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Abstract 

This study proposes an analytical solution method for investigating 
vibrational characteristics for a tubular cylindrical shell of a finite-length and bares 
a circumferential part-through fissure. The effect of different  parameters i,e, length, 
depth and the fissure's location, on the vibrational characteristics, were also 
investigated. The equations for motion, that are founded on the classical shell theory  
for the fissured shell were  transformed into simpler equations via Donell–Mushtari–
Vlasov (DMV) hypothesis. The equivalent bending stiffness of the shell (D) was 
calculated by an exponential function while taking into consideration the effect of the 
fissure. The analytical approach gave us results for a structure with simply supported 
(S-S) at both ends boundary conditions. The natural frequencies were obtained by 
solving the general equations on a program built for "MATLAB" SOFTWARE. The 
results that were obtained from the suggested modal were confirmed by the use of a 
modal created by ANSYS APDL ver.15 in addition to the results that were attained 
from literature. There was a passable agreement between the results of the analytical 
and FE model. The results set forth that as fissure's parameters, length & depth, 
Increasing them reduces the natural frequency, In addition to this, the natural 
frequency will also decrease if the fissure is located in the middle of the shell is 
larger than  if it were in other locations. 

Keywords: Cylindrical shell, vibration characteristics, Part-Through fissure, natural 
frequency. 

 

I.    Introduction 

 Shell structures have existed in numerous different fields i.e.: (mechanical, 
aeronautical, and civil engineering).  A cylindrical tubular shell is one an important 
kind of the shell that has received obtained attention and is used in numerous fields, 

JOURNAL OF MECHANICS OF CONTINUA AND 
MATHEMATICAL SCIENCES 

www.journalimcms.org 
 

ISSN (Online) : 2454 -7190   Vol.-15, No.-2, February (2020) pp 281-294  ISSN (Print) 0973-8975 



 
 
 
 
 
 

J. Mech. Cont.& Math. Sci., Vol.-15, No.-2, February (2020)  pp 281-294 

Copyright reserved © J. Mech. Cont.& Math. Sci. 
Marwah Ali Husain et al 
 
 
 

282 
 

for example: cooling towers, pipelines, aeronautical, automobile industries, large 
dams, shell roofs, naval structures, and liquid-retentive constructions. Due to the 
growing requirements for tubular shells and their extensive area of uses, So there is a 
necessary need for analyzing their dynamic features theoretically. These constructions 
commonly employ in complex conditions susceptible to various types of loads like 
(dynamic and fatigue loads) lead to damaging it's by presenting fissures and other 
flaws deteriorating operational parameters of constructions. Cracks that are on the 
surface are the most usual flaws in any type of plates and shells, cracks in tubular 
shell constructions may have an effect on the drop shell's   stiffness and strength, of 
which in turn would lower the shell's natural frequencies. Keeping this in mind, the 
reflection of defects that are pre-formed is an important prodigy when   evaluating   
tubular shell in free vibration. The vibration features' analysis for tubular shells are 
more difficult than other structures like (beams and plates structures). This is due to 
that mainly the motion's equations for tabular shells jointly with boundary conditions 
are more complicated.  Conversely, the case of free vibration for fissured tubular 
shells has been investigated widely in recent decades, so as to evade undesired 
accidents which may produce unsteadiness and tearing.  

Scholars have aided   considerably to the vibration investigation for shell 
constructions so as to create analytic relations between the quantity and position of 
the fissure and variant in the dynamic features   of the shell as a result from the 
fissure.Nikpour,1990 [X] presented a method for solving symmetrical vibrations for 
the tubular shell that have thin laminated anisotropic involving a circumferential type 
fissure to reveal the depth and position of the fissure which pre-existed on the shell. 
C. Wang and J.C.S. Lai ,2000 [IV] introduced the approach to predict the natural 
frequencies based on Love's equations of finite length cylindrical shells with different 
boundary conditions without simplifying the equations of motion. Roytman and 
Titova,2002 [VII] enhanced numerous mathematical Techniques for elastic vibrations 
of a tubular shell with a surface-closed type fissures.  Ip and Tse,2002 [VIII] created 
the fissure detecting method in tubular composite shells built on the natural 
frequencies and the shapes of the modes at mode shape according to information at 
certain places. Javidruzi et al.,2004 [XVII] investigated   the dynamic behavior of 
tabular l shells containing different types of fissures fissure subjected to fissure with 
set supports and lay open to an in-plane (compressive/tensile cyclic edge load). Vaziri 
and Estekanchi, 2006 [III] found that the existence of fissures in tabular shells could 
harshly affect the buckling performance of shell constructions by decreasing their 
capability for carrying-loads as well as the insertion of buckling locally at the fissure 
zone. Xin and Wang, 2011 [VII], investigated how the performance of free vibration 
and buckling of a tabular shell are effected by the length of a fissure, orientation, 
constant rotating speed and the length diameter ratio. In addition to this the stability 
features of the fissured shell as well as how the fissure's length. Its orientation, basic 
speed of rotation, steady load factor, the factor for dynamic load and the damping 
ratio were also investigated.  

