𝐮 , 𝐮 , 𝐯 ) + 𝑏(𝐯 , 𝑝 ) = (∇. 𝝈 +  𝐟, 𝐯 ) , ∀𝐯 ∈ 𝐕

𝑏(𝐮 , 𝑞 ) = 0, ∀𝑞 ∈ 𝑀 ,

(𝝈 , 𝝉 ) + (𝐮 ⋅ ∇. 𝝈 , 𝝉 ) + (𝜙∗ (𝝈 ), 𝝉 ) = (𝐡(∇𝐮, 𝝈), 𝝉 ),    ∀𝝉 ∈ 𝐖

      (17) 

with the interface and boundary adjoint-fluxes 

𝜙∗, (𝝈 )|𝜕𝐾 = 𝛼|𝐮 ⋅ 𝐧 | − 𝐮 ⋅ 𝐧 [𝝈 ] 𝜕𝐾,            (18) 

𝜙∗, (𝝈 )|𝜕𝐾 = −|𝐮 ⋅ 𝐧|𝝈 𝜒                                                                                                   (19) 

where𝛼 > 0  is a parameter and 𝜒 denotes the characteristic function of 𝜕Ω .  

The nondimensional approach problem can be written as follows:  

Given𝐟 ∈ 𝐇 (Ω),  find (𝐮 , 𝑝 , 𝜎 ) ∈ 𝐕 × 𝑀 × 𝐓  such that  

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑅𝑒[(𝐮 . ∇)𝐮 . 𝐯 ] + (1 − λ)∇𝐮 : ∇𝐯 + 𝜎 : ∇𝐯 − 𝑝 ∇. 𝐯 = 𝐟. 𝐯

𝑞 ∇. 𝐮 = 0,                                                                                                                                             (20)

𝜎 : 𝜏 + 𝑊𝑒[(𝐮 . ∇)𝜎 ]: 𝜏 − 𝑊𝑒[(∇𝐮 )𝜎  + 𝜎 (∇𝐮 ) ]: 𝜏 + (𝜙∗ (𝝈 ), 𝝉 ) = 2𝜆 𝐃(𝐮 ): 𝜏 ,    

  

∀𝐯 ∈ 𝐕 , ∀𝑞 ∈ 𝑀 , ∀𝜏 ∈ 𝐓 . 

Algorithm to Approximate the Oldroyd-B Problem 

The extra-stress tensor is computed separately from the kinematic equations. 
From a fixed value for the velocity (and pressure) the extra-stress tensor is evaluated. 
Then the velocity field and pressure are updated with the current extra-stress tensor 
whose components are treated as known body forces. Repeat the procedure. 

 Given (𝐮 , 𝑝 , 𝝈 )   the approach solution of iteration 𝑛 , find (𝐮 , 𝑝 ) , the 
solution of   

𝑅𝑒 𝐮 . ∇ 𝐮 . 𝐯 + (1 − λ)∇𝐮 : ∇𝐯 − 𝑝 ∇. 𝐯 = 𝝈 : ∇𝐯 + 𝐟. 𝐯  

 Given 𝐮  and 𝝈 =𝝈 , find the solution 𝝈∗=𝝈  of 

𝝈 : 𝜏 + 𝑊𝑒 𝐮 . ∇ 𝝈 : 𝜏 + 𝜙∗ 𝝈 , 𝜏

= 𝑊𝑒 𝝈 ∇𝐮  + ∇𝐮 𝝈 : 𝜏 + 2𝜆 𝐃 𝐮 : 𝜏 , 𝑘 ≥ 0 

IV.     Numerical Results and Discussions for a Four-to-One Abrupt Contraction 

By the implementation of the finite element method in our own script in 
FreeFem++, we obtain the numerical solutions of theOldroyd-B problem. Here, we 
consider that the fluid flows in an abrupt contraction (or 4:1 planar contraction) 
subject to suitable boundary conditions. This type of flow is interesting theoretically 
and practically, and has been studied by many authors, since 1988. These problems 
have a lot of applications in polymer processing, especially in extrusion and injection 
moulding. 



 
 
 

J. Mech. Cont.& Math. Sci., Vol.-15, No.-3, March (2020)  pp 21-37 

9 
 

We consider that the fluid is confined into a domain Ω  with its boundary 𝜕Ω =

⋃ 𝜕Ω  which is shown in Fig. 1. 

