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Abstract 

To determine the parameters of Stochastic Volatility Model (SVM), a 

modification to the Quasi Maximum Likelihood (QML) scheme has been proposed by 

employing (modified) Adaptive Kalman Filter (AKF). AKF allows optimization over 

lesser number of parameters as the variance (
2
v ) of the noise in the volatility state 

equation is determined by the AKF. The adaptive method, instead of a constant 
2
v , 

allows it to be time varying. Before applying the methodology on market data, the 

proposed method is characterized here by synthetic data through simulation 

investigations. Numerical experiments show that the performance of SVM based QML-

KF and novel QML-AKF are comparable to that of more popular GARCH family based 

techniques. 

Keywords : Adaptive Estimation, Noise Covariance Adaptation, Modified AKF, 

Stochastic Volatility Model, Quasi-Maximum Likelihood 

 

I.   Introduction 

 This work introduces the Stochastic Volatility Model (SVM), one of the existing 

methods, namely Quasi-Maximum Likelihood (QML) for parameter estimation [XX] of 

SVM, using ordinary Kalman filter (QML-KF) [I, VII, XII, XXI] and proposes an 

adaptive version of QML, generically called QML-AKF. The purpose is to investigate 

the efficacy of using Adaptive Kalman Filter (KF) [III, IV] in the Quasi-Maximum 

Likelihood (QML) framework for estimation of the parameters of SVM. This 

characterization of methods would be helpful in applying these techniques to model 

market data [III, IV, IX]. 

The state-space framework of the SVM assumes three parameters (namely , 

  and 
v ). Dynamic estimation of those parameters is a challenging task. In the QML-
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KF the state estimation component is carried out using ordinary KF and the three 

parameters are selected for maximum likelihood. In this work, a systematic search 

method was used for maximizing the likelihood, instead of other automated optimizing 

methods in order to get more insight into the sensitivities of each parameter. 

In the proposed QML-AKF method, the parameter 
v  is estimated by the 

adaptive KF methods (discussed in [III, IV]) and the other two parameters were selected 

based on systematic search in parameter space for maximum likelihood.  

SVM, possibly first suggested in [XVI], is a distinctly different approach from 

EWMA and ARCH/GARCH models. The relative advantages of SVM approach as 

recently reviewed by [VIII, XV] include capability to provide one-step-ahead prediction 

and to better accommodate excess kurtosis and leverage effects compared to GARCH. 

[VI, XV, XVIII] are recent good textbooks in the domain of stochastic volatility 

literature. However, sections 3.9 to 3.11 of [V] and [II] reviewed the previous work on 

SVM in a systematic way presenting almost all possible varieties of the model and the 

estimation techniques. The disadvantages of SVM [ibid] include the requirement of 

simultaneous estimation of states and parameters, and consequent additional 

computation. Another limitation of the SVM is that it is non-linear though a logarithmic 

transformation may lead to its linearization but some problems still retained with the 

model due to its logarithmic scaling. Further, “ordinary” SVM can produce misleading 

estimates when there is significant “leverage effect” [XIII-XIV]. This work, however, 

concentrates on SVM only. 

The rest of the paper is organized as follows. The next section II briefly revisits 

some previous work on SVM along with the theory of associated with it and the 

problems there in. Section III presents the proposed method SVM-QML-AKF and its 

modification. Section IV presents the results of simulation investigations with synthetic 

data using the proposed method. The paper is ended with a section on conclusion. 

II.    Theoretical Background 

Discrete Time SVM 

 The discrete time model of the return 
tr  of a risky component given in [XIX] is a 

product process expressed as:  

 
tttr          (1) 

where 
t  is zero mean unit variance Gaussian process and 

t  is some non-negative 

process, termed as the “latent stochastic volatility” at time t . 
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The state space SVM [VIII] with the latent stochastic volatility is possibly first 

characterized by [XVI]. The substitution assuming 









2
exp t

t

h
  whereby 











2
exp t

tt

h
r   and a logarithmic transformation implies  

22 loglog ttt hr  ,       (2) 

where 
2log tr is a measurable output. 