At 2012, M. J. Jweeg et al., [XV], presented an analytical solution by solving 
the general equation of motion to calculate the natural frequency of a plate structure 
with various crack depth and location effect. Yin and Lam, 2013 [XXI] proposed a 
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numerical model for computing natural frequencies for a tubular cylinder shell of 
finite-length where the fissure is part through the circumferential surface. Moradi and 
Tavaf, 2013 [XIX] investigated  ,with the aid of quadrature method and Bees 
algorithm. On how to  detect fissures in shell constructions that are tubular 
cylindrical. Sarker et al., 2015 [XI] presented a new approach founded on the Ritz 
procedure for finding impairments in tubular cylindrical structures. Sander’s 
hypothesis for thin shells coupled with the Ritz's procedure is used for analyzing    the 
dynamic performance of tubular cylindrical shells. 

M. Al-Wailyetal., 2017 [XIII], investigated the effect of crack angle  on the 
vibration behavior for circular pipe induced vibration using experimental and 
numerical technique. Also, the studied included an investigation of flow 
characterization with various crack effect. Also, at same year, M. J. Jweeget. al, 
[XVI], investigated the effect of crack depth and position on the vibration 
characterization of pipe conveying fluid. Where, the investigation included 
calculating the natural frequency for pipe with effect of crack, due to fluid flow. K. 
Moazzeza et al., 2018 [IX] presented a methodical model so as to  study the 
performance of free vibration of a long cylindrical tubular shell, involving a 
changeable oriented surface fissure, in free vibration. M. A. Al-Shammari, 2018, 
[XII], studied; using experimental and numerical techniques; the effect of various 
crack parameters on the vibration characterizations for sandwich plate structure. 
Finally, at, 2019, H. J. Abbas et al., [V], studied a technique can be used to predict the 
fault detection of cable using experimental and numerical technique. Where, the 
prediction included the calculation of the natural frequency for cable with different 
effect of crack parameters, depth and position. Also, the investigation included the 
neural network to calculate the natural frequency with various crack effect.            

A new analytical method founded on the bending stiffness of a shell is 
presented to analyze the vibration behavior for a cylindrical shell involving a 
circumferential fissure. The fissure's effect on the natural frequencies and mode shape 
are analyzed. The analytical results were verified with the results obtained from FEM 
and revealed good agreement. 

II.    Mathematical Model 

shell is supposed to be made up of a material that is isotropic, linear and has a 
thickness (h), which is small when compared to its other geometrical dimensions. (R 
is the radius of the cylindrical shell; l is the length of the shell). presume that there is 
a fissure on a circumferential surface for a tubular shell having a (length l, mean 
radius R and thickness h). A circumferential fissure has a (finite-length of (a) and a 
uniform depth of (ℎ௖) is lying at a distance (𝑥௖) from one end on the external surface 
of the shell and in parallel to its length).   
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Fig. 1: Coordinate system of a thin tubular cylindrical shell.

