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Abstract 

This study focuses on the improvement of predictive capabilities of elasto-

damage model, initially proposed by Khan et al., for concrete subjected to multiaxial 

state of stress. The critical energy release rate 𝑅𝑐 , which was initially assumed constant, 

is defined as a function of 𝑓𝑐
′ , and 𝐸𝑜  in the present study. Parameters 𝛼, 𝛽 and 𝛾 used in 

effective compliance matrix, are redefined for the proposed form of 𝑅𝑐  by regressing 

against available experimental data to obtain better estimates. The computer code for 

implementing the model is modified such that it is able to predict the response of concrete 

under both proportionate and non-proportionate loadings. The predictive capability of 

model to simulate stress-strain response of concrete subjected to multiaxial stresses and 

confining pressures is shown to have improved. The model is able to predict essential 

phenomenological behavior of concrete which relate well with the experimental results. 

Keywords : Multiaxial stresses, Elasto-damage modeling, Confinement, Damage 

accumulation, Proportionate loading, Non-proportionate loading 

 

I.   Introduction 

Modeling of mechanical behavior of concrete has been focus of considerable 

research in recent years due to the complex nature of concrete and variations in material 

characteristics. Typical trends in concrete behavior that needs to be considered while 

modeling concrete are stiffness degradation, strain softening, volumetric dilatation, 

different behavior in tension and compression, and gain in strength under increasing 

proportionate and non-proportionate confinement. A number of analytical models have 

been developed to predict behavior of concrete under triaxial stresses since 1980’s 
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(Ahmad and Shah [XV], Wang et al. [III], Attard and Setunge [XIII], Imran and 

Pantazpoulou [X], Candappaet al. [IV], Lokugeet al. [XXI], Sferet al. [V]). Models based 

on elasticity theory were not able to capture the strain softening and post peak behavior of 

concrete. More recently proposed models utilize general theories of solid mechanics 

including theory of plasticity, linear and non-linear fracture mechanics and damage 

mechanics. 

Continuum damage mechanics has been extensively used to model the nonlinear behavior 

of concrete. Mechanical behavior of concrete subjected to multiaxial state of stress such 

as stiffness degradation, strain softening, volumetric dilatation etc., can be defined as a 

function of micro cracking and growth of micro cracks under increasing external loads. 

Babuet al. [XIV] while reviewing constitutive modeling of concrete have discussed 

various damage models that have been proposed to predict behavior of concrete using 

elastic damage(Ahmad and Shah [XV], Chen [XX]), plastic damage (Lee and Fenves. 

[XI]), bounding surface (Suariset al. [XXII],Voyiadjis and Abu. Lebdeh [VII], Khan et 

al. [I]) and endochronic theory (Wu and Komarakulnanakorn [IX]).Continuum damage 

mechanics based models utilize either concepts from theory of plasticity or 

thermodynamic fundamentals and energy balance. 

Khan et al. [I] have successfully used the concept of bounding surface defined in strain 

energy release rate and damage space to predict the essential features of normal and high 

strength concretes. In an attempt to improve predictive capability of the model, Khan and 

Naseem [II] defined the critical energy release rate 𝑅𝑐(a parameter used to model failure 

of concrete in bounding surface concept) as a function of 𝑓𝑐
′ , and 𝐸𝑜 instead of taking it as 

a constant as was the case in initially proposed model. Modified model was tested for 

uniaxial and biaxial stress paths and improved predicted response was observed. 

Present work is an attempt to improve predictive capabilities of the model initially 

proposed by Khan et al. [I] and modified by Khan and Naseem [II] for multiaxial and 

biaxial states of stress respectively so that it may be used for both proportionate and non-

proportionate multiaxial loading conditions. Parameters 𝛼, 𝛽 and 𝛾 are redefined for the 

proposed form of 𝑅𝑐  by regressing against available experimental data to obtain better 

estimates. The predictive capability of model to simulate stress-strain response of 

concrete under triaxial stresses and confining pressures is shown to have improved. The 

model is able to predict essential phenomenological behavior of concrete such as stiffness 

degradation, strain softening, increase in strength under confinement, failure strength 

envelope, volumetric dilatation and damage accumulation. Predictions of model are in 

good agreement with the experimental results. 

