

J. Mech. Cont.& Math. Sci., Special Issue, No.- 6, January (2020) pp 26-40

Copyright reserved © J. Mech. Cont.& Math. Sci.
Aselsan Inc et al.

26

INSTRUCTION SET EXTENSION OF NIOS II FOR
FLOATING -POINT HOG DESCRIPTION AND

IMPLEMENTATION ON AN FPGA

Anil Seker1, BernaOrsYalcin2

1Aselsan Inc.
2Istanbul Technical University

siddikaseker@aselsan.com.tr, aseker@aselsan.com.tr

https://doi.org/10.26782/jmcms.spl.6/2020.01.00003

Abstract

 Human detection is one of the hot topic in the field of computer vision. HOG
descriptor is a widely accepted local feature extractor with high accuracy and it has
heavy computation blocks in processing. Therefore, its application takes a long
processing time. To improve execution time of algorithm, one of the methods is
hardware acceleration. In this paper, we propose an application-specific HOG
descriptor architecture on FPGA with a soft processor called as Nios II. It has the
ability of instruction set extension to its base micro-architecture without any
modification on the core. We select HOG specific custom instruction sets to extend.
To obtain custom instruction set, we used DAG representation which is generated by
LLVM compiler. The algorithm is applied on the only-processor architecture and on
the proposed architecture with instruction set extension. The total execution time is
measured using hardware clock counter to approximate real time consumption. The
results of both architecture are compared in terms of clock count. Obviously,
proposed architecture which has fully floating-point calculation is accelerated 17.68
times in comparison with pure software implementation of HOG descriptor. The
implementation of the architecture is applied for 640x480x8bit test frame on low-
cost Cyclone V FPGA platform.

Keywords : Custom instruction, FPGA, ASIP, HOG, hardware accelerator

I. Introduction

 Pedestrian detection issue is an important topic in the field of computer
vision mainly in traffic assistance systems [I], surveillance systems [II] and
autonomous robotic systems [III]. There are many algorithms in the literature which
extract different features of the image. The most critical requirements of the
pedestrian feature extraction is high accurate computation and robust performance
[IV]. One of the common algorithms which has high accuracy and robustness was

JOURNAL OF MECHANICS OF CONTINUA AND
MATHEMATICAL SCIENCES

www.journalimcms.org

ISSN (Online) : 2454 -7190 , Special Issue, No.-6, January (2020) pp 26-40 ISSN (Print) 0973-8975

The Paper Presented at 5th International Conference on Recent Trends in Computer Sciences and
Electronics (RTCSE)
Organized by University of Hawaii, USA and Gyancity Research Lab, Haryana, India

J. Mech. Cont.& Math. Sci., Special Issue, No.- 6, January (2020) pp 26-40

Copyright reserved © J. Mech. Cont.& Math. Sci.
Aselsan Inc et al.

27

offered by Dalal and Triggs in [V], called as Histogram of Gradient (HOG). Pure
software implementation of HOG provides speed and flexibilityon the design stage
of the algorithm. However, the pure software implementation of HOG is not enough
to meet real-time requirements without hardware extension. Field Programmable
Gate Arrays (FPGAs) are one of the best candidates for hardware acceleration in
comparison with pure central processing unit (CPU)implementation.

There are many various types of design of HOG algorithm on the embedded systems.
Kadota et.al propose pure FPGA implementation of HOG algorithm[VI]. In their
work, the simplification of “arctangent” and “square root” operations is applied
which causes accuracy degradation. Bauer et.al design FPGA-GPU(Graphical
Processor Unit) combination for HOG descriptor with a Gaussian kernel support
[VII]. Komorkiewicz et.al bring a floating-point approach due to detection rate
consideration [VIII]. His work shows that floating-point operations can effectively
be applied on FPGA fabric. Kelly et.al develop HOG front end processor on FPGA.
In their design, multi-core IPPro(Image Processing Processor) can reach the
performance of real-time process with the software programmability [IX]. Javier et.al
offers an architecture with FPGA-CPU combination on system-on-chip structures
[X]. They built architecture with an operating system on ARM processor. Jose et.al,
propose that multi-core soft processor system on FPGA for implementation of HOG
algorithm [XI]. The task-level pipelining system achieves a speedup of 72.4× in
comparison with pure software implementation on Nios II processor.