The equations that dominate the cylindrical shell's motion without fissure in terms of  
the displaced components
theory. [XX] 
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Finally, using equations. (4-6) and. (11,12), the equations for  motion, equations. (1-
3) can be stated in the form  of the components of displacement  u, v and was: [XX] 
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The motion equations for a cylindrical shell, (13-15) can be made simpler with the aid 
of the Donnell–Mushtari–Vlasov (DMV) theory. When vibration is taken as the 
frame of reference, the following assumptions are made: 1. neglecting the terms of in-
plane displacements u and v to the bending moment resultant (8-10). 2. neglecting the 
influence term of the shear (1/R) 𝑄ఏ௭  in the equation of motion corresponding to v 
Eq. (2). This is equivalent to neglecting the term involving D in Eq. (14), The 
equations of motion corresponding to the DMV theory can be expressed as follows: 
[XX] 
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The effect of a circumferential fissure on a cylindrical shell is obtained by calculating  
the bending stiffness (D) by an exponential function as given by: [XIV] 
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Fig [2] shows  the boundary conditions, which are  simply supported, for the fissured 
cylindrical shell at x=0 & x=
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Fig. 2: simply supported shell. [XX] 
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Where 𝜔 is circular frequency, and 
is the number of displaced half
"Longitudinal Half-Waves"; whereas n is the number of displaced  circumferential 
half- waves "Circumferential Waves" [see Fig. (3)].

Fig. 3: Circumferential and longitudinal modes of cylindrical shell.[

The assumed solution [Eqs. (34

After compensating an equation of the bending stiffness D for a cracked cylindrical 
shell in eqs. (16-18), Substitutingeqs. (34
equations for motion and obtain: 

[− 𝐴ଵ ( 𝜆ଶ +  𝑎ଵ𝑛ଶ) +  

[− 𝐵ଵ. 𝑅 (𝑎ଵ𝑛)]𝐴௠௡ +

[𝐵ଵ. 𝑅(−2𝜆𝜇ଷ − 2𝑅 𝜆𝑛

Where:𝜆 =  
௠గோ

௅
,   𝜇 =  

For a significant solution of the coefficients
for their coefficient matrix in Eqs. (37

቎

− 𝐴ଵ ( 𝜆ଶ + 𝑎ଵ𝑛ଶ) +  Ω

− 𝐵ଵ. 𝑅 (𝑎ଵ𝑛)

0

The expansion of Eq. (40) Produces the frequency equation:

                       𝑒ଵΩ + 𝑒ଶ = 0      
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෍ 𝐴௠௡ cos
𝑚𝜋𝑥

𝑙
cos 𝑛𝜃 cos 𝜔𝑡

௡

                                                   (

෍ 𝐵௠௡ sin
𝑚𝜋𝑥

𝑙
sin 𝑛𝜃 cos 𝜔𝑡                                                     (35

෍ 𝐶௠௡ sin
𝑚𝜋𝑥

𝑙
cos 𝑛𝜃 cos 𝜔𝑡

௡

                                                  (36

is circular frequency, and 𝐴௠௡, 𝐵௠௡  and 𝐶௠௡ are arbitrary coefficients, m 
is the number of displaced half-waves along the length of the shell known as 

Waves"; whereas n is the number of displaced  circumferential 
aves "Circumferential Waves" [see Fig. (3)]. 

 

ircumferential and longitudinal modes of cylindrical shell.[

he assumed solution [Eqs. (34-36)] fulfills the boundary conditions [Eqs. (20

After compensating an equation of the bending stiffness D for a cracked cylindrical 
18), Substitutingeqs. (34-36) then eqs. (20-33) in the fissured shell's 

equations for motion and obtain:  

 Ω]𝐴௠௡ +  [𝐴ଵ(𝑎ଶ𝜆𝑛)]𝐵௠௡ + [𝐴ଵ(𝜈𝜆)]𝐶௠௡    = 0       

+  [𝐵ଵ. 𝑅(𝑎ଵ𝜆)]𝐵௠௡ = 0                                                        

𝑛ଶ𝜇)]𝐶௠௡ = 0                                                                        

 
௛మ

ଵଶ మ,   𝛺 =  
(ଵିఔమ)ோమఘ

ா
𝜔ଶ,   𝑎ଵ =  

ଵିఔ

ଶ
 ,𝑎ଶ =  

ଵାఔ

ଶ

For a significant solution of the coefficients, 𝐴௠௡ , 𝐵௠௡  and 𝐶௠௡, the determinant 
for their coefficient matrix in Eqs. (37-39) must be zero. this produces: 

𝐴ଵ(𝑎ଶ𝜆𝑛) 𝐴ଵ(𝜈𝜆)