This domain Ω   consists of six boundaries as rigid wall denoted by 𝜕Ω =
⋃𝜕Ω , with     

𝑘 = 1, 2, 3, 5, 6, 7,an inlet or inflow boundary at upstream section 𝜕Ω = 𝑆 , and an 
outlet or outflow boundary at downstream section 𝜕Ω = 𝑆 . The fluid enters into the 
domain through the upstream section 𝑆 . We consider an inflow parabolic profile at 
the upstream section for the velocity field and homogeneous no-slip conditions on the 
wall. To obtain the Poiseuille velocity profiles before the contraction and at 
downstream, the computational domain Ω is assumed to be long enough at upstream 
and downstream sections. In our referential domain, we consider the length of 
upstream section is 5𝑟 = 2 , with 𝑟  the radius of upstream, while the length of 
downstream section is taken as 10𝑟 = 4. The respective widths of upstream and 
downstream sections are 2𝑟 = 0.8and 2𝑟 = 0.2.    

Taking into account the boundary conditions of Saramito, we impose the boundary 
conditions, for the problem, which is adapted to our computational domainΩ. 

We impose the following boundary conditions:  

 Inflow boundary conditions for the velocity and the stresses at the upstream 
section, i.e., on 𝜕Ω = 𝑆 :  

𝑢 =  𝑦(2𝑟 − 𝑦) = 0.078125 𝑦  (0.8 − 𝑦), 

𝑢 = 0, 

𝜎 =  2𝜆 𝑊𝑒
𝜕𝑢

𝜕𝑦
, 

𝜎 =  𝜆 
𝜕𝑢

𝜕𝑦
, 

𝜎 = 0, 

 Outflow boundary conditions at downstream section, i.e., on 𝜕Ω = 𝑆 : 

 
Fig. 1: Computational domain Ω for a 4:1 abrupt contraction. 
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𝑢 = 0 

𝑢 = 0 

 The boundary conditions for the velocity at the wall, i.e., on 𝜕Ω : 

𝑢 = 0 

So, the Oldroyd-B model problem to compute the flow in an abrupt contraction can 
be written as 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

𝑅𝑒[(𝐮. ∇)𝐮] − (1 − λ)Δ𝐮 + ∇𝑝 = ∇. 𝝈 +  𝐟, in Ω
∇. 𝐮 = 0, in Ω,

𝝈 + 𝑊𝑒[(𝐮. ∇)𝝈] = 2𝜆 𝐃(𝐮) + 𝑊𝑒[(∇𝐮)𝝈 + 𝝈(∇𝐮) ], in Ω

𝑢 = 0.078125 𝑦 (0.8 − 𝑦), on𝜕Ω = 𝑆
𝑢 = 0, on𝜕Ω = 𝑆

𝑢 = 0, 𝑢 = 0, on𝜕Ω

𝜎 = 2𝜆 𝑊𝑒
𝜕𝑢

𝜕𝑦
, on𝑆

𝜎 = 𝜆 
𝜕𝑢

𝜕𝑦
,   on𝑆

𝜎 = 0, on𝑆

                                                   (21)  

For the numerical results, we use the exact solution of fully developed Poiseuille flow 
in straight pipe as the initial condition for the tensor while the solution of the Stokes 
problem is the initial condition for the velocity.  

To obtain the numerical simulations of the flow, we take 𝜆 =  0.1, and we discretize 
the domain Ω on a mesh with 2066 elements where 4405 𝕡 nodes for the velocity, 
1170 𝕡 nodes for the pressure and 6198 𝕡 𝑑𝑐  nodes for the tensor are defined 
(Fig.2). 
 

The flow is laminar at upstream and at downstream sections, where the viscous forces 
are dominant, as we expect. In the opening of narrower domain, we observe a 
different behavior, where inertial forces are fallen. For this reason, we decide to 
present a partial view of variables involved in the problem in a neighborhood of 
contraction. 

Newtonian Flows 

The simulations were performed to Newtonian flows. We fix 𝑊𝑒 = 0 and 
take several Re between 1 and 500 and compare the results. We observe that the 
quantitative behavior for the kinematic is almost same (Figs. 3-5), (Figs. 6-8), (Figs. 
9-11) with a small increase of maximum values and small decrease of minimum 
values.  The pressure is constant along the y-direction and varies linearly with x. In 
fact, the behavior of pressure is very similar to the Poiseuille flows. The qualitative 
behavior can be observed and compared easily through the stream function (Figs. 12-
14). We observe the recirculation vortices in the corner. These vortices are shrinking 
when the Reynolds increase. This is the effect of inertia which makes the fluid speedy 
to enter the narrow part of the domain (tube), pulling the fluid out of the corner to 
inside the tube, and thus decreasing the vortices. To prove our description, all tests 
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are performed in 3 different cases with 𝑅𝑒 = 1, 100and 500, and we present the 
numerical results. 