According to our knowledge, even though a few application-specific processors have
been designed for HOG algorithm, none of them has custom instruction extension to
base processor micro-architecture. In this paper, we offer a HOG algorithm specific-
processor design with custom instruction extension to the base architecture of the
processor. Moreover, we have used single-precision floating-point calculation in
order to reach high accuracy without any optimization on the MATLAB-like
algorithm. Firstly, C code of the algorithm is implemented on Nios II processor as
pure software.

Having analyzed of pure software in terms of clock cycle, FPU (floating-point unit)
and custom instruction extension which mainly consist of floating-point arithmetic
are added to base processor architecture. To decide custom instruction set of
algorithm, we have used open-source compiler tool low-level virtual machine
(LLVM). A data-acyclic-graph (DAG) approach is used which is the output of
LLVM compiler DAG generator. We have manually selected identical branches
from DAG, then we have implemented them on the hardware part.The results of the
pure software implementation and the hardware extension implementations are
compared in terms of clock cycle.

J. Mech. Cont.& Math. Sci., Special Issue, No.- 6, January (2020) pp 26-40

Copyright reserved © J. Mech. Cont.& Math. Sci.
Aselsan Inc et al.

28

This paper is organized as follows; an overview of the HOG algorithm is described
in section 2. The implementation of custom instruction is presented in section 3.
And, finally results are showed in section 4.

II. Histogram of Gradient Overview

 The main idea behind the algorithm is to calculate the oriented gradient
of localized areas in the input image [V]. After computing gradients, they
would generate an oriented histogram. In the end, oriented histogram is
normalized in

order to suppress the effect of changes on the contrast and brightness in the
image.

HOG operates in a detection window, Figure 1 shows the structure of the
detection window which consists of the cells and the blocks. In this study, the
cell contains 8 × 8 pixels and the block contains 2 × 2 cells. The proposed
detectionwindow is selected as 64 × 128 pixels as proposed in Dalalet. al.
original paper [5]. The blocks slide rightwards and downwards (from top left to
right down) direction in the input image.

Figure. 1. HOG detection window

HOG descriptor consists of the following three main steps.

II.i. Gradient Computation

In a cell, the gradient of horizontal and vertical pixels is calculated. The main point
of gradient calculation in the detection window is consists of the calculation of
neighbor pixels difference. In Figure 2, the target pixel for gradient calculation is
represented as blue, “x” shows the column number of pixel and “y” shows the row

J. Mech. Cont.& Math. Sci., Special Issue, No.- 6, January (2020) pp 26-40

Copyright reserved © J. Mech. Cont.& Math. Sci.
Aselsan Inc et al.

29

number of pixels. The difference between horizontal and vertical pixels yields the
changes of pixel values.

Figure. 2. Neighbor pixels

Mathematical representation of Figure 2, where 𝑔(𝑥, 𝑦) is the value of pixel at
(𝑥, 𝑦) position;

𝑓௫(𝑥, 𝑦) = 𝑔(𝑥 + 1, 𝑦) − 𝑔(𝑥 − 1, 𝑦) (1)

𝑓௬(𝑥, 𝑦) = 𝑔(𝑥, 𝑦 + 1) − 𝑔(𝑥, 𝑦 − 1) (2)

𝑓௫(𝑥, 𝑦) and 𝑓௬(𝑥, 𝑦) means that color difference between neighbor pixels. The
gradient is a vector so it has magnitude and direction. The magnitude equation of
gradient is;

 𝑀 ቆ𝑥, 𝑦) = ට𝑓௫
ଶ(𝑥, 𝑦) + 𝑓௬

ଶ(𝑥, 𝑦) (3)

Direction is;

 𝜃(𝑥 , 𝑦) = tanିଵ ௙ೣ (௫, ௬)

௙௬(௫, ௬) (4)

As it is seen from mathematical expressions, it has heavy computation processes in
order to calculation gradient. The meaning of “heavy computation” in hardware is
that flow consumes so many instructions,in other word clock cycles, during
operation of CPU.

J. Mech. Cont.& Math. Sci., Special Issue, No.- 6, January (2020) pp 26-40

Copyright reserved © J. Mech. Cont.& Math. Sci.
Aselsan Inc et al.

30

Figure. 3. Magnitude representation on the image

2.2. Histogram Generation

Histogram generation is operated as cell by cell approach. For 8×8 cell size, there
will be 64 magnitude values and direction values in the histogram array. The main
purpose of histogram generation is to assign gradient values to bins in the histogram
map according to their directions.

