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Abstract 

  Human detection is one of the hot topic in the field of computer vision. HOG 
descriptor is a widely accepted local feature extractor with high accuracy and it has 
heavy computation blocks in processing. Therefore, its application takes a long 
processing time. To improve execution time of algorithm, one of the methods is 
hardware acceleration. In this paper, we propose an application-specific HOG 
descriptor architecture on FPGA with a soft processor called as Nios II. It has the 
ability of instruction set extension to its base micro-architecture without any 
modification on the core. We select HOG specific custom instruction sets to extend. 
To obtain custom instruction set, we used DAG representation which is generated by 
LLVM compiler. The algorithm is applied on the only-processor architecture and on 
the proposed architecture with instruction set extension. The total execution time is 
measured using hardware clock counter to approximate real time consumption. The 
results of both architecture are compared in terms of clock count. Obviously, 
proposed architecture which has fully floating-point calculation is accelerated 17.68 
times in comparison with pure software implementation of HOG descriptor. The 
implementation of the architecture is applied for 640x480x8bit test frame on low-
cost Cyclone V FPGA platform. 

Keywords : Custom instruction, FPGA, ASIP, HOG, hardware accelerator 

I.    Introduction 

  Pedestrian detection issue is an important topic in the field of computer 
vision mainly in traffic assistance systems [I], surveillance systems [II] and 
autonomous robotic systems [III]. There are many algorithms in the literature which 
extract different features of the image. The most critical requirements of the 
pedestrian feature extraction is high accurate computation and robust performance 
[IV]. One of the common algorithms which has high accuracy and robustness was 
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offered by Dalal and Triggs in [V], called as Histogram of Gradient (HOG). Pure 
software implementation of HOG provides speed and flexibilityon the design stage 
of the algorithm. However, the pure software implementation of HOG is not enough 
to meet real-time requirements without hardware extension. Field Programmable 
Gate Arrays (FPGAs) are one of the best candidates for hardware acceleration in 
comparison with pure central processing unit (CPU)implementation. 

There are many various types of design of HOG algorithm on the embedded systems. 
Kadota et.al propose pure FPGA implementation of HOG algorithm[VI]. In their 
work, the simplification of “arctangent” and “square root” operations is applied 
which causes accuracy degradation. Bauer et.al design FPGA-GPU(Graphical 
Processor Unit) combination for HOG descriptor with a Gaussian kernel support 
[VII]. Komorkiewicz et.al bring a floating-point approach due to detection rate 
consideration [VIII]. His work shows that floating-point operations can effectively 
be applied on FPGA fabric. Kelly et.al develop HOG front end processor on FPGA. 
In their design, multi-core IPPro(Image Processing Processor) can reach the 
performance of real-time process with the software programmability [IX]. Javier et.al 
offers an architecture with FPGA-CPU combination on system-on-chip structures 
[X]. They built architecture with an operating system on ARM processor. Jose et.al, 
propose that multi-core soft processor system on FPGA for implementation of HOG 
algorithm [XI].  The task-level pipelining system achieves a speedup of 72.4× in 
comparison with pure software implementation on Nios II processor.  

According to our knowledge, even though a few application-specific processors have 
been designed for HOG algorithm, none of them has custom instruction extension to 
base processor micro-architecture. In this paper, we offer a HOG algorithm specific-
processor design with custom instruction extension to the base architecture of the 
processor. Moreover, we have used single-precision floating-point calculation in 
order to reach high accuracy without any optimization on the MATLAB-like 
algorithm. Firstly, C code of the algorithm is implemented on Nios II processor as 
pure software.  

Having analyzed of pure software in terms of clock cycle, FPU (floating-point unit) 
and custom instruction extension which mainly consist of floating-point arithmetic 
are added to base processor architecture. To decide custom instruction set of 
algorithm, we have used open-source compiler tool low-level virtual machine 
(LLVM). A data-acyclic-graph (DAG) approach is used which is the output of 
LLVM compiler DAG generator. We have manually selected identical branches 
from DAG, then we have implemented them on the hardware part.The results of the 
pure software implementation and the hardware extension implementations are 
compared in terms of clock cycle. 
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This paper is organized as follows; an overview of the HOG algorithm is described 
in section 2. The implementation of custom instruction is presented in section 3. 
And, finally results are showed in section 4. 

II.   Histogram of Gradient Overview 

  The main idea behind the algorithm is to calculate the oriented gradient 
of localized areas in the input image [V]. After computing gradients, they 
would generate an oriented histogram. In the end, oriented histogram is 
normalized in  

order to suppress the effect of changes on the contrast and brightness in the 
image.  