𝐵ଵ. 𝑅(𝑎ଵ𝜆) 0

0 −𝐵ଵ. 𝑅(2𝜆𝜇ଷ + 2𝑅 𝜆𝑛ଶ𝜇)

቏ ൝

𝐴௠௡

𝐵௠௡

𝐶௠௡

ൡ = ൝
0
0
0

ൡ     

The expansion of Eq. (40) Produces the frequency equation: 
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(34)  

35)   

36)   

are arbitrary coefficients, m 
waves along the length of the shell known as 

Waves"; whereas n is the number of displaced  circumferential 

ircumferential and longitudinal modes of cylindrical shell.[I] 

36)] fulfills the boundary conditions [Eqs. (20-33)]. 

After compensating an equation of the bending stiffness D for a cracked cylindrical 
33) in the fissured shell's 

         (37)   

           (38) 

          (39) 

ఔ
 

, the determinant 

ൡ              (40) 

      (41) 
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Where : 

     𝑒ଵ = −(2𝑎ଵ𝜆ଶ𝜇ଷ𝐵ଵ
ଶ𝑅ଶ +

𝑒ଶ = (2𝐴ଵ𝜆ସ𝐵ଵ
ଶ𝑅ଶ𝑎ଵ𝜇ଷ + 2

− 2𝐴ଵ𝐵ଵ
ଶ

                        𝜔ଶ =
𝛺𝐸

(1 − 𝜈ଶ

= −
(1 −

From eq. (44) we are able to obtain the natural frequencie
shapes for the fissured cylindrical shell construction

With the aid of the MATLAB program the analytical solution can be obtained in 
addition to obtaining the natural frequency of the circumferential fissure for the 
cylindrical shell. 

III.    Numerical Model

The numerical analysis is performed using the Finite Element Software, 
ANSYS Mechanical APDL ver.15 is used to model the cylindrical shells containing a 
circumferential surface fissure for linear isotropic material. element type
is suitable to modeling curved shells

The Validation of the finite element  models for perfect cylindrical shells is verified, 
by the free vibration analysis of a perfect cylindrical shell is performed with radius (R 
= 242.3 mm), length (l = 609
= 70 MPa), density (ρ = 2700 Kg/m^3) and Poison’s ratio (ν = 0.35). The simply 
supported shell (S-S) type boundary conditions are applied to both ends of the shell 
for the analysis of the tubular  shell 

Fig. 4

Table 1 shows that the results (analytical, experimental and numerical) obtained from 
the literature are united agreement with the present results (analytical and numerical) 
of the fundamental frequencies.
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+ 2𝑅ଷ𝑎ଵ𝜆ଶ𝑛ଶ𝜇 𝐵ଵ
ଶ)                                                              

2 𝐴ଵ𝑎ଵ
ଶ𝑛ଶ𝐵ଵ

ଶ𝑅ଶ𝜆ଶ𝜇ଷ + 2𝐴ଵ𝜆ସ𝐵ଵ
ଶ𝑅ଶ𝑎ଵ𝑛ଶ𝜇 + 2𝐴ଵ𝑎ଵ

ଶ𝑛ସ𝐵

ଵ
ଶ𝑅ଶ𝑎ଵ𝑎ଶ𝜆ଶ𝑛ଶ𝜇ଷ −  2𝐴ଵ𝐵ଵ

ଶ𝑅ଷ𝑎ଵ𝑎ଶ𝜆ଶ𝑛ସ𝜇)                       

𝛺𝐸
ଶ)𝑅ଶ𝜌

𝐸𝑒ଶ

( − 𝜈ଶ)𝑅ଶ𝜌𝑒ଵ

                                                                             

From eq. (44) we are able to obtain the natural frequencies and corresponding mode 
shapes for the fissured cylindrical shell construction 

With the aid of the MATLAB program the analytical solution can be obtained in 
addition to obtaining the natural frequency of the circumferential fissure for the 

Numerical Model 

The numerical analysis is performed using the Finite Element Software, 
ANSYS Mechanical APDL ver.15 is used to model the cylindrical shells containing a 
circumferential surface fissure for linear isotropic material. element type
is suitable to modeling curved shells. 

