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Abstract 

As the size of the air quality data increases, it is difficult toforecastthe air 

quality metrics due to the non-stationary and randomization form of data 

distribution. Air quality prediction refers to the problem of finding the air quality by 

using statistical inference measures. However, traditional air prediction models are 

based on static fixed parameters for quality prediction. Also, it is difficult to classify 

and predict the air quality index for both rural and urban areas due to change in data 

drift and distribution.  PM2.5 is one of the major factor to predict the air quality index 

(AQI) and its severity level. Due to high noisy and outliers in the PM2.5 data, it is 

difficult to classify and predict the air quality by using the traditional quality 

prediction models. In order to overcome these issues, an optimized Bayesian 

networks based probabilistic inference model is designed and implemented on the air 

quality data. An IOT enabled Air pollution monitoring system includes a DSM501A 

Dust sensor which detects PM2.5, PM1.0, MQ series sensor interfaced to a Node MCU 

equipped with ESP32 WLAN adaptor to send the sensor reading to Thing Speak 

cloud. In the proposed model, the data is initially gathered from the ICAO records of 

Safdarjung weather station and pre-processed.An improved discrete and continuous 

parameter estimation and bayes score optimization are implemented on the air 

quality prediction process. Experimental results show that the present optimized 

Bayesian network classify and predicts the air quality data with high less 

computational error rate and high accuracy. Further the proposed optimized model 

is applied on the real data which is gathered using IOT enabled gas sensors and the 

model is giving best results in predicting the air quality Index. 

Keywords : Bayesian Classification Algorithm, IOT, Air Quality Index, Data Pre-

processing   

I  Introduction 

Now-a-days, air quality plays a vital role in the air quality management system. A 

large number of research works have been introduced in the literature on the air 
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quality index prediction and air quality severity prediction. Air quality index has 

become a major issue in many areas of the world (fig 1) and air quality control is a 

highest priority to the government in air quality management system. As the number 

of urbanization and industrialization increases, the emission of waster gas from 

automobiles has become the main source of poor air quality. The presence of air 

quality metrics such as carbon monoxide (co), particulate matter (PM), PM2.5 

(particulate matters with a diameter <=2.5 μm), PM10 (particulate matters with a 

diameter <= 10 μm), nitrogen oxides and ozone will damage the environment, 

ecosystems and human health [12]. These atmospheric pollutants may lead to 

cardiovascular and respiratory diseases. Statistical learning models are commonly 

implemented in the air quality prediction, among them, auto-regressive integrated 

moving average models, Bayesian inference models , and multiple linear regression 

(MLR) models  These prediction models are implemented by using statistical 

parametric and non-parametric methods[3].The main objective of the statistical 

methods is to find the essential key factors of air quality index. However, these 

models have limitations or issues in real time air quality data, namely these models 

are based on initialization parameters and they are not applicable for linear and non-

linear probabilistic prediction [9]. 

 

Fig. 1 worldwide Air pollution score 

Poor air quality is not unique to single country; many developing countries suffer 

from sever air pollution as shown in fig1. Many air quality indices have been 

introduced in the literature to evaluate the quality of the air pollution [13]. The AQI 

consists of six types as shown in table 1. 
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Table. 1 AQI levels and its meaning 

The first index was the “pollutant standard index”(PSI) and later it was modified 

as air quality index( AQI) by the United States Environmental Protection Agency. 

Each AQI pollutants and its causes are summarized in table2. 

Traditional machine learning classifiers such as SVM, naïve bayes and rule 

mining techniques are capable of finding essential patters based on the air pollution 

severity. Statistical learning approaches such as multiple non-linear regression, log 

regression, support vector regression are used to estimate the air pollution index 

measure on the limited data [8]. 

 

Table 2: AQI pollutants and its causes 
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The main problem in the statistical and machine learning models include; models 

are not applicable to predict new type of air quality metric, the prediction rate of these 

models are not exact and finally the error rate of the prediction models are high [8]. In 

order to overcome these limitations, an optimized Bayesian networks based 

probabilistic inference model is designed and implemented on the PM2.5 air quality 

data. 