HOG operates in a detection window, Figure 1 shows the structure of the 
detection window which consists of the cells and the blocks. In this study, the 
cell contains 8 × 8 pixels and the block contains 2 × 2 cells. The proposed 
detectionwindow is selected as 64 × 128 pixels as proposed in Dalalet. al. 
original paper [5]. The blocks slide rightwards and downwards (from top left to 
right down) direction in the input image. 

 

 

 

 

 

 

 

 

Figure. 1. HOG detection window 

HOG descriptor consists of the following three main steps. 

II.i.  Gradient Computation 

In a cell, the gradient of horizontal and vertical pixels is calculated. The main point 
of gradient calculation in the detection window is consists of the calculation of 
neighbor pixels difference. In Figure 2, the target pixel for gradient calculation is 
represented as blue, “x” shows the column number of pixel and “y” shows the row 
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number of pixels. The difference between horizontal and vertical pixels yields the 
changes of pixel values. 

 

 

 

 

 

Figure. 2. Neighbor pixels 

Mathematical representation of Figure 2, where 𝑔(𝑥,  𝑦)   is the value of pixel at 
(𝑥,  𝑦) position; 

𝑓௫(𝑥,  𝑦)   =  𝑔(𝑥 + 1,  𝑦)   −  𝑔(𝑥 − 1,  𝑦)      (1) 

𝑓௬(𝑥,  𝑦)   =  𝑔(𝑥,  𝑦 + 1)   −  𝑔(𝑥,  𝑦 − 1)      (2) 

 

𝑓௫(𝑥,  𝑦)  and 𝑓௬(𝑥,  𝑦)  means that color difference between neighbor pixels. The 
gradient is a vector so it has magnitude and direction. The magnitude equation of 
gradient is; 

 

  𝑀 ቆ𝑥,  𝑦)  =  ට𝑓௫
ଶ(𝑥,  𝑦)  + 𝑓௬

ଶ(𝑥,  𝑦)       (3) 

 

Direction is; 

  𝜃(𝑥 ,  𝑦)  =  tanିଵ ௙ೣ (௫, ௬) 

௙௬(௫, ௬)       (4) 

 

As it is seen from mathematical expressions, it has heavy computation processes in 
order to calculation gradient. The meaning of “heavy computation” in hardware is 
that flow consumes so many instructions,in other word clock cycles, during 
operation of CPU. 
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Figure. 3. Magnitude representation on the image 

2.2. Histogram Generation 

Histogram generation is operated as cell by cell approach. For 8×8 cell size, there 
will be 64 magnitude values and direction values in the histogram array. The main 
purpose of histogram generation is to assign gradient values to bins in the histogram 
map according to their directions. 

The orientation bins spread over 0o to 180o by mirroring the gradients from 180o– 
360oto 0o–180oto reduce aliasing, both two neighboring bins around the direction 
accumulated [XII]. For 9 bins, each bin span over 20 degrees. If the degree of 
accumulated gradient90owhich is exactlybetween 80oand 100o, magnitude is shared 
at same weight to 80oand 100o. 

In Figure 4, there are 8 values in a row and 8 values in a column. These values 
represent the gradients and the directions of each pixel in the target cell. The value of 
magnitude is voted according to the corresponding value of direction in the matrix. If 
the corresponding direction does not exactly match with the divided angles between 
0oand 180o, the magnitude value is shared by weights. As it is seen in Figure 4, the 
angle value of magnitude at the position (4, 7) is 40o. It matches the value at the 
binning map. Therefore, the magnitude value is directly assigned to the 
corresponding angle in the orientation map. The angle value of magnitude at the 
position (8, 1) is 130o. It is exactly between 120o and 140o so the magnitude value is 
shared by half to 120o and 140o in the orientation map. Another angle value of 
magnitude at the position (4, 8) is 180o. This value is assigned to 0o due to mirroring. 
After binning of gradient to histogram, the local histogram which has 64 magnitude 
in a cell is accumulated to 9 bin values. The local histogram contains a block values 
that has four cells. Each block  
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Figure. 4. Binning orientation of gradients 

II.iii.   Normalization 

Dalal and Triggs says “Gradient strengths vary over a wide range owing to 
localvariations in illumination and foreground-background contrast, so effective 
localcontrast normalization turns out to be essential for good performance”. 
According tothem, L2 normalization of one block which is composed of 2×2 cells 
yields a good performance. 

Hence, L2 normalization technique will be used in this thesis. The histogram 
ofgradients in a cell is concatenated with other cells in a block. Each block is consists 
of4×9 = 36 magnitude values. 