 

Fig. 2:  Mesh with 2066 elements 

  

Fig. 3: The first component of the velocity 
(partial view) with 𝑅𝑒 = 1 

Fig. 4: The first component of the 
velocity (partial view) with 𝑅𝑒 = 100. 

  

Fig. 5: The first component of the 
velocity (partial view) with 𝑅𝑒 = 500. 

Fig. 6: The second component of the 
velocity (partial view) with 𝑅𝑒 = 1. 

  

Fig. 7: The second component of the 
velocity (partial view) with 𝑅𝑒 = 100. 

Fig. 8: The second component of the 
velocity (partial view) with 𝑅𝑒 = 500. 

  

Fig. 9: The pressure (partial view) with 
𝑅𝑒 = 1. 

Fig. 10: The pressure (partial view) with 
𝑅𝑒 = 100. 
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Viscoelastic Flows 

The simulations were performed to viscoelastic flows. For all performed 
tests, we observed that the convergence of the algorithm is influenced by the values 
of Reynolds and Weissenberg, the latter being the main cause for the divergence of 
the algorithm.  In fact, the two re-entrant corners are one of the reasons for which the 
problem fails to converge if we consider the high value of Weissenberg number. This 
result may be directly related to the dissipative instability of the model in the 
elongation flow dominated in the contraction flow near the entrance region. 

We test various values of Reynolds to seek the limit of the Weissenberg value, for 
which the algorithm converges. We observe that when we increase the 𝑅𝑒, threshold 
for 𝑊𝑒 decreases. Table 1 shows the maximum values of Weissenberg numbers 𝑊𝑒 
for respective values of Reynold numbers 𝑅𝑒, for which the results are convergent. 

Table 1: Maximum values of 𝑾𝒆 (𝑾𝒆𝒎𝒂𝒙) for respective values of 𝑹𝒆. 
𝑹𝒆 1 50 100 250 500 

𝑾𝒆𝒎𝒂𝒙 5.13 5.08 5.03 4.86 4.60 

For all performed tests, we analyze the behavior of the velocity, pressure and tensor. 
We observed that the qualitative behaviors of the kinematic are the same for 
Newtonian flows although we can observe the differences of the types of 
recirculations, and their zones for the viscoelastic flows in relation to the Newtonian 
fluids flows through the stream function (compare the Figs.12-14with Figs.15-22). 
The  

 
 

Fig. 11: The pressure (partial view) with 

𝑅𝑒 = 500. 

Fig. 12: The stream function (partial 
view) with 𝑅𝑒 = 1. 

 
 

Fig. 13: The stream function (partial view) 
with 𝑅𝑒 = 100. 

Fig. 14: The stream function (partial 
view) with 𝑅𝑒 = 500. 
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center of circulating zone moves from the re-entrant corner to the salient edge. We 
observed the elastic effects. The speeding up along the streamlines in the center 
causes an elastic tension along these  

 

 
 
 
 
 
 
 
 
 
 

streamlines which exerts a pull on the fluid directly upstream and pushes the fluid on 
the sides back into the corner, and this causes a recirculation zone at which the 
intensity and the length increase as a combined effect between 𝑅𝑒  and 𝑊𝑒 
parameters.   
We observe that the big differences of the behaviors of the components of tensors 
occur for  𝜎 and 𝜎 . For theses components, the influence of 𝑊𝑒 is notable. For a 
fix value of 𝑅𝑒, when the 𝑊𝑒 increases, we see the effects as it extend from the 
corners into the tube and in the case of 𝜎 , also behind the entry of the tube. The  

  
Fig. 15: The stream function (partial 

view) with 𝑅𝑒 = 1and 𝑊𝑒 = 1. 
Fig. 16: The stream function (partial 

view) with 𝑅𝑒 = 1and 𝑊𝑒 = 4.6. 

 
 

Fig. 17: The stream function (partial 
view) with 𝑅𝑒 = 1and 𝑊𝑒 = 5.13. 

Fig. 18: The stream function (partial 
view) with  

  

Fig.19: The stream function 
(partial view) with 𝑅𝑒 = 100and 

𝑊𝑒 = 4.6. 

Fig. 20: The stream function (partial 
view) with 𝑅𝑒 = 100and 𝑊𝑒 =

5.03. 

 
 

Fig. 21: The stream function with 
𝑅𝑒 = 500 and 

𝑊𝑒 = 1. 

Fig. 22: The stream function with 
𝑅𝑒 = 500 and 

𝑊𝑒 = 4.6. 
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next figures (Figs. 23-46) show us the behavior of the components of tensors. 

  

Fig. 23: The component of 𝜎  
(partial view) with 𝑅𝑒 = 1and 

𝑊𝑒 = 1. 