II.     Related works 

Regression tree (decision tree for regression) uses variances reduction metric 

to choose the best splitting parameter. Each separation by the chosen splitting features 

should give the maximal information. In math, the algorithm chooses the feature and 

its level/value to minimize 

 
Where x represents the response value for each observation; St is the set of 

observations for which the splitting result is true and Sf is the set of observations for 

which the splitting result is false. 

 
Fig.2 Sample decision tree for parametric estimation 

Though decision tree method is fast ( fig 2) and could be easily visualized 

and interpreted, the prediction accuracy is not quite favourable compared to other 

regression approaches. Random Forest (RF) method is thus introduced to overcome 

the disadvantages of decision trees [6]. Random Forest is then simply a method that 

grows a collection of decision trees and gives the aggregated results. What is notable 

in the RF model is that it also implements a smart algorithm to decorrelate the trees: 

Instead of searching for the best splitting feature among the whole feature space, RF 

model selects the best splitting feature among a random sample of m features at each 

internal node. Typically, m is chosen to be the approximate of square root of total 

number of feature space.[2] This algorithm perfectly mitigates the effect of having 

strong variables. Without this algorithm, decision trees in the forest will have similar 

structure due to the variance reduction metric and thus, the reduction in variance of 

the model might not be substantial.  

Bayes‟ theorem  describes the posterior or conditional probability of a 

hypothesis (H) based on prior knowledge of evidence (e) that might be related to the 

hypothesis. The posterior p(H|e) of H given e is definite as: 
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This is the Bayes‟ rule and lies at the core of Bayesian inference whereas 

𝐻∗in the denominator is a variable that takes on all possible hypotheses 

When we obtain a particular dataset D and denote θ is the parameter that we are 

interested in, then the posterior can be denoted as p(θ|D); the likelihood denoted as 

p(D|θ), which means the probability of the data might be obtained with the parameter 

θ under certain model assumptions; and the prior denoted as p(θ), which means the 

credibility of the parameter values without D[4]. The marginal likelihood or the 

denominator in Bayes‟ rule can be rewritten for continuous variables using the 

denotations above as: 

(𝐷)=∫d𝜃∗(𝐷|𝜃∗)𝑝(𝜃∗) 

Where 𝜃∗denotes any possible value of θ. 

Bayesian model averaging (BMA) is an application of Bayesian inferential 

analysis. It has been applied to model selection problems, where one combines 

estimation and prediction to produce a straightforward model choice criteria and less 

risky predictions [9].  So the average estimation across a set of models would 

generate more robust interval estimation, and meanwhile, reduce the type I error. 

Suppose in a study, Ml is one of a set of models considered to fit the research 

question, Δ is the interested parameter, D is the dataset given, then the BMA-

averaged Δ is the sum of specific model derived Δlweighted by the posterior model 

probability 𝑝(𝑀𝑙|𝐷) 

 
Although we cannot get the posterior probability (𝑀𝑙|𝐷) directly, according 

to the Bayes‟ rule, the posterior for a given model Mk is: 

 
Where p(Mk) is the probability that Mk is true and the likelihood 𝑝(𝐷|𝑀𝑘) is 

given by: 
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𝜃k is the parameter vector of model Mk, (𝜃𝑘|𝑀𝑘) is the prior density of θkunder 

model Mk, and (𝐷|𝜃𝑘, ) is the likelihood. 

During recent decades, Bayes methods enjoyed the popularity due to the 

computational progress. A class of Markov chain Monte Carlo (MCMC) algorithm 

became a practical method to estimate the complex random variables instead of direct 

sampling. A detailed tutorial is given by Hanson and Kruschke. A semi-parametric 

Bayesian approach and a simulation study was displayed. The computationally 

efficient approaches such as fully Bayesian method thus have been developed in 

recent years. A fully Bayesian approach for modelling and inference within GAM 

requires prior assumption for unknown smooth function S (·).  