The discrete time state evolution process, 
th  with parameters   (the state evolution 

gain must have a modulus less than unity for stability),   (a constant but unknown bias 

input), and 
v  (a positive constant giving the standard deviation of the process noise) 

can be expressed as  

 th tvt vh 1
, for t = 1, 2, .......,T    (3) 

where 
tv  is a zero mean, unit variance Gaussian noise sequence i.e. )1,0(~ Nvt

 

termed as process noise. 

In the measurement equation (1), 
2log tt    is analogous to measurement noise. 

Though 
t  may be a zero mean, unit variance Gaussian sequence, 

2log tt    is not. 

However, from [XII], it may be verified that the mean and variance of 
2log t are -1.27 

and 
2

2
 respectively. The term 

2log t  is often replaced by a zero mean noise 
t . 

i.e.  ttt hr  27.1log 2
,      (4) 

where 0)( tE   and 
2

)var(
2

 t . 

So the summarized version of state-space SVM (log-normal) is given by 

ttt hr  27.1log 2
,      (4) 

 th tvt vh 1
       (3) 

where )1,0(~ Nvt
, 0)( tE  ,

2
)var(

2
 t , 

2log tt   , )1,0(~ Nt . α, δ and 

v  are parameters of the model. Here 









2
exp t

t

h
  and 

tr  identifies the stochastic 

volatility and return (preferably Gaussian) processes respectively. 
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The usage of the SVM for VaR computation [III, IV] calls for precisely the following: 

(i) identification of the parameters of the model, 

(ii) estimating the latent state variable 
th  and 

(iii)  using the state equation for extrapolating 
1th  and thereby, the return 

1tr  (or 

log return since return and log return have negligible differences). 

SVM Parameter Estimation using QML-KF 

 The applicable numerical techniques for this simultaneous estimation of states and 

parameters as surveyed in [VIII, XV], include the moment matching method [XV], 

Quasi-Maximum Likelihood (QML) [XII, XI], and Monte Carlo simulation based 

method [X] etc. More elaborate discussions on the QML method may be obtained in 

[XII, I, X]. Estimation of SVM parameters using QML technique is usually based on 

Kalman Filter (KF). Kalman Smoothing for stochastic volatility estimation in a state 

space model for real and simulated situations are also discussed in [X]. 

The QML technique is one of the simplest but an approximate method for parameter 

estimation of the SVM. As the noise process 
t  is non Gaussian, standard parameter 

estimation techniques cannot be used directly. However, the QML method makes the 

approximation by assuming that 
t  is Gaussian so that KF may be used. Following the 

KF steps we can then numerically determine the point in the parameter space { ,  , 

v } corresponding to the maximum likelihood of the measurement sequence {
tr } or 

equivalently of { trlog }. The advantage of following QML approach is its speed and 

adaptability to diversified situations [VIII]. 

To initiate the KF steps, one must have initial distribution (mean and covariance) of the 

state variable 
th  at t=0. It is customary to assume 









 2

2

0
1

,
1

~






 v
Nh , due to 

stationarity of the underlying time series [I]. 

Algorithm 1: QML-KF for SVM Parameter Estimation 

Step 1: Initialization Step 

Set t=0. Select suitable guess values of  , ,  . Initialise the filter state by 








1
0|0h  and state error covariance 

2

2

0|0
1 






v
P . Also obtain the 

observation
tr . 

Step 2: KF Prediction Step 

 1|tth 1|1  tth
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 and 

2

1|1

2

1| vtttt PP    . 

Step 3: KF Update Step 

 1|

21|

1|| 27.1)log( 



 


 ttt

t

tt

tttt hr
P

hh  and 

















t

tt

tttt

P
PP

1|

1|| 1  where 
2

2

1|


 ttt P . 