The orientation bins spread over 0o to 180o by mirroring the gradients from 180o–
360oto 0o–180oto reduce aliasing, both two neighboring bins around the direction
accumulated [XII]. For 9 bins, each bin span over 20 degrees. If the degree of
accumulated gradient90owhich is exactlybetween 80oand 100o, magnitude is shared
at same weight to 80oand 100o.

In Figure 4, there are 8 values in a row and 8 values in a column. These values
represent the gradients and the directions of each pixel in the target cell. The value of
magnitude is voted according to the corresponding value of direction in the matrix. If
the corresponding direction does not exactly match with the divided angles between
0oand 180o, the magnitude value is shared by weights. As it is seen in Figure 4, the
angle value of magnitude at the position (4, 7) is 40o. It matches the value at the
binning map. Therefore, the magnitude value is directly assigned to the
corresponding angle in the orientation map. The angle value of magnitude at the
position (8, 1) is 130o. It is exactly between 120o and 140o so the magnitude value is
shared by half to 120o and 140o in the orientation map. Another angle value of
magnitude at the position (4, 8) is 180o. This value is assigned to 0o due to mirroring.
After binning of gradient to histogram, the local histogram which has 64 magnitude
in a cell is accumulated to 9 bin values. The local histogram contains a block values
that has four cells. Each block

J. Mech. Cont.& Math. Sci., Special Issue, No.- 6, January (2020) pp 26-40

Copyright reserved © J. Mech. Cont.& Math. Sci.
Aselsan Inc et al.

31

Figure. 4. Binning orientation of gradients

II.iii. Normalization

Dalal and Triggs says “Gradient strengths vary over a wide range owing to
localvariations in illumination and foreground-background contrast, so effective
localcontrast normalization turns out to be essential for good performance”.
According tothem, L2 normalization of one block which is composed of 2×2 cells
yields a good performance.

Hence, L2 normalization technique will be used in this thesis. The histogram
ofgradients in a cell is concatenated with other cells in a block. Each block is consists
of4×9 = 36 magnitude values.

𝑉௞: The vector elements of concatenated of four cells

 𝑣 =
௏ೖ

ට௏ೖ
మାఢ

 (5)

As shown in Figure 5, block1 and block2 are overlapped. As a result of
normalization, changes on the pixel difference values do not affect histogram
ofgradient characterization. In other word, the result of feature extraction gets
morerobust. In Figure 5, all cells are represented as 𝐶𝑖. For block1, all cells are
concatenated in one vector as[𝐶1𝐶2𝐶3𝐶4] and block 2 are concatenated in one
vector as [𝐶2𝐶3𝐶5𝐶6].

J. Mech. Cont.& Math. Sci., Special Issue, No.- 6, January (2020) pp 26-40

Copyright reserved © J. Mech. Cont.& Math. Sci.
Aselsan Inc et al.

32

Figure. 5.Blocks representation on image

III. Instruction Set Extension of Nios II for HOG Algorithm

 In this chapter, we have described the architecture of hardware/software co-
design with extended instructions to Nios II base processor. The steps of
implementation are;

1- Reference C design is compiled on the desktop PC with an example frame
than its results are texted for testing of subsequent design on the embedded
system.

2- After that, the reference design is modified for embedded system.
3- Having an analysis of proposed software architecture in terms of clock cycle,

instruction flow of algorithm is profiled using open-source LLVM compiler.
4- Finally, the profiled instruction subset of algorithm is implemented on FPGA

using VHDL (Very High Speed Integrated Circuit Hardware Description
Language).

As a result of instruction flow analysis, the appropriate subset of instruction set is
implemented on the hardware. For this implementation, we used Cyclone V GT
development kit provided by Altera [XIII]. The hardware architecture is
implemented by using VHDL.

C1

C4

C2

C3

C5

C6

J. Mech. Cont.& Math. Sci., Special Issue, No.- 6, January (2020) pp 26-40

Copyright reserved © J. Mech. Cont.& Math. Sci.
Aselsan Inc et al.