III.    Proposed Model 

In the proposed framework, an optimized Bayesian network estimation model is 

designed and implemented on the P2.5 dataset.  Initially, data normalization is applied 

on the air pollution data (P2.5). Proposed data transformation method is applied on the 

normalized data to improve the data distribution for the joint probability estimation of 

the Bayesian networks. In the proposed Bayesian network classifier, a directed 

acyclic graph is constructed on the input transformed data. The two phase of 

proposed Bayesian network include, parameter estimation phase and statistical 

learning phase. In the parameter estimation phase, numerical or continuous attributes 

are estimated using the numerical parametric estimation and nominal or categorical 

attributes are estimated using the discrete parameter estimation measures. Finally, 

after parametric estimation Bayesian structure is learned using the optimized scoring 

function and joint probabilistic function as shown in fig 3. 
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Fig. 3 Proposed Framework 

III.i    Optimized Bayesian Network for AQI Prediction 

Optimized Bayesian network has two phases to estimate the air quality index 

to the given input data P2.5 . In the first phase, statistical parameters are estimated to 

each type of input data i.e discrete type and continuous type. In the second phase, 

statistical Bayesian DAG graph structure is learned using the optimized bayes scoring 

function. The two phases are described in the following algorithm. 

Step:1: D:=Input data P2.5 , Ai is the set of input random variables. Ij 

is the instance of attribute. 

Step:2: for each attribute A in D 

Step:3: Apply attribute transformation function by using following 

equation 

 
n

2

i i A i i

i 1

A[i] | A *(A ) / (Max(A ) Min(A )) |


    

Step 4: done 

Step 5: Construct directed acyclic graph to the transformed data using 

Bayesian network. 

Step 6: Computing conditional probabilities to each input variable for 
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joint probability estimation. 

Step 7: // Phase 1 

Discrete parameter estimation in the Bayesian network can be 

predicted using the following measure. 

ijk

i k j

j

N
P(A I / c )

N
   

Where Nijk is the number of instances of class cj having the value Ik in 

attribute Ai. 

Step 8: Continuous parametric estimation in the Bayesian network 

can be estimated using the following measure. 

2
k ij

2
ij

i k j k ij ij

(I )

2

k ij ij

ij

P(A I / c ) G(I , , )

1
G(I , , ) e

2





   

  


 

Here normal distribution is approximation to Gaussian distribution. 

Step 9: Estimating Bayesian parameter using the traditional 

parameter estimation as 

^
ijk ijk

ijk

ij ij

ij ijk ij ijk

N

N

where N N ;


 



    

 

Step 10: //Phase 2 

In this phase, statistical model selection is performed on the DAG 

graph to find the best fit to the input data. In the traditional Bayesian 

networks, constraint based and score based statistical models are used 

to find the best fit to the data. In the proposed approach, a novel 

Bayesian score is used to improve the prediction rate and to find the  

DAG conditional dependencies and independencies on each 

attribute.Basically , score based approach evaluates the dependencies 

and independencies in a structure that matches to the input data. This 

scoring measure optimizes the structure that maximizes the scoring 

value. 

The proposed Bayesian score is computed as: 



 

 

 

Copyright reserved © J.Mech.Cont.& Math. Sci., Vol.-14, No.2, March-April (2019)  pp 482-497 

490 

 

i

i

i

r r

q ijk ijk ijk ijk ijkr

k 1 k 1
i r r

j 0 k 1
ijk ijk ij ijk ijk

k 1 k 1

ConditionalPriorProb(s );

Jo int Pr ob(D / s );

PropBayesScore log( ) log( )

where

( log( )) ( log( ) N )

Joint Pr ob(D / s )

( log( ) N ) ( log( ))

 

 

 

 

 

   

      



      

  


  


n

i 0



 

Step 11: After computing the Bayesian score to each random variable, its 

class and attribute probability estimations are performed based on the 

following steps. 