Step 4: Repeat Step2 and 3 for all epochs. 

  



t

t

tv

v
L

2

2
1

2
1 )log(,, 

 

Step 5: Likelihood Calculation  

where 1|

2 27.1)log(  tttt hrv  is the one step ahead prediction error. 

Step 6: Repeat Step 1 to 5 to calculate ),,( vL  for a suitable range covering the 

expected range of values with appropriate increments. 

Step 7: Determine
* , 

* and 
*

v  for which ),,( ***

vL  is maximum and these 
* , 

* and 
*

v  are the ML estimates of three parameters under consideration 

respectively. 

The benefits of QMLE are its simplicity and consistency. Its drawbacks are that the 

estimates are inefficient, even asymptotically, and that its small-sample properties are 

suspecting. [XVII] surveyed and presented a number of alternative ways for improving 

the efficiency of the QML estimator. 

Characterization of QML-KF with Synthetic Data 

Before applying the QML-KF method to market data, it was considered worthwhile to 

test and characterize this method with synthetic data for a better understanding of the 

model and the algorithm. This was carried out with simulation experiment described 

below. 

Data Generation: The simulation experiments, reported in this section, have been 

carried out with the synthetic data for characterizing the QML-KF. Constant 

values of parameters  ,   and   were first chosen for SVE. Such data are 

generated with the state-space SVM equations (3) and (4) with its assumptions. 

The noise variables 
tv  and 

t  have been generated using the Gaussian random 
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number generator of Matlab-7 software. Time duration (or number of epochs) of 

the considered data sets are typically varies among 500, 1000 and 1500 for these 

simulation studies. The number of Monte Carlo runs for reporting standard errors 

of estimation has been restricted preferably to 1000 (rarely to 500) because of 

huge computational requirements of joint estimation of SVM parameters using 

QML, though number of Monte Carlo runs is much higher like 10000 or more 

for single parameter estimation. 

Similar data sets have been used for the proposed QML-QAKF. 

Joint Estimation of All Three SVM Parameters 

The following table 1 presents the estimation performance of the QML-KF technique 

with synthetic data as stated above. The range being considered for the parameters  , 

  and 
v  are [-0.999, 0.999], [-0.999, 0.999] and [0.001, 0.999] respectively while 

likelihood evaluation. 

Table 1: Performance of QML-KF on joint estimation of all three SVM parameters 

   (s.e.*)   (s.e.*) 
  (s.e.*) 

Truth -0.713 0.9 0.363 

T=500 -0.6328 (0.1609) 0.9073 (0.0230) 0.3450 (0.1077) 

T=1000 -0.5800 (0.1643) 0.9160 (0.0219) 0.3148 (0.0452) 

T=1500 -0.6200 (0.1129) 0.9100 (0.0168) 0.3584 (0.0428) 

*s.e.: standard error, T: Number of epochs, No. of MC run being 500. 

A sample performance is shown in table 1. From the above table it may be observed that 

estimation performance remains almost same with the increase of time scale above 500 

epochs, especially for   and 
v  estimates. However, parameter   estimates are 

noticed to be less satisfactory compared to parameters   and 
v  estimates in view of 

the deviation from truth and also the magnitude of standard error of the estimates over 

MC run. 

It should be pointed out that after solving a large number of cases with various 

combinations of parameters while jointly estimating all three parameters it was found 

that such small estimation errors as shown in the table above is not possible for a large 

number of combinations of truth values of the parameters. By a systematic study it was 

observed that to have acceptable estimation errors: 

(i)   should be between -0.5 to 0.5, 

(ii)   should be greater than 0.7 and 

(iii) 
v  should be between 0.3 to 0.4. 
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The above findings led to the following two types of queries: 

(i) The reason for large estimation error outside the regions specified above and 

(ii) Impact of the estimation errors on determining quantities such as VaR. 

The first query would be addressed indirectly in a subsequent section. The second query 

would is left as future work with market data. 

