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Abstract 

Analysis of spatial bar structures is a labor-intensive and complex task, and 

it must be carried out taking into account all possible limiting states in various 

operating conditions of structures. The aim of this paper is to give an insight into 

elastic-plastic analysis that enables determining the ultimate load of space trusses 

with large displacements. A direct method is treated in this investigation to gain 

insight into the computational effort required for the method. The algorithms for the 

direct methods are obtained by modifying the algorithms for incremental 

geometrically nonlinear analysis developed by one of the authors to account for 

yielding and plastic deformation in the bars of the truss. A Java software application 

has been developed based on the algorithms and the analysis of the space arch truss 

has been performed. The example demonstrates that direct limit analysis of space 

trusses with large displacements can be implemented successfully on the Java 

platform. The computer application is suitable as a test platform for a broad 

spectrum of investigations into elastic-plastic truss behavior. 

Keywords : Steel Space Trusses, Geometrical Nonlinearity, Elastic-Plastic Analysis, 

  Limit State, Direct Method 

 

I.     Introduction 

The research which is described in this paper deals with the geometrically 

nonlinear stress and stability analysis of elastic space trusses undergoing large 

displacements. The aim of this paper is to give an insight into elastic-plastic analysis 

whose aim it is to determine the ultimate load of space trusses with large 

displacements. While a Java application has been developed to analyze the examples 

in this appendix, a complete investigation of elastic-plastic analysis lies outside the 

scope of the paper and has not been conducted. Two basic methods have been 

developed in the literature for elastic-plastic analysis: the optimization method and 

the direct method. In the solution by optimization, a sequence of statically admissible 
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states of the structure is studied to determine a maximum load factor. Alternately a 

sequence of kinematically admissible states of the structure is studied to determine a 

minimum load factor. In the direct method, both the kinematic and the static 

conditions are satisfied simultaneously so that optimization is not required. 

The direct method requires the analysis of a sequence of configurations of the 

structure because plasticity changes the stiffness of a structure. After each yielding of 

a bar in a truss, or if a plastic bar becomes elastic due to unloading, the stiffness 

matrix must be reassembled and decomposed. The required computational capacity 

was not available when the early research was performed. Preference was therefore 

given to the optimization method for which a set of theorems was developed.  

All theorems on which the optimization method is based depend on the linear super-

position of load cases to form load combinations (Heidari, Galishnikova, 2014). If the 

behavior of a structure is geometrically nonlinear load cases cannot be superimposed. 

For such structures the theorems of the optimization method are not valid and the 

optimization approach cannot be used for the limit analysis. Given the present 

capacity of computers, it is not obvious even for problems with small displacements 

that the indirect optimization method is today still preferable to the direct method.  

A direct method will be treated in this paper to gain insight into the computational 

effort required for the method. The algorithms are developed by modifying the 

algorithms by one of the authors (Galishnikova, 2015) to account for yielding and 

plastic deformation.   

 

Elastic-Plastic Behavior of a Steel Bar 

Each bar of the truss is treated as a straight finite element of constant cross-

section subject only to an axial force. The bar is pin-connected to a node at each end. 

Euler buckling of the pinned elastic bar is neglected. If the bar is plastic, it is assumed 

that the bar can carry the axial yield force. 

It is assumed that the each bar of the truss is either in a perfectly elastic state or in a 

perfectly plastic state throughout each load step. The step size is determined in the 

solution algorithm such that this assumption is justified. The contribution of an elastic 

bar to the secant stiffness matrix of the truss is determined with the formulas for 

geometrically nonlinear space truss analysis [xxx]. If the bar is plastic its contribution 

to the secant stiffness matrix of the truss is null. 

Figure 1 shows possible changes of state of a bar as a function of the axial strain 

increment in a load step. At points A, D and G the bar is elastic for positive and 

negative strain increments. At points B and C the bar is plastic for positive strain 

increments and elastic for negative strain increments. At points E and F the bar is 

elastic for positive strain increments and plastic for negative strain increments. 
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Fig. 1. Variation of axial bar force with axial strain 

 

Let
t e,   and 

p be the total, elastic and plastic strain in the bar respectively. Let 

superscript (s) denote the value of a variable at the start and superscript (t) its value at 

the end of the load step. Let
kv be the components of the coordinates of the 

displacement in the reference coordinate system and
k,1v the derivative with respect to 

the axial coordinate
1y . The total axial strain in the bar is given by (Galishnikova, 

2009): 

 

2 2 2 2

t 1,1 1,1 2,1 3,1

1

2
v (v v v )                                               (1) 

If the bar is elastic in the load step, its strain in the trial state is given by: 

(t) (t) (s) (t) (s)

e t p p p        ;    .                                            (2) 

Let m be the conversion factor between 2.Piola-Kirchhoff and engineering stress 

coordinates. The stress  and the axial bar force f in the trial state are given by 

(Galishnikova, 2009):  

2 2 2

1,1 2,1 3,1

(t ) ( t ) ( t )

e
(t ) ( t )

m (1 v ) v v

m E

f A

   

  

 

                                       (3) 

If the bar is plastic in the load step, its strain in the trial state is given by: 

(t ) (s)

e e

(t) (s) (t ) (s)

p p p p t t

  

         V V  with
                     (4) 

The stress  and the axial force f in a plastic bar are given by: 

(t ) (s)

(t ) (s)f f
  


                                                                             (5) 
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Direct Method of Limit Analysis 

In the direct method of limit analysis a load pattern is prescribed and 

multiplied by a load factor  to obtain the applied load. The maximum value of the 

load factor is determined for which the structure is stable. Since the displacements are 

assumed to be large, it is not known at the outset whether instability will be due to 

buckling or due to a plastic mechanism.  