A A

for each class in classlist

do

for each node in BN attribute list

do

      if(node[i]==Class)  

      iCP=iCP*|C|+CIndex;

      else

       iCP=iCP*|P |+P IValue

Compute cubic attribute distribution measure t

3

3
A

o each input attribute node and class node as

 if(node[i]==Class)  

        Class cubic Probability =CCProb= Node Pr ob(CIndex);

      else

       Attribute Cubic Probability =ACPR= Node Pr ob(P IValue);

endfo

A

r

Class Pr obability CP[CIndex] CCProb

Attribute Pr obability AP[P IValue] ACPR

endfor

  

  

 

Step 12: Bayesian scores and computed class and attribute probabilities are 

used to choose the optimal Bayesian random dependency and independency 

variable that fits the structure to the data. 

 

IV.    Experimental results 

Experimental results are performed on the P2.5delhi air polluted data taken 

from https://en.tutiempo.net/climate/01-2015/ws-421820.html and [1]. Experimental 

results are simulated by using java programming environment with third party 

libraries such as colt, jama, weka etc. Sample input data is summarized in table 3. 

  

Input Dataset 

https://en.tutiempo.net/climate/01-2015/ws-421820.html
https://en.tutiempo.net/climate/01-2015/ws-421820.html
https://en.tutiempo.net/climate/01-2015/ws-421820.html


 

 

 

Copyright reserved © J.Mech.Cont.& Math. Sci., Vol.-14, No.2, March-April (2019)  pp 482-497 

491 

 

T: Average Temperature 

Tm: Minimum temperature 

TM: Maximum temperature 

SLP: Atmospheric pressure at sea level 

H: Average relative humidity 

V: Average wind speed 

VV: Average visibility 

VM: Maximum sustained wind speed 

 

@relation P2.5 

@attribute T numeric 

@attribute TM numeric 

@attribute Tm numeric 

@attribute SLP numeric 

@attribute H numeric 

@attribute VV numeric 

@attribute V numeric 

@attribute VM numeric 

@attribute „PM 2.5‟ {0,1} 

@data 

0.398119,0.214485,0.529052,-0.467532,0.435897,-0.609195,-0.691667,-0.649932,0 

-0.454545,-0.18663,-0.461774,0.564935,0.794872,-0.977011,-0.941667,-0.90502,1 

0.949843,0.961003,0.865443,-0.571429,-0.717949,-0.609195,-0.2,-0.449118,1 

0.586207,0.771588,0.712538,-0.525974,-0.205128,-0.517241,-0.25,-0.649932,0 

-0.673981,-0.582173,-0.743119,0.837662,0.615385,-0.908046,-0.741667,-

0.845319,1 

0.360502,0.481894,0.229358,-0.188312,-0.333333,-0.609195,-0.508333,-0.649932,1 

0.040752,0.158774,0.003058,0.305195,0.025641,-0.724138,-0.508333,-0.649932,1 

0.291536,0.392758,0.333333,0.220779,-0.102564,-0.609195,-0.125,-0.554953,0 

0.122257,0.370474,0.198777,0.396104,0.051282,-0.517241,-0.275,-0.603799,0 

0.015674,0.086351,0.100917,0.441558,0.307692,-0.609195,-0.433333,-0.649932,1 

0.153605,0.325905,0.100917,0.435065,0.307692,-0.724138,-0.941667,-0.796472,1 

0.517241,0.398329,0.559633,-0.487013,0.153846,-0.609195,-0.775,-0.796472,0 

0.373041,0.303621,0.590214,-0.363636,0.564103,-0.609195,0.216667,-0.348711,0 
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0.924765,0.883008,0.865443,-0.590909,-0.461538,-0.609195,-0.258333,-0.449118,0 