After a systematic analysis of the QML-KF method with synthetic data in this work, it is 

revealed that flat likelihood on certain domain of the parameter is the main reason of the 

estimation inaccuracies while jointly estimating the SVM parameters. 

The following likelihood plots show the flat likelihood surface which is the underlying 

reason behind the poor or less satisfactory performance of the QML-KF estimator in 

joint estimation of all three SVM parameters. Figure 1 presents three likelihood surface 

plots taking two SVM parameters from the considered three SVM parameters. 

Considered domains of the three parameters for these likelihood plots are [-0.99, 0.99], 

[-0.99, 0.99] and [0, 0.9] for  ,   and 
v  respectively. The domains of the all three 

parameters are divided at discrete points with increments 0.01 to get the estimates 

accurate up to two decimal place starting at -0.99. (The third or missing values are taken 

from the truth value set  ,   and 
v  being -0.713, 0.9 and 0.363 respectively, as 

appropriate). 
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Fig. 1 Likelihood plots while all three parameters are unknown 

Large, nearly flat surfaces could be seen in the likelihood surface plots, where due to 

small numerical error there could be large deviation in the maximum likelihood 

parameter estimate. 

Single Parameter Estimation (while Other Two are Known) 

While noting the complexity and somewhat unsatisfactory performance of estimating 

the three parameters simultaneously, it is interesting to find that the performance of 

QML-KF is very high when estimating one single parameter of these three parameters 

assuming other two parameters as known. The following section presents the estimation 

performance of QML-KF while two of these three parameters are known. 

The following table 2 illustrates the performance of the QML-KF for estimation of a 

single SVM parameter assuming the other two as known. The second row of the table 

gives the true values of the parameters where as third, fourth and fifth row present the 

estimates of those parameters with corresponding standard errors of estimation by 1000 

Monte Carlo run in brackets where the considered time duration of the estimation 

consists of 500, 1000 and 1500 epochs. Indicated (in second row) true values of the 

other two parameters are assumed to be known while estimating a single parameter. 

From the table 2, it is observed that the performance of QML-KF is satisfactory for all 

three individual SVM parameters estimation.   estimation performance is much more 

satisfactory than other two as evident from the s.e. results. 
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Table 2: Performance of QML-KF on individual estimation of the SVM 

parameters 

   (s.e.*)   (s.e.*) v
 (s.e.*) 

Truth -0.713 0.9 0.363 

T=500 -0.7110 (0.0187) 0.9009 (0.0025) 0.3546 (0.0747) 

T=1000 -0.7123 (0.0133) 0.9009 (0.0018) 0.3589 (0.0484) 

T=1500 -0.7092 (0.0107) 0.9010 (0.0015) 0.3603 (0.0393) 

*s.e.: standard error, T: Number of epochs, No. of MC run=1000. 

Joint   and   Estimation while v  is Known 

This section presents the estimation performance of QML-KF when parameter 
v  is 

assumed to be known and joint estimation of   and   is of concern. The following 

table 3 presents the performance. The second row of the table gives the true values of 

the parameters where as third, fourth and fifth row presents the estimates of those 

parameters with corresponding standard errors of estimation by 1000 Monte Carlo run in 

brackets where the considered time duration of the estimation consists of 500, 1000 and 

1500 epochs. The known value of 
v  being 0.363 while jointly estimating   and   

using QML-KF. 

Table 3: Performance of QML-KF on joint estimation of the   and   

   (s.e.*)   (s.e.*) 

Truth -0.713 0.9 

T=500 -0.7540 (0.1575) 0.9030 (0.0213) 

T=1000 -0.7555 (0.1384) 0.9025 (0.0194) 

T=1500 -0.7359 (0.1290) 0.9054 (0.0180) 

*s.e.: standard error, T: Number of epochs, No. of MC run=1000. 