II.   Elasto-Damage Model 

 Theoretical aspects of this work are embedded in a damage model presented by 

Khan et al.[I]. Brief features of the model are presented here. Fundamental surfaces are 

defined in strain energy release space (originally presented in Suariset al.[XXII]).  
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where, 𝑓 is the loading function surface, 𝐹 is the bounding surface, 𝑓𝑜  is a limit fracture 

surface. 

The loading function surface 𝑓 is defined in terms of thermodynamic-force conjugates, 

𝑅𝑖 , where, 
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Where 𝜔𝑖 , 𝑖 = 1, 2, 3 are principal damage components. Also,  is the complementary 

energy density with  being the mass density. 

𝑅 𝑖  is an image point on 𝐹 = 0 associated with a given point 𝑅𝑖  on  𝑓 = 0 defined by a 

mapping rule 

 ii bRR 
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with the mapping parameter b ranging from an initial value of  to a limiting value of 1 

on growth of the loading surface to coalesce with the bounding surface. 𝑅𝑐 , the critical 

strain energy release rate, is a parameter of the model that is calibrated to the standard 

uniaxial compression test.   

Damage is hypothesized to accumulate at levels of strain energy release rate resulting in 

the loading surface f traversing the limit fracture surface fo and rupture in the damage 

sense is said to occur when f grows large enough to coalesce with the bounding surface F 

fixed in the Ri space. For damaged materials, the constitutive equation may be expressed 

as 
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where 𝐶  is the effective compliance matrix for damaged material in the principal 

coordinate system and  is the stress vector in the principal coordinate system. 𝐸 is the 

elastic modulus and  is the Poisson’s ratio. The complementary energy of a damaged 

material can be expressed as 
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Based on physical insight and phenomenological evidence, the following elements of the 

compliance matrix 𝐶  are postulated in the principal coordinate system. Details of 𝐶 can be 

found in [I] in which , ,   are calibrated parameters to account for phenomenologically 

known peak strengths and volumetric dilatation and Eo is the initial elastic modulus. 

Four model parameters namely 𝑅𝑐  (Critical Energy release rate), 𝛼 (for tension state), 𝛽 

(for compression state) and 𝛾 (for volumetric change) are modified in this study by 

calibrating against available experimental data and incorporated in computer code 

EDMON3D that takes care of both proportionate and non-proportionate stress paths. 

III.     Regression of Model Parameters 

The parameters 𝜶 and 𝜷 control the damage growth rate and influence the pre- 

and post-peak behavior as well as the level at which the peak stress is attained. Thus, the 

behavior of concrete of varying compressive strength is simulated by different values ofα 

andβ. The parameters 𝜶, 𝜷, 𝐚𝐧𝐝 𝜸 are defined as functions of initial modulus of elasticity 

Eo, uniaxial compressive strength 𝒇𝒄
′ , and normalized strain invariants 𝑰𝟏/𝜺𝟑 and 𝑱𝟐

′ /𝒆𝟑
𝟐, 

where 𝑰𝟏 = 𝜺𝒊𝒊 is the first invariant of strain tensor and 𝑱𝟐
′ = 𝟏/𝟐𝒆𝒊𝒋𝒆𝒊𝒋is the second 

invariant of the deviatoric strain tensor. Here ε3and e3 represent the minor principal and 

deviatoric strain, respectively. Phenomenological evidence is the essential guide in 

deciding if a particular stress state corresponds to a path dependent or path independent 

loading.  

Suggested forms of 𝜶,𝜷, 𝐚𝐧𝐝 𝜸 are as follows: 

- For path-dependent stress states  

(σ1> 0, σ2> 0, σ3 < 0 and σ1> 0, σ2< 0, σ3 < 0) 

𝛂 = 𝛂𝐨 𝐟𝐜′, 𝐄𝐨 +  𝛂𝟏 𝐟𝐜
′ , 𝐄𝐨 ×

𝐈𝟏

𝛆𝟑
+  𝛂𝟐 𝐟𝐜

′ , 𝐄𝐨 ×
𝐉𝟐′

𝐞𝟑
𝟐 + 𝛂𝟑 𝐟𝐜

′ , 𝐄𝐨 ×
𝐈𝟏

𝛆𝟑
×

𝐉𝟐′

𝐞𝟑
𝟐        (9) 