0.962382,0.988858,0.840979,-0.896104,-0.564103,-0.609195,-0.541667,-0.603799,0 

0.617555,0.576602,0.437309,-0.396104,0.153846,-0.609195,-0.758333,-0.845319,0 

0.53605,0.559889,0.327217,-0.084416,-0.666667,-0.632184,-0.358333,-0.297151,1 

0.197492,0.281337,0.070336,0.220779,-0.487179,-0.448276,0.033333,-0.348711,0 

0.492163,0.409471,0.51682,-0.75974,0.435897,-0.609195,-0.6,-0.649932,0 

0.423197,0.348189,0.431193,-0.025974,0.358974,-0.609195,-0.816667,-0.845319,0 

0.398119,0.29805,0.492355,-0.474026,0.589744,-0.609195,-0.8,-0.845319,0 

0.23511,0.320334,0.094801,0.253247,-0.615385,-0.448276,0,-0.253731,0 

-0.310345,-0.175487,-0.314985,0.597403,0.384615,-0.862069,-0.45,-0.554953,1 

-0.021944,0.047354,-0.021407,0.435065,0.128205,-0.609195,0.275,-0.348711,0 

-0.680251,-0.454039,-0.547401,0.941558,0.564103,-0.908046,-0.783333,-

0.750339,1 

0.479624,0.537604,0.69419,-0.493506,0.512821,-0.678161,-0.675,-0.649932,0 

-0.216301,-0.181058,-0.100917,0.571429,0.615385,-0.931034,-0.925,-0.90502,1 

0.887147,0.793872,0.840979,-0.694805,-0.384615,-0.425287,-0.291667,-0.449118,0 

0.504702,0.409471,0.565749,-0.194805,0.25641,-0.609195,-0.416667,-0.449118,0 

-0.166144,0.030641,-0.229358,0.694805,0.076923,-0.793103,-0.875,-0.845319,1 

0.774295,0.849582,0.700306,-0.5,-0.717949,-0.609195,-0.458333,-0.603799,1 

-0.454545,-0.181058,-0.443425,0.448052,0.615385,-0.862069,-0.816667,-

0.750339,1 

0.38558,0.35376,0.541284,-0.25974,0.410256,-0.609195,-0.233333,0.356852,0 

0.448276,0.426184,0.406728,-0.181818,-0.307692,-0.632184,-0.108333,-0.603799,1 

-0.084639,0.08078,-0.229358,0.38961,-0.230769,-0.448276,-0.45,-0.750339,1 

-0.166144,0.08078,-0.149847,0.428571,-0.128205,-0.494253,-0.616667,-0.649932,1 

-0.304075,-0.18663,-0.406728,0.655844,0.102564,-0.563218,-0.366667,-0.554953,1 

0.090909,0.153203,0.027523,0.155844,0.025641,-0.563218,0.525,-0.253731,0 

-0.510972,-0.370474,-0.584098,0.792208,0.128205,-0.678161,-0.566667,-

0.698779,1 

0.492163,0.543175,0.321101,-0.038961,-0.487179,-0.448276,-0.033333,-0.297151,0 
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IV.i    Sample Normalized Data 

Following data illustrates the sample normalized data to the input raw 

dataset. Each value in the attribute is normalized between -1 to 1 to estimate the class 

severity.  

0.398119,0.214485,0.529052,-0.467532,0.435897,-0.609195,-0.691667,-0.649932,0 

-0.454545,-0.18663,-0.461774,0.564935,0.794872,-0.977011,-0.941667,-0.90502,1 

0.949843,0.961003,0.865443,-0.571429,-0.717949,-0.609195,-0.2,-0.449118,1 

0.586207,0.771588,0.712538,-0.525974,-0.205128,-0.517241,-0.25,-0.649932,0 

-0.673981,-0.582173,-0.743119,0.837662,0.615385,-0.908046,-0.741667,-

0.845319,1 

0.360502,0.481894,0.229358,-0.188312,-0.333333,-0.609195,-0.508333,-0.649932,1 

0.040752,0.158774,0.003058,0.305195,0.025641,-0.724138,-0.508333,-0.649932,1 

0.291536,0.392758,0.333333,0.220779,-0.102564,-0.609195,-0.125,-0.554953,0 

0.122257,0.370474,0.198777,0.396104,0.051282,-0.517241,-0.275,-0.603799,0 

0.015674,0.086351,0.100917,0.441558,0.307692,-0.609195,-0.433333,-0.649932,1 

 

IV.ii   Sample Transformed data 

The following data describes the transformed values on the normalized data. 

This process is required to improve the data distribution in order to estimate joint 

probability estimation. 

8.810391,4.445678,8.687254,88.751602,0.109004,150.22566,94.162254,27.419424,

0 

1.904632,3.152431,6.467221,79.541337,61.701872,154.730389,73.549949,169.6858

17,1 

60.603477,33.084415,78.106908,11.999393,55.102636,118.693337,129.890304,199.