33

III.i. Software Architecture

As explained before, HOG algorithm is consist of three main functional units
respectively a) gradient calculation, b) histogram generation and c) block
normalization. The parameters of algorithm are applied as the original paper of
Dalalet. al. on the image of 640×480 [V]

Figure. 6. HOG descriptor flow

The test frame is stored in synthesized ROM (Read-Only Memory) of FPGA in the
size of 640×480×8 bit. The Nios II processor core gets access to memory in the code
and reads pixel values. In orientation process, trigonometric functions are used to
create orientation bins. In this design, undirected orientation angles are preferred
which are between 0o and 180o. According to our measurement of trigonometric
calculation operations take 110348 clock cycles on pure software in terms of
calculating 9 bin angles. To reduce this amount, pre-calculated orientation angles
memory is created to hold 9 angles values in the data type of float which is
connected to Nios II processor over Avalon MM interface [XIV]. Even though
memory read brings extra latency, it is still faster than direct software computation.
While direct computation of trigonometric operations take 110348 clock cycles, the
read of pre-calculated trigonometric values takes 122 clock cycles. We have only
optimized pre-calculated binning angles as storing in memory which reduces
operation time. The rest of calculations in algorithm flow are applied as single-
precision floating point format.

J. Mech. Cont.& Math. Sci., Special Issue, No.- 6, January (2020) pp 26-40

Copyright reserved © J. Mech. Cont.& Math. Sci.
Aselsan Inc et al.

34

Figure. 7. Software architecture

In Figure 7, the architecture of pure software implementation is presented. The
processor reads a test frame from memory and applied the algorithm.

Clock counter on the hardware part is used to measure execution time of pure
software algorithm. The processor asserts a start signal over I/O connect, after
finishing operation de-assert to stop counter. JTAG UART is added for debugging
purposes to check results. The system is fed by 50 MHz external oscillator.

III.ii Instruction Subset Selection

In configurable processors like NiosII allows that application-specific custom
instruction can be added to its Arithmetic Logic Unit (ALU) part in order to
accelerate complex C/C++ applications in low design cost with software flexibility
[XV]. One of the important questions is how to decide instructions for hardware
extension. There are a few methods to decide instruction subset such as using
commercial tools named as XPRES [XVI] and CORXpert[XVII]. In this paper, our
approach is to manually select instruction set from Directed Acyclic Graph (DAG).
The LLVM compiler provides target-dependent intermediate representation (IR) into
object code which visually represents data flow and dependencies in DAG [XVIII].

Despite LLVM ecosystem includes many architectures like X86, X86-64, PowerPC,
PowerPC-64, ARM, etc. , it does not have Nios II architecture [XIX]. Due to lack of
support for Nios II architecture in LLVM tool, we have used RISC based open
source processor architecture as a representative of Nios IIon LLVM compiler which
is offered by Chung-Shu[20]. CPU0 is written by Verilog hardware description
language for educational purposes. Due to similarities of instruction set architecture

J. Mech. Cont.& Math. Sci., Special Issue, No.- 6, January (2020) pp 26-40

Copyright reserved © J. Mech. Cont.& Math. Sci.
Aselsan Inc et al.

35

of Nios II and Cpu0 instruction set architecture such as 32-bit architecture, having
general purpose register, instruction execution stages etc., we have defined Cpu0 to
LLVM compiler in order to get DAG representation of basic blocks.

The pure C algorithm of HOG is compiled with LLVM tool for CPU0. The tool
divides main function to basic blocks (BBs) each is represented by a DAG. From the
first instruction to the last instruction, all relations between basic blocks are shown in
the DAG.

(a) (b)

Figure. 8. A part of original BB in DAG and its simplified representation

The LLVM tool generated fifty five BBs for HOG in total. A small part of a BB in
DAG is shown in Figure 8. The black arrows imply data-dependency between
instructions and black circles imply the instructions. Dashed black arrows imply
data-dependency of instructions which are not represented in related DAG.

We have analyzed the repeating patterns of instructions in a DAG for adding new
custom instructions to the ALU of Nios II. In order to simplify the analysis, we have
transformed the original DAG output of LLVM tool to a new graph. An example
graph for the DAG is shown in Figure 8(a) and transformed graph is shown in Figure
8(b).

J. Mech. Cont.& Math. Sci., Special Issue, No.- 6, January (2020) pp 26-40

Copyright reserved © J. Mech. Cont.& Math. Sci.
Aselsan Inc et al.