(σ1> 0, σ2< 0, σ3 < 0 and σ1< 0, σ2< 0, σ3 < 0) 

𝛃 = 𝛃𝐨 𝐟𝐜′, 𝐄𝐨 +  𝛃𝟏 𝐟𝐜
′ , 𝐄𝐨 ×

𝐈𝟏

𝛆𝟑
+ 𝛃𝟐 𝐟𝐜

′ , 𝐄𝐨 ×
𝐉𝟐′

𝐞𝟑
𝟐 + 𝛃𝟑 𝐟𝐜

′ , 𝐄𝐨 ×
𝐈𝟏

𝛆𝟑
×

𝐉𝟐′

𝐞𝟑
𝟐        (10) 

Where,  

𝜶𝒊 = 𝜶𝒊𝟏  +  𝜶𝒊𝟐 × 𝒇𝒄
′ +  𝜶𝒊𝟑 × 𝑬𝒐 + 𝜶𝒊𝟒 × 𝑬𝒐 × 𝒇𝒄

′ 𝒊 = 𝟎, 𝟏, 𝟐, 𝟑         (11) 

𝛃𝐢 = 𝛃𝐢𝟏  +  𝛃𝐢𝟐 × 𝐟𝐜
′ + 𝛃𝐢𝟑 × 𝐄𝐨 + 𝛃𝐢𝟒 × 𝐄𝐨 × 𝐟𝐜

′ 𝐢 = 𝟎, 𝟏, 𝟐, 𝟑         (12) 

- For path-independent stress states 

𝜶 = 𝜶  𝒇𝒄′, 𝑬𝒐  𝛔𝟏 >  𝟎,  𝛔𝟐 >  𝟎,  𝛔𝟑 > 𝟎  
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𝜷 = 𝜷  𝒇𝒄′, 𝑬𝒐  𝛔𝟏 >  𝟎,  𝛔𝟐 >  𝟎,  𝛔𝟑 < 𝟎           (13) 

𝜸 = 𝜸  𝒇𝒄′, 𝑬𝒐  𝛔𝟏 <  𝟎,  𝛔𝟐 <  𝟎,  𝛔𝟑 < 𝟎  

Where, 

𝜶  = 𝜶𝒐     +  𝜶𝟏    × 𝒇𝒄
′ +  𝜶𝟐    × 𝑬𝒐 + 𝜶𝟑    × 𝑬𝒐 × 𝒇𝒄

′
 

𝜷  = 𝜷𝒐
     + 𝜷𝟏

    × 𝒇𝒄
′ + 𝜷𝟐

    × 𝑬𝒐 + 𝜷𝟑
    × 𝑬𝒐 × 𝒇𝒄

′
         (14) 

𝜸 = 𝜸𝒐 + 𝜸𝟏 × 𝒇𝒄
′ + 𝜸𝟐 × 𝑬𝒐 + 𝜸𝟑 × 𝑬𝒐 × 𝒇𝒄

′
 

These parameters were calibrated for different concrete strengths as given in Table 1. 

Table 1. Range of 𝑓𝑐
′  used in Monotonic Loading 

𝑓𝑐
′ (psi, MPa) Eo(×10

6
 psi) 

4000, 27 3.605 [VI] 

6531, 45 5.460 [XVIII]  

9434, 65 6.023 [XVIII] 

13062, 90 6.444 [XVIII] 

17416, 120 7.126 [XVIII] 

Stress paths used in regression of path dependent 𝜶 and 𝜷 can be found in reference [I]. 

For determination of 𝜸𝒊’s regression was done only once due to its dependence on 𝒇𝒄
′
 and 

Eoonly.  