The Validation of the finite element  models for perfect cylindrical shells is verified, 
by the free vibration analysis of a perfect cylindrical shell is performed with radius (R 

= 609.6 mm), thickness (h = 0.648 mm), Young’s modulus (E 
= 70 MPa), density (ρ = 2700 Kg/m^3) and Poison’s ratio (ν = 0.35). The simply 

S) type boundary conditions are applied to both ends of the shell 
for the analysis of the tubular  shell as shown in (fig.4). 

 

Fig. 4: mesh of perfect cylindrical shell. 

Table 1 shows that the results (analytical, experimental and numerical) obtained from 
the literature are united agreement with the present results (analytical and numerical) 

fundamental frequencies. 
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             (42) 

𝐵ଵ
ଶ𝑅ଷ𝜆ଶ𝜇

             (43) 

          (44)    

s and corresponding mode 

With the aid of the MATLAB program the analytical solution can be obtained in 
addition to obtaining the natural frequency of the circumferential fissure for the 

The numerical analysis is performed using the Finite Element Software, 
ANSYS Mechanical APDL ver.15 is used to model the cylindrical shells containing a 
circumferential surface fissure for linear isotropic material. element type SHELL 93 

The Validation of the finite element  models for perfect cylindrical shells is verified, 
by the free vibration analysis of a perfect cylindrical shell is performed with radius (R 

.6 mm), thickness (h = 0.648 mm), Young’s modulus (E 
= 70 MPa), density (ρ = 2700 Kg/m^3) and Poison’s ratio (ν = 0.35). The simply 

S) type boundary conditions are applied to both ends of the shell 

Table 1 shows that the results (analytical, experimental and numerical) obtained from 
the literature are united agreement with the present results (analytical and numerical) 



J. Mech. Cont.& Math. Sci., Vol.

Copyright reserved © J. Mech. Cont.& Math. Sci.
Marwah Ali Husain et al 
 
 
 

 

Table 1: Comparison the results obtained from the literature with the present 

IV.     Results and Discussions

The vibration characteristics 
a circumferential surface fissure are studied analytically and numerically. The free 
vibration analysis of a cylindrical tubular shell is performed, the effect of parameters, 
such as (fissure length, fissur
dimensions of the cracked shell as follows: (
1mm. 

(a)                          

Fig. 1: (a) mesh of shell with middle fissure location.

 (b) mesh of shell with side fissure location.

IV.i.  The Effect of Fissure L

A circumferential fissured cylindrical shell with specific depth and location 
of the fissure is studied considering the effect of fissure length. 
influence of circumferential fissure length on the fundamental natural frequency of 
free vibration. The presence of the fissure
lowering is at first progressively as the fissure length increases but
when the fissure length overtake about 

(fig. 8) indicate that the vibration of the first mode is localized at the fissure zone, and 
the local phenomenon becomes more and more serious as the fissure
It is also found that vibration exists only in a very small fissure region when the 
fissure size reaches 0.2 of the circumference of the shell. vibration is very week 

No. 
1 Experimental (Cook, 1981)[
2 Analytical (Bolotin 1964)[
3 Numerical (Sewall and 
4 Numerical (Javidruzi et al., 2004)[
5 Numerical (Xin and Wang 2011)[
6 Present analytical analysis
7 Present numerical analysis
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Table 1: Comparison the results obtained from the literature with the present 
work. 

Results and Discussions 

The vibration characteristics of a S–S type cylindrical shells with and without 
a circumferential surface fissure are studied analytically and numerically. The free 
vibration analysis of a cylindrical tubular shell is performed, the effect of parameters, 
such as (fissure length, fissure depth and location of crack) are investigated. 
dimensions of the cracked shell as follows: (R) = 500mm, (l) = 1000mm, and (

(a)                                                     (b) 

(a) mesh of shell with middle fissure location. 

(b) mesh of shell with side fissure location. 

The Effect of Fissure Length on the Natural Frequency 

A circumferential fissured cylindrical shell with specific depth and location 
of the fissure is studied considering the effect of fissure length. (Fig. 6) shows the 
influence of circumferential fissure length on the fundamental natural frequency of 
free vibration. The presence of the fissure reduces the first vibration mode
lowering is at first progressively as the fissure length increases but being very prompt 
when the fissure length overtake about 10% of the circumference of the shell. 