36

Figure. 9. Identical sub-instruction set of HOG in BB

We have produced an example transformed DAG in order to show custom
instruction set detection using identical parts on branches of a DAG shown in Figure
9. The blue, red and green cycles stand for sequential instructions in identical
branches of a BB which are utilized for custom instruction design. Overall, we have
detected three different BBs which have identical instruction subset among fifty five
BBs. These instruction subset are added in parallel to ALU that communicate with
processor over custom instruction interface.

III.iii. Custom Instruction Extension Implementation

In the previous part, how custom instruction set is decided according to the identical
instruction flows is explained. In total, three custom logic blocks have been designed
on the hardware part in order to extend instructions of Nios II processor core. The
logic blocks for implementation of custom instructions are described using VHDL
and vendor-specific IP’s are used for floating point arithmetic [21].

Figure. 10. Custom instruction logic block

J. Mech. Cont.& Math. Sci., Special Issue, No.- 6, January (2020) pp 26-40

Copyright reserved © J. Mech. Cont.& Math. Sci.
Aselsan Inc et al.

37

We have designedcustom instruction logic block of instruction subset which is
shown in Figure 10. Identical instruction flows are designed in parallel. Custom
instruction controller is the connection between ALU and instruction subset. It is
responsible for data transferring and driving control signals. We have also designed
theAvalon-MM controller which is responsible for Avalon-MM interface [14]. It is a
connection between custom logic block and external memory which stores operands
and results. If the number of input operands is greater than two which is maximum
input operand number of ALU, the processor writes operands to custom instruction
memory else it transmits operands over custom instruction interface. Then, custom
instruction logic block reads operands from custom instruction memory and apply
instruction shown in Figure 11. After all, the processor receives result over custom
instruction interface.

In Figure 11, the embedded system architecture with extended custom logic is
shown. Also, there is an on-chip memory which stores pre-calculated angles, HOG
features, normalization values and test frame pixel values.

Figure. 11. Architecture with custom instruction and FPU

The three different custom instruction logic blocks which consist of instruction
subset and FPU are added to ALU. Due to limit of input/output operands over
interface,we have used shared 4×32-bit memory between CPU and hardware part.
Custom instruction logic block 1 is directly connected to ALU. Custom instruction
logic block 2 and custom instruction logic block 3 are connected between input of
ALU and custom instruction memory. The extended hardware of HOG

J. Mech. Cont.& Math. Sci., Special Issue, No.- 6, January (2020) pp 26-40

Copyright reserved © J. Mech. Cont.& Math. Sci.
Aselsan Inc et al.

38

implementation is analyzed in terms of clock cycles.The results showthat with the
increasing of sources, operation time is reduced by 17.68 times in comparison with
pure software implementation. Also, instruction per second is enhanced by 15.39
times according to pure software architecture.

Table 1. The Results of Architectures

Parameters Pure Software C.I + FPU

Clock Cycles 5.629.844.132 318.290.802

Program Size 77 Kbytes 67 Kbytes

Block Memory Bits 1.402.176 1.520.584

Adaptive Logic Modules 2.144 10.114

DSP Blocks 0 51

Fmax 180.83MHz 154.68MHz

Instruction per Second 175.06 2694.39

IV. Conclusion

 We have presented a custom instruction set extension of Nios II for HOG
application in this work. The shortest execution time for an algorithm can be
achieved by pure hardware implementation, with the price of non-flexibility. On the
other end, we can have the most flexible implementation using only software which
will be the slowest.

We would like to use the advantage of both way of implementation by using
application-specific processor design approach. For this purpose, we have added
three custom instructions made of some instruction flows. The appropriate
instruction flows have been determined by the analysis of LLVM DAG output.

The results show that the operation time of the HOG algorithm implemented on the
instruction set extended Nios II is 17.68 times lower than the pure software
implementation of the same algorithm. As a result of the work, it is observed that any
algorithm can be enhanced by proposed method as application-specific processor if
the processor core allows modification on its architecture.

J. Mech. Cont.& Math. Sci., Special Issue, No.- 6, January (2020) pp 26-40

Copyright reserved © J. Mech. Cont.& Math. Sci.
Aselsan Inc et al.

39

References

I. A. Shashua, Y. Gdalyahu and G. Hayun, Pedestrian detection for
driving assistance systems: single-frame classification and system
level performance, IEEE Intelligent Vehicles Symposium,
(2004)June 14-17 ;Parma, Italy.