Final forms of parameters given below are unit sensitive and “psi” should be used for 

𝒇𝒄
′
and Eoin evaluating these parameters: 

• 𝜶, 𝜷 𝐚𝐧𝐝 𝜸 for (σ1> 0, σ2≥ 0,σ3≥ 0) [Tension-Tension-Tension] 

𝜶 = 26.5563 – 2.9282E-03× 𝒇𝒄
′
– 2.5423E-06×Eo+ 3.55154E-10× 𝒇𝒄

′
 ×Eo     (15) 

𝜶 = 0 and 𝜸 = 0             (16) 

• 𝜶, 𝜷 𝐚𝐧𝐝 𝜸 for (σ1> 0, σ2≥ 0, σ3< 0) [Tension-Tension-Compression] 

𝜶𝟎= –3.324E+01 + 2.348E-03×𝒇𝒄
′
+ 4.060E-06×Eo– 3.057E-10× 𝒇𝒄

′
×Eo 

𝜶𝟏= –2.701E+01+ 4.589E-03× 𝒇𝒄
′
+1.992E-06×Eo–5.570E-10× 𝒇𝒄

′
×Eo      (17) 

𝜶𝟐=   5.540E+01 –5.375E-03× 𝒇𝒄
′
– 6.053E-06×Eo + 6.776E-10× 𝒇𝒄

′
×Eo 

𝜶𝟑=   1.989E+01 –2.641E-03× 𝒇𝒄
′
– 1.845E-06×Eo + 3.262E-10× 𝒇𝒄

′
×Eo 

and 
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𝜷 = 0.643665 – 4.69309E−05× 𝒇𝒄
′
 − 7.71E-08×Eo+ 6.022E-12× 𝒇𝒄

′
 ×Eo     (18) 

and 𝜸 = 0 

• 𝜶, 𝜷 𝐚𝐧𝐝 𝜸for (σ1≥ 0, σ2< 0, σ3< 0) [Tension- Compression-Compression] 

𝜶𝟎= 7.8048E+01–6.0063E-03×𝒇𝒄
′
 –8.6958E-06×Eo+7.4951E-10× 𝒇𝒄

′
×Eo 

𝜶𝟏= –7.1203E+01+5.4640E-03× 𝒇𝒄
′
+7.9321E-06×Eo–6.8166E10× 𝒇𝒄

′
×Eo     (19) 

𝜶𝟐= –1.4338E+01+1.2332E-03×𝒇𝒄
′
 +1.5109E-06×Eo–1.5119E-10× 𝒇𝒄

′
×Eo 

𝜶𝟑= 1.6029E+01–1.3101E-03× 𝒇𝒄
′
–1.7334E-06×Eo+1.6182E-10× 𝒇𝒄

′
×Eo 

and 

𝜷𝟎= 9.9351E-01– 6.5957E-05× 𝒇𝒄
′
  – 1.2277E-07×Eo+8.6393E-12× 𝒇𝒄

′
×Eo 

𝜷𝟏= –1.5283E-01+1.3190E-05× 𝒇𝒄
′
+1.5177E-08×Eo+1.5719E-12× 𝒇𝒄

′
×Eo 

𝜷𝟐= –5.0825E-01+ 2.1187E-05× 𝒇𝒄
′
 + 7.2680E-08 x Eo–3.2310E-12× 𝒇𝒄

′
×Eo      (20) 

𝜷𝟑= 2.7165E-01–1.1523E-05 ×𝒇𝒄
′
– 3.8623E-08×Eo+1.7450E-12× 𝒇𝒄

′
×Eo 

and 𝜸 = 0 

• 𝜶, 𝜷 𝐚𝐧𝐝 𝜸 for (σ1≤0, σ2< 0, σ3< 0) [Compression- Compression-Compression] 

𝜶 = 0                (21) 

And if (σ1 = 0, σ2 < 0, σ3 < 0) [Biaxial Compression] 

𝜷𝟎= 9.9351E-01– 6.5957E-05 ×𝒇𝒄
′
 – 1.2277E-07 × Eo+ 8.6393E-12 × 𝒇𝒄

′
 × Eo 

𝜷𝟏= –1.5283E-01 + 1.3190E-05 × 𝒇𝒄
′
+1.5177E-08 × Eo+ 1.5719E-12 × 𝒇𝒄

′
 ×Eo 

𝜷𝟐= –5.0825E-01 + 2.1187E-05 × 𝒇𝒄
′
 + 7.2680E-08 x Eo– 3.2310E-12 × 𝒇𝒄

′
 × Eo         (22) 