From the above table 3, it is observed that estimation performance is comparable and 

similar to that has been reported in table 2. Similar performance has been noted when 

true value of   and   are within the bounds specified earlier. However performance 

degrades elsewhere in the parameter space. The following table 4 presents the joint 

estimation performance of   and   at some arbitrary true values spanned on their 

domain where known value of 
v  is 0.363 with time duration consisting of 500 epochs. 

From the table 4, it is observed that the joint estimation performance QML-KF is highly 

unsatisfactory compared to its previous cases. 
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To identify the reasons behind this unsatisfactory performance numerical simulation and 

surface plotting experiments were carried out (as in the previous section). It was 

confirmed that flat likelihood surfaces are the primary reason for such performance. 

Table 4: Performance of QML-KF on joint estimation of the   and   

True Estimates 

    ̂  (s.e.) ̂ (s.e.) 

-0.2 0.9 -0.2415 (0.1078) 0.8861 (0.0504) 

-0.713 0.5 -0.7499 (0.2459) 0.4738 (0.1769) 

-0.2 0.5 -0.2563 (0.1516) 0.3416 (0.3323) 

0.2 0.1 0.1859 (0.1281) 0.2488 (0.3482) 

0.5 -0.3 0.3258 (0.1503) 0.1890 (0.3279) 

0.8 -0.9 0.4129 (0.1587) 0.0200 (0.2633) 

*s.e.: standard error, No. of MC run = 1000. 

It has been observed that QML-KF is efficient in estimating a single parameter out of 

three SVM parameters assuming other two are known. QML-KF is also found quite 

satisfactory while estimating all three or any two SVM parameters jointly while true 

combination of  ,   and 
v  are within a “specified region” in parameter space. 

Problem may arise when two or all three SVM parameters are not known and estimated 

by QML where the values of the parameters are outside the “specified region”. The 

computational efforts necessary for the joint estimation of the SVM parameters is also 

noticed to be very high. It is also observed that standard error of estimation reduces as 

time scale is enhanced. Performance of QML-KF is noticed to be not satisfactory in 

several situations. Investigations revealed that joint likelihood surface contains extensive 

flat regions. In such flat regions small numerical errors or changes in one parameter can 

cause large change in the ML value of other parameters. 

III.    Proposed SVM Parameter Estimation Technique QML-QAKF 

 SVM parameter 
v  is the determinant of process noise uncertainties which can 

be time varying. If such time evolving assumption is valid (and seems appealing here) 

then this parameter can be estimated by adaptive techniques. An algorithm called QML-

QAKF is proposed in this work for such adaptively estimation of time varying 
v . 

While exploring the QML-KF method with synthetic data, the difficulties associated 

with simultaneous estimation of all the three parameters were noted. The AKF method 

characterized and presented in [II], allows continuous adaptation of the process noise (
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v  in the SVM-QML perspective). Implementing AKF for estimation of 
v  in the 

SVM-QML indicates that one less parameter would have to be estimated by the ML 

method. On the other hand, the simultaneous adaptation of 
v  does not ensure that its 

value would remain constant over time, which is the implicit assumption in SVM. In 

general, one has to admit the concept of an evolving 
v  in the SVM, which is, in effect 

an extension of the SVM concept. 

A novel family of algorithms, called the QAKF method is proposed here by embedding 

the AKF in the QML framework. QAKF is applicable here since observation noise is 

constant and known in this case (hence the nomenclature). The QML-QAKF algorithm 

is described next. In this method, v would be determined by QAKF and only   and 

  need be iterated. 

Algorithm 2: QML-QAKF for SVM Parameter Estimation 

Step 1: Initialization Step 

Set t=0. Select suitable guess values of  ,   and 
t . Initialise the filter state 

by







1
0|0h , state error covariance 

2

2

0|0
1 






vt
P  and m. 

Step 2: KF Prediction Step 

 1|tth 1|1  tth  and 

2

1|1

2

1| vttttt PP    . 