II. Paul, Manoranjan and Haque, Shah and Chakraborty, Subrata,
Human detection in surveillance videos and its applications - A
review, EURASIP Journal on Advances in Signal Processing, 25,
(2013) .

III. Joshi, Rajeev, Pratap Chandra Poudel and Pankaj Bhandari, An
Embedded Autonomous Robotic System for Alive Human Body
Detection and Rescue Operation, International Journal of Scientific
and Research Publications, 4, 5,(2014).

IV. H. Ninomiya, H. Ohki, K. Gyohten and N. Sueda, An evaluation on
robustness and brittleness of HOG features of human detection,
Korea-Japan Joint Workshop on Frontiers of Computer
Vision(FCV), (2011) February 9-11, Ulsan, South Korea.

V. N. Dalal and B. Triggs, Histograms of Oriented Gradients for
Human Detection, IEEE Computer Society Conference on
Computer Vision and Pattern Recognition(CVPR), (2005) June 20-
25, San Diego, CA, USA.

VI. R. Kadota, H. Sugano, M. Hiromoto, H. Ochi, R. Miyamoto and Y.
Nakamura, Hardware Architecture for HOG Feature Extraction,
International Conference on Intelligent Information Hiding and
Multimedia Signal Processing, (2009) September 12-14, Kyoto,
Japan.

VII. S. Bauer, S. Kohler, K. Doll and U. Brunsmann, FPGA-GPU
architecture ¨ for kernel SVM pedestrian detection, IEEE Computer
Society Conference on Computer Vision and Pattern Recognition,
(2010) June 13-18San Francisco, CA, USA.

VIII. M. Komorkiewicz, M. Kluczewski and M. Gorgon, Floating point
HOG implementation for real-time multiple object detection,
International Conference on Field Programmable Logic and
Applications (FPL), (2012) August 29-31, Oslo, Norway.

IX. Kelly, Colm and Siddiqui, Fahad and Bardak, Burak and Woods,
Roger, Histogram of Oriented Gradients front end processing: an
FPGA Based Processor Approach, IEEE Workshop on Signal
Processing Systems (SiPS), (2014) October 20-22, Belfast, UK.

J. Mech. Cont.& Math. Sci., Special Issue, No.- 6, January (2020) pp 26-40

Copyright reserved © J. Mech. Cont.& Math. Sci.
Aselsan Inc et al.

40

X. J. Cerezuela-Mora, E. Calvo-Gallego and S. Sanchez-Solano,
Hardware/software co-design of video processing applications on a
reconfigurable platform, IEEE International Conference on
Industrial Technology (ICIT), (2015) March 17-19, Seville, Spain.

XI. J. A. M. de Holanda, J. M. P. Cardoso and E. Marques, A pipelined
multi-softcoreapproach for the HOG algorithm, Conference on
Design and Architectures for Signal and Image Processing (DASIP),
(2016) October 12-14, Rennes, France.

XII. J. Wang et al., Simplifying HOG arithmetic for speedy hardware
realization, IEEE Asia Pacific Conference on Circuits and Systems
(APCCAS), (2014) November 17-20,Ishigaki, Japan.

XIII. Altera (2017). Cyclone V GT FPGA Development Board Reference
Manual

XIV. Intel (2018). Avalon R Interface Specifications, September 26

XV. R. Lysecky and F. Vahid, A study of the speedups and
competitiveness of FPGA soft processor cores using dynamic
hardware/software partitioning, Design, Automation and Test in
Europe, (2005) March 7-11 Munich, Germany.

XVI. The XPres Compiler, Retrieved from: http://www.tensilica.com,
Last accessed on: 13th November 2019

XVII. The CORXpert, Retrieved from: http://www.coware.com,Last
accessed on: 13th November 2019

XVIII. The LLVM Compiler Infrastructure, Retrieved From:
http://llvm.org, Last accessed on: 13th November 2019

XIX. The LLVM Compiler Architectures, Retrieved
From:https://llvm.org/docs/CompilerWriterInfo.html, Last accessed
on: 13th November 2019

XX. C. Chung-Shu, Tutorial: Creating an LLVM Backend for the Cpu0
Architecture, http://jonathan2251.github.io/web/index.html, 2018

XXI. Intel (2018).Floating-Point Megafunctions User Guide, November
13