𝜷𝟑=2.7165E-01 – 1.1523E-05 × 𝒇𝒄
′
– 3.8623E-08 × Eo+ 1.7450E-12 × 𝒇𝒄

′
 × Eo 

and 

𝜸 = 3.1344–1.1826E-4× 𝒇𝒄
′
– 2.903E-07×Eo+1.28434E-11× 𝒇𝒄

′
×Eo        (23) 

Else if (σ1 < 0, σ2 < 0, σ3 < 0) [Triaxial Compression] 

𝜷𝟎= –3.3154E-01 + 1.7819E-05× 𝒇𝒄
′
+ 4.7389E-08 ×Eo – 2.6098E-12× 𝒇𝒄

′
×Eo 

𝜷𝟏 = 1.5023E-01 – 8.0370E-06 ×𝒇𝒄
′
 – 2.1507E-08×Eo +1.1791E-12× 𝒇𝒄

′
×Eo 

𝜷𝟐= 6.1909E-01 –3.2969E-05× 𝒇𝒄
′
 8.8906E-08x Eo+ 4.8527E-12× 𝒇𝒄

′
×Eo       (24) 

𝜷𝟑= –3.4059E-01 + 1.8123E-05× 𝒇𝒄
′
+ 4.8917E-08×Eo– 2.6679E-12× 𝒇𝒄

′
×Eo 

and 𝜸 = 0 
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IV.     Results and Discussion 

EDMON3D was employed to predict the static behavior of concrete subjected to 

multiaxial state of stress. Predictions and results are presented in the form of stress-strain 

curves, volumetric dilatation, biaxial strength interaction envelopes, comparison of peak 

strengths and damage accumulation. Predictions of the model are compared against 

experimental data and predictions of previous model [I]. Properties of concrete used are 

listed in Table 2. 

Table 2. Properties of Concrete used 

Concrete 𝑓𝑐
′ (psi, MPa) Eo(x 10

6
 psi)  

A[VI] 4000,    27 3.605 0.19 
B[XVIII] 9434,    65 6.023 0.19 
C[XVIII] 17416, 120 7.126 0.19 
D[XVII] 10504, 72  5.905 0.19 
E[XVII] 13659, 94  

 

6.708 0.19 
F[XVII] 6683,   46 

 

4.692 0.19 
G  [XVI] 4351,   30  

 

3.760 0.19 
H  [XIX] 6364,   44 4.952 0.19 
J   [VIII] 

 

4650,   32  4.400 0.20 
 

Predictive capabilities of the model were tested for the following states of stress: 

Uniaxial Compression (𝝈𝟏 = 0, 𝝈𝟐= 0, 𝝈𝟑) 

Biaxial Compression (𝝈𝟏 = 0, 𝝈𝟐=𝒓𝟏𝝈𝟑 , 𝝈𝟑) 

Uniaxial Tension (𝝈𝟏,𝝈𝟐= 0, 𝝈𝟑= 0) 

Tension-Compression (𝝈𝟏 = - 𝒓𝟐𝝈𝟑, 𝝈𝟐= 0, 𝝈𝟑) 

Tension-Compression-Compression (𝝈𝟏 = - 𝒓𝟐𝝈𝟑, 𝝈𝟐= - 𝒓𝟏𝝈𝟑 , 𝝈𝟑) 

Triaxial Compression (𝝈𝟏 = 𝒓𝟐𝝈𝟑, 𝝈𝟐= 𝒓𝟏𝝈𝟑 , 𝝈𝟑) 

Where 𝒓𝒊 (𝒊 = 1,2) are appropriate principal stress ratios. 𝒓𝒊is constant for proportionate 

loading while it varies at every increment in case of non-proportionate loading. 