Step 3: KF Update Step 

 1|

21|

1// 27.1)log( 



 


 ttt

t

tt

tttt hr
P

hh  and 

















t

tt

tttt

P
PP

1|

1|| 1  where 
2

2

1|


 ttt P . 

Step 4: Check the value of t. 

Step 5: If t> m then execute step 7 otherwise repeat step 2 to 4 with 
1

22


 vtvt  . 

Step 6: Update state noise covariance: 
1

22


 vtvt  where 

1|

21

0

'1

2







 





tt

m

i

ititm

P

vv


 . 

Step 7: Repeat steps 2 to 6 for all epochs. 
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Step 8: Repeat Step 1 to 7 to calculate log likelihood ),( L  for a suitable range 

(covering the tentative range) of values with appropriate increments. Likelihood 

calculation formula is given by   



t

t

t

v
L

2

2

1

2

1 )log(,  where 

1|

2 27.1)log(  tttt hrv  is the one step ahead prediction error. 

Step 9: Determine
*  and 

*  for which ),( ** L  is maximum and these 
*  and 

*  

are the ML estimates of three parameters under consideration respectively. 

IV.    Experimental Results 

Experiments with QML-QAKF using Synthetic Data 

QAKF characterized in [XX] is applied with QML framework by QML-QAKF 

algorithm on the state-space model given by equations (3) and (4). Here the objective is 

to estimate the process noise covariance identified by 
2

v  assuming it as time varying 

and unknown since QAKF has the potential of estimating such time varying process 

noise covariance parameter. It has been observed that the same problem of singularity 

occurred as in case of [XX], i.e. estimated state noise covariance became negative. As a 

consequence MQAKF has become the next choice and it has been used in place of 

QAKF. The only change required in the algorithm 1 is to set the   calculation formulae 

in step 6 as 
1|
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Results of SVM Parameter Estimation using QML-MQAKF 

The following table 5 presents the performance of QML-MQAKF for individual 

estimates of   and   along with the standard error of estimation of those parameters 

while 
v  is assumed to be time varying starting at 0.363 with synthetic data. While 

estimating either   or  , the other parameter is assumed to be known as stated in the 

truth. The chosen value of m is 100 for the following experimental results with QML-

MQAKF. 
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Table 5: Performance of QML-MQAKF on individual estimation of the SVM 

parameters 

   (s.e.*)   (s.e.*) 

Truth -0.713 0.9 

T=500 -0.6993 (0.0259) 0.9097 (0.0037) 

T=1000 -0.7134 (0.0175) 0.9107 (0.0017) 

T=1500 -0.7122 (0.0148) 0.9109 (0.0010) 

*s.e.: standard error, T: Number of epochs, No. of MC run= 1000. 

From above table 5, it is observed that the performance of QML-MQAKF is comparable 

to that of QML-KF for individual and joint estimation of   and   as presented in table 

1, 2 and 3 while the values of   and   are near by -0.713 and 0.9 respectively though 

the parameter 
v  is treated as time varying and estimated by MQAKF. Estimation 

accuracies increase with the increase of time duration similar to the above cases as 

evident from the standard errors. 

Joint   and   estimation while v  is Unknown 

The following table 6 presents the performance of QML-MQAKF for joint estimation of 

  and   where true values of   and   are -0.713 and 0.9 respectively together with 

the standard error of estimation using 1000 MC runs. The true value and starting value 

of 
v  is 0.363 for this reporting. The estimation is carried out for three time duration 

consisting of 500, 1000 and 1500 epochs. 

Table 6: Performance of QML-MQAKF on joint estimation of the   and   

   (s.e.*)   (s.e.*) 

Truth -0.713 0.9 

T=500 -0.955 (0.0173) 0.875 (0.0058) 

T=1000 -0.953 (0.0236) 0.884 (0.0068) 

T=1500 -0.960 (0.0346) 0.873 (0.0058) 

*s.e.: standard error, T: Number of epochs=500, No. of MC run= 1000. 