752722,1 

69.580987,33.084415,69.151919,7.394261,46.303655,127.7026,157.373433,179.151

332,1 

84.773636,61.138795,98.083343,19.469071,26.505948,141.216396,116.148823,159.

663653,1 

41.267439,25.48641,49.175483,39.630188,33.105184,141.216396,30.885674,97.859

277,0 
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107.562664,80.426142,118.059779,35.587094,24.306202,163.739652,149.128511,1

89.173702,1 

2.929378,15.426131,16.111029,62.655851,77.100089,118.693337,61.182566,106.76

8142,0 

 

IV.iii    Sample Bayesian estimated test result 

The following result illustrates the proposed Bayesian network estimation to 

each sample in the test instances. Each test instance is evaluated using the joint 

probability estimators and Bayesian score to predict the class using the DAG 

dependencies and independencies. 

 

23.646656,42.896049,8.687254,111.777265,96.897883,150.22566,103.78144,137.94

8552,1 ====> predicted class index value :0.0 

79.939626,33.668877,71.907308,23.512165,11.107731,177.253449,190.35312,219.2

40607,1 ====> predicted class index value :1.0 

90.988885,62.307719,102.905191,9.491343,17.706967,186.262712,157.373433,189.

173702,1 ====> predicted class index value :1.0 

21.574906,19.517469,24.530662,86.449095,50.703146,150.22566,98.284715,137.94

8552,0 ====> predicted class index value :0.0 

31.933545,30.622244,29.352622,81.076381,94.698137,118.693337,127.141942,159.

663653,0 ====> predicted class index value :0.0 

77.177366,41.266881,78.106908,27.349835,17.706967,177.253449,160.12163,139.3

35239,1 ====> predicted class index value :1.0 

82.701886,54.709609,106.3494,2.583585,15.507221,163.739652,145.00605,179.151

332,1 ====> predicted class index value :1.0 

131.732822,86.855222,131.147797,36.354557,8.907985,172.748915,151.876708,16

9.685817,1 ====> predicted class index value :1. 

 

 

 

 

 

 



 

 

 

Copyright reserved © J.Mech.Cont.& Math. Sci., Vol.-14, No.2, March-April (2019)  pp 482-497 

495 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ANN ARIMA SVM Bayesian 
network

Proposed 
Model

A
xi

s 
Ti

tl
e

Axis Title

MAE

RMSE

R-square

Table.3 Performance analysis of traditional and proposed probabilistic estimation 

models on input data 

 

Model MAE RMSE R-square 

ANN 0.56 0.81 0.42 

ARIMA 0.52 0.73 0.59 

SVM 0.63 0.65 0.48 

Bayesian network 0.46 0.52 0.78 

Proposed Model 0.26 0.15 0.84 

 

Table 3, describes the performance analysis of present approach to the traditional 

approaches for AQI prediction. From the table, it is noted that the present approach 

has less error rate and high accuracy compared to the traditional approaches. 

 

Fig. 4 Performance analysis of traditional and proposed probabilistic estimation 

models on input data 

Figure 4, describes the performance analysis of present approach to the traditional 

approaches for AQI prediction. From the figure, it is noted that the present approach 

has less error rate and high accuracy compared to the traditional approaches. 
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V.    Conclusion 

Air quality information is gathered remotely using air quality monitoring 

sensors which are outfitted with a variety of vaporous. IOT distribution mechanisms 

PM2.5 is one of the major factor to predict the air quality index(AQI) and its severity 

level. Due to high noisy and outliers in the PM2.5 data, it is difficult to classify and 

predict the air quality by using the traditional quality prediction models. In order to 

overcome these issues, an optimized Bayesian networks based probabilistic inference 

model is designed and implemented on the air quality data. This paper proposed 

improved discrete and continuous parameter estimation and bayes score optimization 

are implemented on the air quality prediction process. Experimental results show that 

the present optimized Bayesian network classifies and predicts the air quality data 

with high less computational time and accuracy. 
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