Uniaxial Compression  

For the case of uniaxial compression, predictions are compared with the 

experimental results and that of Khan et al.[I] in terms of peak stress, stress-strain 

response and volumetric dilatation. Stress-strain curves are compared in Fig.1 for three 

different concretes i.e. A, B, and C with experimental results of Wischers[VI], Wee et 

al.[XVIII] and Khan et al.[I]. It can be seen in Fig.1 that results compare well with the 

experimental results in terms of peak stress but are bit stiffer in post peak response for 

concrete A and B. Comparison of the results with the previous model of Khan et al.[I], 
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shows improvement in the predicted response of the current model in terms of softening 

in both pre-and post-peak response. 

Predictive capability of the model to capture the phenomenological behavior of 

volumetric dilatation is shown in Fig.2. It can be seen that dilatancy caused by the 

increase in lateral strains as the stress reaches the peak stress has been captured 

effectively and the predicted volumetric strain conforms well with the experimental data 

of Kupferet al.[VIII]. This increase in lateral strains is due to the dramatic increase in 

apparent Poisson’s ratio, which results in the change of sign of dilatancy (volumetric 

strain). This change in Poisson’s ratio is presented in Fig.3 which reflects the capability 

of the model to pick the exponential change in Poisson’s ratio when stress is close to peak 

stress. Comparison with previous model in Fig.3 shows improvement in results of the 

current model. 

 

Figure 1.Comparison of Stress Strain Curve of Concretes A, B & C for Uniaxial 

Compression with Khan et al.[I] and Experimental data [VI,XVIII] 
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Figure 2.Volumetric Dilatation of Concrete B under Uniaxial Compression 

 

Figure 3.Apparent Poisson’s Ratio – Uniaxial Compression, Comparison with Previous 

Model of Khan et al.[I] 

Biaxial Compression [C-C] 

For the case of biaxial compression, model predictions are compared with the 

experimental results and that of Khan et al.[I] in terms of biaxial strength interaction 

envelope and volumetric dilatation. In Fig.4 biaxial strength interaction envelope is 

compared with the experimental results of Kupferet al.[VIII] which compares well with 

Kupferet al.’s envelope. Experimental results of Hampel et al.[XVII] were also validated 

for concrete under biaxial compression. Comparison of model predictions and 
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experimental results is shown in Fig.5 for concretes D and E. Predictions of model are 

quite comparable with those obtained from experiments. Differences may be attributed 

towards the fact that model has been calibrated using experimental results of Kupferet 

al.[VIII] which is reflected in Fig.4 where predicted envelope is almost matching with the 

experimental one. 

Fig.6 shows the capability of the model to predict the phenomena of volumetric dilatation 

for various stress paths. It can be seen that beyond the onset of damage the rate of volume 

change increases until at 80% - 90% of the ultimate, a point of inflection is reached. The 

minimum volume corresponding to the point of inflection occurs at about 95% of the 

peak stress. Further straining leads to the volumetric dilatation i.e. negative volumetric 

strains. Similar trend was observed in predictions of previous and modified models. 

 
 

Figure 4.  Biaxial Compression Interaction Envelope for Concrete A 
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Figure 5.Failure Strengths in Biaxial Compression for Concretes D and E 

 

 
Figure 6.Volumetric Dilatation of Concrete A under Biaxial Compression 

Triaxial Compression [C-C-C] 

For the case of triaxial compression results are discussed in the following 

sections separately for the cases of proportionate and non-proportionate loadings. 
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Proportionate Loading: For the case of triaxial compression under proportionate loading, 

predictions are compared in terms of peak stress with the experimental results of 

Hampelet al. [XVII]. Comparison of predicted failure strengths with that of experimental 

ones is shown in Fig.7. It can be noticed that for stress ratio 𝝈𝟐/𝝈𝟏= 0.95, predicted 

failure strengths are quite comparable with experimentally defined failure strengths at all 

stress ratios of 𝝈𝟑/𝝈𝟏 (0.05, 0.1, 0.15). Whereas, peaks are differing a little bit for other 

stress ratios of 𝝈𝟐/𝝈𝟏 (0.2, 0.6). This again may be attributed to the fact that calibration 

of parameter 𝜷 was carried out using different set of experimental results and concrete 

strengths available in the literature. This difference in peak strengths can be reduced by 

using a large number of experimental data in calibrating model parameters.Experiments 

results of Gabetet al.[XVI] for concrete subjected to proportionate triaxial loading are 

also validated from the present model. Comparison of peak values is shown in Fig. 8. A 

very close comparison can be noticed between the predicted and experimental peaks. 