) indicate that the vibration of the first mode is localized at the fissure zone, and 
the local phenomenon becomes more and more serious as the fissure length increases. 
It is also found that vibration exists only in a very small fissure region when the 
fissure size reaches 0.2 of the circumference of the shell. vibration is very week 

References Frequency(Hz)
Experimental (Cook, 1981)[XVIII] 163 and 169
Analytical (Bolotin 1964)[XXII] 168.13

Numerical (Sewall and Naumann, 1968)[VI] 166.22
Numerical (Javidruzi et al., 2004)[XVII] 166.40

Numerical (Xin and Wang 2011)[VII] 168.73
Present analytical analysis 168.47
Present numerical analysis 165.39
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Table 1: Comparison the results obtained from the literature with the present 

S type cylindrical shells with and without 
a circumferential surface fissure are studied analytically and numerically. The free 
vibration analysis of a cylindrical tubular shell is performed, the effect of parameters, 

e depth and location of crack) are investigated. 
) = 1000mm, and (h) = 

 

A circumferential fissured cylindrical shell with specific depth and location 
(Fig. 6) shows the 

influence of circumferential fissure length on the fundamental natural frequency of 
reduces the first vibration mode; this 

being very prompt 
0% of the circumference of the shell.  

) indicate that the vibration of the first mode is localized at the fissure zone, and 
length increases. 

It is also found that vibration exists only in a very small fissure region when the 
fissure size reaches 0.2 of the circumference of the shell. vibration is very week 

Frequency(Hz) 
163 and 169 

168.13 
166.22 
166.40 
168.73 
168.47 
165.39 
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around the fissure zone but is very strong in the other part of the sh
obvious local phenomenon for this mode.

IV.ii.   The Effect of Fissu

The natural frequency decreasing with increasing fissure depth, this is 
because of the variant in stiffness of cylindrical shell. (Fig. 
analytical, and numerical results obtained of the first order natural frequency for 
different depth and length of the circumferential crack.

IV.iii.    The effect of location of the fissure on the natural frequency

Fig.(7 and 9) shows the analytical, and numerical results obtained of the 
fundamental natural frequency with 0.25 (2 π R) fissure length and dep
0.75h) for different location of the circumferential crack. The natural frequency 
decreases when the fissure in the middle of the shell over any location of the crack, 
the effect of fissure when it reaches the middle is higher than when it
places. 

Fig. 6: Effect of circumferential fissure size (length, depth) on the fundamental 

Fig. 7: effect of different fissure locations 

(a) Vibration modes with a / 2
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around the fissure zone but is very strong in the other part of the shell and there is no 
obvious local phenomenon for this mode. 

issure Depth on the Natural Frequency 

he natural frequency decreasing with increasing fissure depth, this is 
because of the variant in stiffness of cylindrical shell. (Fig. 6) shows that the 
analytical, and numerical results obtained of the first order natural frequency for 

length of the circumferential crack. 

of location of the fissure on the natural frequency 

) shows the analytical, and numerical results obtained of the 
fundamental natural frequency with 0.25 (2 π R) fissure length and depth fissure (hc = 
0.75h) for different location of the circumferential crack. The natural frequency 
decreases when the fissure in the middle of the shell over any location of the crack, 
the effect of fissure when it reaches the middle is higher than when it’s in the other 

 

Effect of circumferential fissure size (length, depth) on the fundamental 
natural frequency 

 

t of different fissure locations on the fundamental natural frequency

(a) Vibration modes with a / 2𝜋R = 0.1 , and hc/h= 0.75 
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ell and there is no 

he natural frequency decreasing with increasing fissure depth, this is 
) shows that the 

analytical, and numerical results obtained of the first order natural frequency for 

 

) shows the analytical, and numerical results obtained of the 
th fissure (hc = 

0.75h) for different location of the circumferential crack. The natural frequency 
decreases when the fissure in the middle of the shell over any location of the crack, 

’s in the other 

Effect of circumferential fissure size (length, depth) on the fundamental 

on the fundamental natural frequency 
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(b) Vibration modes with a / 2

(c) Vibration modes with a / 2

(d)Vibration modes with a / 2

Fig. 8: Vibration modes of
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(b) Vibration modes with a / 2𝜋R = 0.2 , and hc/h= 0.75

(c) Vibration modes with a / 2𝜋R = 0.1, a / 2𝜋R = 0.1 , and hc/h= 0.