𝑉௞: The vector elements of concatenated of four cells 

  𝑣 =  
௏ೖ

ට௏ೖ
మାఢ

        (5) 

As shown in Figure 5, block1 and block2 are overlapped. As a result of 
normalization, changes on the pixel difference values do not affect histogram 
ofgradient characterization. In other word, the result of feature extraction gets 
morerobust. In Figure 5, all cells are represented as 𝐶𝑖. For block1, all cells are 
concatenated in one vector as[𝐶1𝐶2𝐶3𝐶4] and block 2 are concatenated in one 
vector as [𝐶2𝐶3𝐶5𝐶6]. 
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Figure. 5.Blocks representation on image 

III.   Instruction Set Extension of Nios II for HOG Algorithm 

  In this chapter, we have described the architecture of hardware/software co-
design with extended instructions to Nios II base processor. The steps of 
implementation are; 

1- Reference C design is compiled on the desktop PC with an example frame 
than its results are texted for testing of subsequent design on the embedded 
system.  

2- After that, the reference design is modified for embedded system.  
3- Having an analysis of proposed software architecture in terms of clock cycle, 

instruction flow of algorithm is profiled using open-source LLVM compiler.  
4- Finally, the profiled instruction subset of algorithm is implemented on FPGA 

using VHDL (Very High Speed Integrated Circuit Hardware Description 
Language). 

As a result of instruction flow analysis, the appropriate subset of instruction set is 
implemented on the hardware. For this implementation, we used Cyclone V GT 
development kit provided by Altera [XIII]. The hardware architecture is 
implemented by using VHDL. 
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III.i.    Software Architecture 

As explained before, HOG algorithm is consist of three main functional units 
respectively a) gradient calculation, b) histogram generation and c) block 
normalization. The parameters of algorithm are applied as the original paper of 
Dalalet. al. on the image of 640×480 [V] 

Figure. 6. HOG descriptor flow 

The test frame is stored in synthesized ROM (Read-Only Memory) of FPGA in the 
size of 640×480×8 bit. The Nios II processor core gets access to memory in the code 
and reads pixel values. In orientation process, trigonometric functions are used to 
create orientation bins. In this design, undirected orientation angles are preferred 
which are between 0o and 180o. According to our measurement of trigonometric 
calculation operations take 110348 clock cycles on pure software in terms of 
calculating 9 bin angles. To reduce this amount, pre-calculated orientation angles 
memory is created to hold 9 angles values in the data type of float which is 
connected to Nios II processor over Avalon MM interface [XIV]. Even though 
memory read brings extra latency, it is still faster than direct software computation. 
While direct computation of trigonometric operations take 110348 clock cycles, the 
read of pre-calculated trigonometric values takes 122 clock cycles. We have only 
optimized pre-calculated binning angles as storing in memory which reduces 
operation time.  The rest of calculations in algorithm flow are applied as single-
precision floating point format. 
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Figure. 7. Software architecture 

In Figure 7, the architecture of pure software implementation is presented. The 
processor reads a test frame from memory and applied the algorithm.  

Clock counter on the hardware part is used to measure execution time of pure 
software algorithm. The processor asserts a start signal over I/O connect, after 
finishing operation de-assert to stop counter. JTAG UART is added for debugging 
purposes to check results. The system is fed by 50 MHz external oscillator. 

III.ii    Instruction Subset Selection 

In configurable processors like NiosII allows that application-specific custom 
instruction can be added to its Arithmetic Logic Unit (ALU) part in order to 
accelerate complex C/C++ applications in low design cost with software flexibility 
[XV]. One of the important questions is how to decide instructions for hardware 
extension. There are a few methods to decide instruction subset such as using 
commercial tools named as XPRES [XVI] and CORXpert[XVII]. In this paper, our 
approach is to manually select instruction set from Directed Acyclic Graph (DAG). 
The LLVM compiler provides target-dependent intermediate representation (IR) into 
object code which visually represents data flow and dependencies in DAG [XVIII]. 

Despite LLVM ecosystem includes many architectures like X86, X86-64, PowerPC, 
PowerPC-64, ARM, etc. , it does not have Nios II architecture [XIX]. Due to lack of 
support for Nios II architecture in LLVM tool, we have used RISC based open 
source processor architecture as a representative of Nios IIon LLVM compiler which 
is offered by Chung-Shu[20]. CPU0 is written by Verilog hardware description 
language for educational purposes. Due to similarities of instruction set architecture 
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of Nios II and Cpu0 instruction set architecture such as 32-bit architecture, having 
general purpose register, instruction execution stages etc., we have defined Cpu0 to 
LLVM compiler in order to get DAG representation of basic blocks. 

The pure C algorithm of HOG is compiled with LLVM tool for CPU0. The tool 
divides main function to basic blocks (BBs) each is represented by a DAG. From the 
first instruction to the last instruction, all relations between basic blocks are shown in 
the DAG.  