 

 
 

Figure 7. Failure Strengths in Triaxial Compression for Concrete F 
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Figure 8. Peak Strengths in Triaxial Compression for Varying Stress Ratios (Concrete G) 

Non-Proportionate Loading: Most of the experimental data available in literature related 

to triaxial testing of concrete is for non-proportionate loading. In non-proportionate 

triaxial testing, axial load is applied to the specimen at constant confining pressure. Some 

experimental results where concrete is subjected to non-proportionate traixial loading 

have also been compared with the model predictions. The experimental work of Gabetet 

al.[XVI] and Sferet al. [V] are used to compare peak strengths as predicted by the model. 

These are shown in Tables 3 and 4. It can be seen from the Tables that model predictions 

are on the higher side as compared to the experimental results especially when confining 

pressure is very high. This might be due to the fact that parameter 𝜷 is calibrated using 

the data at low confining pressures. Results for non-proportionate loading can further be 

improved by incorporating more experimental data in calibration of 𝜷. 

Table 3. Comparison of Peak Strengths 𝑓𝑐
′  = 30 MPa (Gabet et al. [XVI]) 

Confinement Pressure 

(MPa) 
𝜎3/𝑓𝑐

′(Model) 𝜎3/𝑓𝑐
′(Exp.) 

0 0.98 1.00 

50 7.08 6.67 

100 11.07 11.67 

200 8.81 21.67 

500 21.24 40.00 

650 27.60 53.30 
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Table 4. Comparison of Peak Strengths  𝑓𝑐
′  = 33 MPa (Sfer et al. [V]) 

Confinement Pressure 

(MPa) 
𝜎3/𝑓𝑐

′(Model) 𝜎3/𝑓𝑐
′  (Exp.) 

0 0.955 1.00 

1.5 3.59 1.59 

4.5 3.74 1.94 

9.0 3.98 2.19 

30.0 5.22 4.31 

60.0 7.22 6.84 

Uniaxial Tension: For the case of uniaxial tension, predicted stress-strain response and 

change in Poisson’s ratio are compared with the experimental results of Gopalaratnam 

and Shah [XIX].  Stress-Strain curves are plotted for Concretes A, B and H in Fig.9. 

Softening in post-peak zone of stress strain plots for all concretes has been captured 

effectively. Predicted curves correlates well with the experimental results except that the 

peak stress from the model is on higher side which is due to the fact that experimental 

results corresponds to tensile strength 𝒇𝒕of approximately 0.08𝒇𝒄
′ , whereas model has 

been calibrated to experimental data using 𝒇𝒕 = 𝟎. 𝟏𝒇𝒄
′ . 

 
Figure 9. Stress-Strain Curve for Uniaxial Tension for Different Concretes 
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Tension Compression (T-C):For combined tension and compression, predictions are 

compared with the experimental results of Kupfer at el. [VIII] in terms of stress-strain 

curves in Fig. 10. Predicted curves compared well with the experimental curves both in 

terms of peak stress and strains. It can be noted that as 𝜎1/𝜎3 is getting smaller, 𝜎3/𝑓𝑐
′  

approaches unity or that the T-C model degenerates to the uniaxial compression case. 

 

  
 

Figure 10. Stress-Strain Curve for Combined Tension-Compression (𝜎1/𝜎3= − .103, 

𝜎2/𝜎3= 0 and 𝜎1/𝜎3= − 0.052,𝜎2/𝜎3= 0) 

 

Tension Compression Compression (T-C-C): For the case of tension-compression-

compression, predictions are compared with the experimental results of Linhuaet al.[XII] 

in terms of peak stress (Fig. 11). It can be seen that, in general the predictions in terms of 

peak stress are compatible with the experimental results of Linhuaet al.[XII] except in the 

range of small or zero tensile stresses. For small tensile stresses, the predictions are on the 

higher side, while for the case of zero tensile stresses i.e., biaxial compression, the 

predictions are on the lower side. For the case of biaxial compression, it can be attributed 

to the fact that model is calibrated using the experimental results of Kupfer at el. [VIII] 

which are on lower side of Linhuaet al.[XII]. 