(d)Vibration modes with a / 2𝜋R = 0.2 a / 2𝜋R = 0.1 , and hc/h= 0.

Vibration modes of cracked shell with different crack lengths and depth locate 
at 0.5l 
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R = 0.1 , and hc/h= 0.95

 

, and hc/h= 0.95 

s and depth locate 
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(a) Vibration modes with crack locate (

(b) Vibration modes with crack locate (

(c) Vibration modes with crack locate (

 Fig. 9: Vibration modes of 

V.    Conclusion   

An analytical modeling has been advanced to study  the characteristics of 
dynamic vibration of a simply supported circular cylindrical shells involving 
circumferential fissure. The influence, of the fissure's features i.e. : length, depth and 
location of the fissure on the natural frequencies as well as the tubular cylinder 
shaped shell's mode shapes, were investigated. Results from both were intact and 
fissured cylindrical tubular shells that were obtained diagnostically and verified 
/versus literature and finite element models results, respectively. The results can be 
summarized as follows: 

1. The presence of fissure affects the dynamic vibration characteristic
cylindrical shell as expected, a reducing in the natural frequencies.

2. The fissure reduces the fundamental natural frequency of vibration of cylindrical 
tubular shells gradually as the fissure length increases.

3. A fissure has a significant 
shapes and stiffness.  We found that the shell's stiffness will decrease as a reaction the 
an increase in the shells depth and this will lead to a reduction of the shell's natural 
frequency. 

4. The tabular cylindrical shell's natural frequency and its stiffness are greatly 
affected by the fissure's location. When the fissure is situated  at its longitudinal  
middle then the frequency is at its lowest as to when is at the edges.
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(a) Vibration modes with crack locate (𝑥௖) at alimit

(b) Vibration modes with crack locate (𝑥௖) at0.3l

(c) Vibration modes with crack locate (𝑥௖) at0.5l 

Vibration modes of  cracked cylindrical shell with different crack location.

An analytical modeling has been advanced to study  the characteristics of 
dynamic vibration of a simply supported circular cylindrical shells involving 

erential fissure. The influence, of the fissure's features i.e. : length, depth and 
location of the fissure on the natural frequencies as well as the tubular cylinder 
shaped shell's mode shapes, were investigated. Results from both were intact and 

cylindrical tubular shells that were obtained diagnostically and verified 
/versus literature and finite element models results, respectively. The results can be 

 

1. The presence of fissure affects the dynamic vibration characteristic
cylindrical shell as expected, a reducing in the natural frequencies. 

2. The fissure reduces the fundamental natural frequency of vibration of cylindrical 
tubular shells gradually as the fissure length increases. 

3. A fissure has a significant effect on the shell's natural frequency as well as its mode 
shapes and stiffness.  We found that the shell's stiffness will decrease as a reaction the 
an increase in the shells depth and this will lead to a reduction of the shell's natural 

e tabular cylindrical shell's natural frequency and its stiffness are greatly 
affected by the fissure's location. When the fissure is situated  at its longitudinal  
middle then the frequency is at its lowest as to when is at the edges. 
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cracked cylindrical shell with different crack location. 

An analytical modeling has been advanced to study  the characteristics of 
dynamic vibration of a simply supported circular cylindrical shells involving 

erential fissure. The influence, of the fissure's features i.e. : length, depth and 
location of the fissure on the natural frequencies as well as the tubular cylinder 
shaped shell's mode shapes, were investigated. Results from both were intact and 

cylindrical tubular shells that were obtained diagnostically and verified 
/versus literature and finite element models results, respectively. The results can be 

1. The presence of fissure affects the dynamic vibration characteristics of the 

2. The fissure reduces the fundamental natural frequency of vibration of cylindrical 

effect on the shell's natural frequency as well as its mode 
shapes and stiffness.  We found that the shell's stiffness will decrease as a reaction the 
an increase in the shells depth and this will lead to a reduction of the shell's natural 

e tabular cylindrical shell's natural frequency and its stiffness are greatly 
affected by the fissure's location. When the fissure is situated  at its longitudinal  
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