 

 

 

 

 

 

 

 

 
(a)                                            (b) 

Figure. 8. A part of original BB in DAG and its simplified representation 

The LLVM tool generated fifty five BBs for HOG in total. A small part of a BB in 
DAG is shown in Figure 8. The black arrows imply data-dependency between 
instructions and black circles imply the instructions. Dashed black arrows imply 
data-dependency of instructions which are not represented in related DAG. 

We have analyzed the repeating patterns of instructions in a DAG for adding new 
custom instructions to the ALU of Nios II. In order to simplify the analysis, we have 
transformed the original DAG output of LLVM tool to a new graph. An example 
graph for the DAG is shown in Figure 8(a) and transformed graph is shown in Figure 
8(b).  
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Figure. 9. Identical sub-instruction set of HOG in BB 

We have produced an example transformed DAG in order to show custom 
instruction set detection using identical parts on branches of a DAG shown in Figure 
9. The blue, red and green cycles stand for sequential instructions in identical 
branches of a BB which are utilized for custom instruction design. Overall, we have 
detected three different BBs which have identical instruction subset among fifty five 
BBs. These instruction subset are added in parallel to ALU that communicate with 
processor over custom instruction interface. 

III.iii.   Custom Instruction Extension Implementation 

In the previous part, how custom instruction set is decided according to the identical 
instruction flows is explained. In total, three custom logic blocks have been designed 
on the hardware part in order to extend instructions of Nios II processor core.  The 
logic blocks for implementation of custom instructions are described using VHDL 
and vendor-specific IP’s are used for floating point arithmetic [21]. 

 

 

 

 

 

 

Figure. 10. Custom instruction logic block 
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We have designedcustom instruction logic block of instruction subset which is 
shown in Figure 10. Identical instruction flows are designed in parallel. Custom 
instruction controller is the connection between ALU and instruction subset. It is 
responsible for data transferring and driving control signals. We have also designed 
theAvalon-MM controller which is responsible for Avalon-MM interface [14]. It is a 
connection between custom logic block and external memory which stores operands 
and results. If the number of input operands is greater than two which is maximum 
input operand number of ALU, the processor writes operands to custom instruction 
memory else it transmits operands over custom instruction interface. Then, custom 
instruction logic block reads operands from custom instruction memory and apply 
instruction shown in Figure 11. After all, the processor receives result over custom 
instruction interface. 

In Figure 11, the embedded system architecture with extended custom logic is 
shown. Also, there is an on-chip memory which stores pre-calculated angles, HOG 
features, normalization values and test frame pixel values. 

 

 

 

 

 

 

 

 

 

 

Figure. 11. Architecture with custom instruction and FPU 

The three different custom instruction logic blocks which consist of instruction 
subset and FPU are added to ALU. Due to limit of input/output operands over 
interface,we have used shared 4×32-bit memory between CPU and hardware part. 
Custom instruction logic block 1 is directly connected to ALU. Custom instruction 
logic block 2 and custom instruction logic block 3 are connected between input of 
ALU and custom instruction memory. The extended hardware of HOG 
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implementation is analyzed in terms of clock cycles.The results showthat with the 
increasing of sources, operation time is reduced by 17.68 times in comparison with 
pure software implementation. Also, instruction per second is enhanced by 15.39 
times according to pure software architecture. 

Table 1. The Results of Architectures 

Parameters Pure Software C.I + FPU 

Clock Cycles 5.629.844.132 318.290.802 

Program Size 77 Kbytes 67 Kbytes 

Block Memory Bits 1.402.176 1.520.584 

Adaptive Logic Modules 2.144 10.114 

DSP Blocks 0 51 

Fmax 180.83MHz 154.68MHz 

Instruction per Second 175.06 2694.39 

 

IV.   Conclusion 

  We have presented a custom instruction set extension of Nios II for HOG 
application in this work. The shortest execution time for an algorithm can be 
achieved by pure hardware implementation, with the price of non-flexibility. On the 
other end, we can have the most flexible implementation using only software which 
will be the slowest.  

We would like to use the advantage of both way of implementation by using 
application-specific processor design approach. For this purpose, we have added 
three custom instructions made of some instruction flows. The appropriate 
instruction flows have been determined by the analysis of LLVM DAG output. 

The results show that the operation time of the HOG algorithm implemented on the 
instruction set extended Nios II is 17.68 times lower than the pure software 
implementation of the same algorithm. As a result of the work, it is observed that any 
algorithm can be enhanced by proposed method as application-specific processor if 
the processor core allows modification on its architecture. 
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