Stress strain curves Figs. 12 and 13, show the same trend as observed for the case of peak 

stress i.e. they compare well with the experimental curves [XII] in general except for the 

case of small tensile stresses. Also, it can be observed that predicted compressive strain 

are more compatible with the experimental compressive strains than tensile strains which 

are higher as compared to the predicted strains almost in all cases. The difference is due 

to unavailability of the values of initial young’s modulus and Poisson’s ratio from the 

experimental data which play important role in calibration of 𝛼 and 𝛽and lateral strains. 
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Figure 11. Comparison of T-C-C Results in Terms of Peak Stresses 

  

Figure 12. Stress-Strain Curve for Concrete under T-C-C (𝜎1/𝜎3= − 0.357,𝜎2/𝜎3= 1 and 

𝜎1/𝜎3= − 0.04, 𝜎2/𝜎3= 1) 
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Figure 13. Stress-Strain Curve for Concrete under T-C-C (𝜎1/𝜎3= − 0.357,𝜎2/𝜎3= 0.7 

and 𝜎1/𝜎3= − 0.04, 𝜎2/𝜎3= 0.7) 

Damage Accumulation 

Accumulation of damage for concrete under uniaxial compression is presented for 

Concretes A, B and C in Fig. 14 with respect to movement of loading surface f i.e. the 

magnitude of strain energy release vector 𝑅𝑖  and𝜎3/𝑓𝑐
′ . In Fig. 14 damage accumulation 

curves are compared with those of previous model [I]. It can be noticed from Fig. 14 that 

predicted curves are not overlapping in contrast to the previous curves where all the 

curves are overlapping. This is due to the fact that the critical strain energy release rate 

𝑅𝑐and damage modulus H and are no more constants and are now functions of 

compressive strength and elastic modulus of concrete like other parameters 𝛼, 𝛽 and 𝛾. It 

is obvious from Fig. 14 that the damage modulus H is still infinite at the beginning and 

becomes zero at failure like previous model. Higher accumulation of damage can also be 

noticed for present model in Fig. 14 as compared to previous model. This is again due to 

the dependency of critical strain energy release rate 𝑅𝑐  on compressive strength and 

modulus of elasticity of concrete. 

V.    Conclusions  

 An elasto-damage model developed by Khan et al. [I] and modified for biaxial 

states of stress by Khan and Naseem [II] to model monotonic behavior of normal and 

high strength concretes was further improved. Generalized effective compliance matrix in 

the principal coordinate system, proposed by Khan et al. [I], and critical strain energy 

release rate, 𝑅𝑐 , defined as a function of elastic modulus and uniaxial compressive 

strength by Khan and Naseem [II], is used. Following are the main conclusions drawn 

from the study: 
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Figure 14. Damage Accumulation Vs.  𝑅𝑖𝑅𝑖 
1/2 for Concretes A, B & C under Uniaxial 

Compression 

1. Proposed form of critical energy release rate 𝑅𝑐  by Khan and Naseem [II] was 

adopted in the present study which resulted in new estimates of the model 

parameters 𝛼, 𝛽 and 𝛾. Proposed form of 𝑅𝑐  and new estimates of parameters are 

shown to have improved overall performance of the model reflected by the 

comparisons made with experimental data available in literature and that of previous 

model by Khan et al.[I]. 

2. Stress-strain curves predicted by the present model have shown better post peak 

behavior as compared to the previous model and are in good agreement with the 

experimental curves. This is attributed to the definition of critical energy release rate 

as a function of elastic modulus and compressive strength of concrete.  

3. Proposed model predicts the behavior of concrete under triaxial loadings adequately 

and captures almost all the essential features of concrete including stiffness 

degradation, strain softening, volumetric dilatation, different behavior in tension and 

compression, and gain in strength under increasing confinement. 

4. Predicted behavior of concrete subjected to non-proportionate loading is shown to be 

comparable with the available experimental results. Predicted response, especially 

when concrete is subjected to non-proportionate triaxial compressive loading, can be 

improved by calibrating model parameter 𝛽 against more experimental data at high 

confining pressures. 
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