Fig. 24: The component of 𝜎  
(partial view) with 𝑅𝑒 = 1and 

𝑊𝑒 = 4.6. 

  

Fig. 25: The component of 𝜎  (partial 
view) with 𝑅𝑒 = 1and 𝑊𝑒 = 5.13. 

Fig. 26: The component of 𝜎  
(partial view) with 𝑅𝑒 = 1and 

𝑊𝑒 = 1. 

  
Fig. 27: The component of 𝜎  (partial 

view) with 𝑅𝑒 = 1and 𝑊𝑒 = 4.6. 
Fig. 28: The component of 𝜎  (partial 

view) with 𝑅𝑒 = 1and 𝑊𝑒 = 5.13. 

  
Fig. 29: The component of 𝜎  (partial 

view) with 𝑅𝑒 = 1and 𝑊𝑒 = 1. 
Fig. 30: The component of 𝜎  
(partial view) with 𝑅𝑒 = 1and 

𝑊𝑒 = 4.6. 

 

 

Fig. 31: The component of 𝜎  (partial 
view) with 𝑅𝑒 = 1and 𝑊𝑒 = 5.13. 

Fig. 32: The component of 𝜎  (partial 
view) with 𝑅𝑒 = 100and 𝑊𝑒 = 1. 
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Fig. 33: The component of 𝜎  (partial 
view) with 𝑅𝑒 = 100and 𝑊𝑒 = 4.6. 

Fig. 34: The component of 𝜎  (partial 
view) with 𝑅𝑒 = 100and 𝑊𝑒 = 5.03. 

 

 

Fig. 35: The component of 𝜎  (partial 
view) with 𝑅𝑒 = 100and 𝑊𝑒 = 1. 

Fig. 36: The component of 𝜎  (partial 
view) with 𝑅𝑒 = 100and 𝑊𝑒 = 4.6. 

  
Fig. 37: The component of 𝜎 with 
𝑅𝑒 = 100𝑊𝑒 = 5.03. 

Fig. 38: The component of 𝜎  with 
𝑅𝑒 = 100and 𝑊𝑒 = 1. 

 
 

Fig. 39: The component of 𝜎  (partial 
view) with 𝑅𝑒 = 100and 𝑊𝑒 = 4.6. 

Fig. 40: The component of 𝜎  
(partial view) with 𝑅𝑒 = 100and 

𝑊𝑒 = 5.03. 

 

 

Fig. 41: The component of 𝜎  (partial 
view) with 𝑅𝑒 = 500and 𝑊𝑒 = 1. 

Fig. 42: The component of 𝜎  (partial 
view) with 𝑅𝑒 = 500and 𝑊𝑒 = 4.6. 
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V. Conclusions 

The two-dimensional steady flow of an Oldroyd-B fluid over a four-to-one 
abrupt contraction was investigated. This mixed problem of elliptic-hyperbolic type 
was decoupled into two auxiliary problems, namely, the Navier-Stokes system and 
the tensorial transport problem. The approach and discrete problem of Oldroyd-B 
model were discussed. Numerical results have been obtained in a four-to-one planar 
contraction (abrupt contraction) for different values of Weissenberg numbers We and 
Reynolds numbers Re.We observed the viscoelastic behaviors of the fluids by 
comparing the results from the plot of the velocity, pressure and tensor for different 
values of 𝑅𝑒  and 𝑊𝑒. For Newtonian flows, both the quantitative and qualitative 
behaviors of the kinematics were found almost same.But the differences of the types 
of recirculation, and their zones for the viscoelastic flows have been observed in 
relation to the Newtonian fluids flows through the stream function. In case of 
viscoelastic flows, the convergence of the algorithm is influenced by the values of 
Reynolds and Weissenberg. The two re-entrant corners were the reasons for which 
the problem fails to converge if we consider the high value of Weissenberg number.  
The big differences of the behaviors of the components of tensors 𝜎  and 𝜎 were 
also observed. For these components, the influence of 𝑊𝑒was notable. For a fixed 
value of Reynolds number, we found a limit for maximum Weissenberg number for 
which the applied method diverges. 

 

 

 

 

Fig. 45: The component of 𝜎  
(partial view) with 𝑅𝑒 = 500and 

𝑊𝑒 = 1. 

Fig. 46: The component of 𝜎  
(partial view) with 𝑅𝑒 = 500and 

𝑊𝑒 = 4.6. 

 

 

Fig. 43: The component of 𝜎  
(partial view) with 𝑅𝑒 = 500 and 
𝑊𝑒 = 1. 

Fig. 44: The component of 𝜎  
(partial view) with 𝑅𝑒 = 500and 
𝑊𝑒 = 4.6. 
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