Performance of QML-MQAKF is noted above in table 6 which shows the performance 

is not as satisfactory as it was observed in case of either of   and   assumed to be 

known as it is presented in table 5 as well as in QML-KF cases. In particular, the 

estimate of alpha showed considerable offset with respect to the truth. 
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The investigations were then repeated for joint estimation of those parameters over 

wider range. The performances of QML-MQAKF on these investigations are presented 

in table 7 below. The true value as well as starting value of 
v  while estimating the 

other two parameters is 0.363. 

Table 7: Performance of QML-MQAKF on joint estimation of  and in wider 

range 

True Estimates 

    ̂  (s.e.) ̂  (s.e.) 

-0.2 0.9 -0.2340 (0.0989) 0.8960 (0.0313) 

-0.7 0.5 -0.9260 (0.1207) 0.3260 (0.1092) 

-0.2 0.5 -0.3200 (0.0424) 0.0850 (0.1392) 

0.2 0.1 0.1650 (0.1038) 0.3950 (0.3841) 

0.5 -0.3 0.3875 (0.1723) -0.0150 (0.4011) 

0.8 -0.9 0.7900 (0.1364) -0.8025 (0.0785) 

*s.e.: standard error, T: Number of epochs=500, No. of MC run= 1000. 

From the above table 7, it is observed that the necessary condition to satisfactory 

performance with QML-MQAKF is | | >= 0.9. 

Volatility Estimation by QML-KF and QML-MQAKF 

Present section concentrate on the checking and comparing the performance of QML-

KF and QML-MQAKF on estimation of volatility using the synthetic dataset generated 

for the time duration consisting of 500 epochs using the model given by equation (3) and 

(4). Volatility is determined by the formulae 









2
exp t

t

h
  from the estimated state 

variable given by 
th . The following figure 2 presents and qualitatively compares the 

volatility estimation performance of QML-KF and QML-MQAKF with its true value. 

The true value of  ,   and 
v  are -0.713, 0.9 and 0.363 respectively for the 

estimation presented below. The starting value of 
v  is 0.363 while estimating. 
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Fig. 2 Comparison of estimated volatilities using QML-KF and QML-MQAKF with 

synthetic data where true values of   and   are -0713 and 0.9 respectively 

From the above figure 2, and the RMSE values over time of Monte Carlo runs, it is 

observed that performance of QML-MQAKF is better than QML-KF though 
v  is 

assumed to be unknown in case of QML-MQAKF with this set of parameters. 

 

Fig. 3 Comparison of estimated volatilities using QML-KF and QML-MQAKF with 

synthetic data where true values of   and   are 0.2 and 0.1 respectively 

On the other hand from the figure 3 and RMSE over time of Monte Carlo runs, it is 

observed that performance of QML-MQAKF is less satisfactory compared to QML-KF 

when the values of the SVM parameters are different from the previous set. 

V.     Conclusion 

Experiments with synthetic data revealed that QML-QAKF failed with 

the standard log normal SVM due to negativity occurrence and hence QML-

QAKF is modified to QML-MQAKF and applied for the purpose. In specified 

regions in parameter space, the estimation performance of QML-MQAKF is 

found to be comparable to that of standard QML-KF with known 
v  even 

though the parameter 
v  is assumed to be unknown and evolving with respect to 

time in case of estimation by MQAKF method. The performance of QML-

MQAKF is significantly good when the parameters 
v  and any one other 
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parameter are to be estimated. It may be noted that 
v  is obtained from the AKF 

and only one parameter is determined by MLE. In this “single parameter MLE” 

case QML-MQAKF provides good estimate over wider regions. It may be 

conjectured that if the parameter   is estimated by any auxiliary method and 

only   is to be estimated by QML-MQAKF method, good and convenient 

estimation would result. This is left for future work. In QML-MQAKF, the 

parameter 
v  is adaptively estimated and varies with time, even though the truth 

model assumes a constant value. 
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