The workflow for the limit load analysis of a truss is shown in figure 2. The diagram 

accounts for both geometric and physical nonlinearity. The algorithm consists of two 

nested loops. The outer loop traverses the load steps until a specified load factor has 

been reached or a limit state of the truss is detected. In the inner loop the secant 

stiffness matrix for a load step is computed iteratively accounting for the 

displacement increments and the changes of state of the bars. 

 

increase the load factor

iterate the secant stiffness matrix

compute and decompose secant matrix

is secant matrix positive definite?

compute trial state

iteration cycle  <  maximum

load factor < max. load factor ?

end of the limit analysis

store state of the truss

no

yes

no

yes

no

no

trial error norm  <  error limit

halve the segment length

segment length > minimum
yes

no

yes

start of the limit analysis

limit load is reached

yes

no

restore state of truss

 at start of load step

scale trial state with reduction factor

has a bar turned elastic
yes

no

change of state in at least one bar? 

yes

no

 

Fig. 2.  Work flow of the limit load analysis of a truss 
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The true state of the bars in a load step is determined iteratively. At the start of load 

step 0 all bars are elastic and free of stress. In the first cycle of iteration in all other 

load steps, it is assumed that a bar is plastic if was plastic at the end of the previous 

load step. Otherwise the bar is assumed to be elastic. These assumptions may not be 

correct and will be corrected if necessary at the end of the load step. 

In the first cycle of iteration the tangent stiffness of the truss is computed and 

decomposed. The load factor increment for the cycle as well as the displacements and 

reactions in the trial state at the end of the cycle are determined as in the 

geometrically nonlinear analysis (Galishnikova, 2009). The change in state of the bars 

is determined and recorded in flags whose value true has the following meaning: 

 

start

end

c

e
e

    the bar is elastic at the start of the load step 
     the bar is elastic at the end of the load step

d         at least one bar of the truss has changed state
             in the load step

e

p

d         at least one bar of the truss has turned elastic
             in the load step
d         at least one bar of the truss has deformed
             plastically in the load period

 

The flags are set with the logic shown in figure 3. 

A bar which is elastic in a load step remains elastic at the end of the load step if the 

absolute value of its stress is less than the yield stress. Otherwise the bar yields at the 

end of the load step. The load reduction factor r for the bar is given by: 

(s)

y(t )

( t ) (s)

(s)

y(t )

( t ) (s)

0 : r

0 : r

  
  

  
  

  
  

                                             (6) 

Consider a bar which is plastic during the load step. Small error bounds
p

 and are 

defined for the elastic and the plastic strain. Typical values are 1010


   and 

6

p 10 .   If the stress at the start of the step is positive and the plastic strain 

increment
pV is larger than


 or if the stress is not positive and

pV  less than

 the 

bar is plastic at the end of the load step. The bar has deformed plastically if 
pV  

exceeds 
p .  Otherwise the bar, contrary to the assumption at the start of the load 

step, was elastic in the load step and the flags are set accordingly. 
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Fig. 3.  Check of the state of a bar at the end of a cycle of iteration 

 

If the state check at the end of the first cycle of iteration shows that none of the bars 

has changed state, the cycle is complete. If at least one bar has turned elastic the load 

step is repeated using the new bar states. Otherwise at least one bar has turned plastic 

and the smallest reduction factor
minr is determined. After the trial state has been 

scaled with this factor the cycle is complete. 

At the beginning of the second and all subsequent cycles of iteration in a load step the 

bar state is set equal to the state at the end of the previous cycle. The secant stiffness 

matrix is computed for the current displacement increments and the state of the bars. 

The procedure is continued as in the previous cycle. The iteration in the load step 

ends when the error norm of the trial solution is less than a specified limit value. The 

traversal of the load steps ends when the limit load is reached, or after a specified 

number of load steps have been performed. The limit load is reached when the 

maximum number of chord length reductions in the constant arc method does not lead 

to a positive definite secant matrix or to a sufficiently small error norm in the trial 

state of the truss in the load step. 

 

Limit Analysis of a Pinned Arch 

This example illustrates the application of the limit analysis described to the 

pinned circular arch in figure 4. The arch has a span of 28.0 m, a section height of 

0.80 m and a width of 2.0 m. Analyses are performed for radii of the center line of the 

arch ranging from 20.0 to 200.0 m corresponding to elevations of 5.717 to 0.491 m of 

the crown above the supports. The number of bays is kept constant at 14, and all bays 

subtend the same angle at the center of the circle. 
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Fig. 4.  Perspective of the arch truss (diagonals not shown) 

 

Figure 4 shows only the chords and the ties of the arch. In the bays next to the 

supports there are crossed diagonals in the upper and the lower faces of the arch. In 

the other bays there are crossed diagonals in all four faces and in the cross-section 

normal to the center line of the arch.     
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Fig. 5.  Sequence of yielding of the bars of an arch truss with radius 30.0 m 

 

All bars have an area of 0.008 m
2
 except the two chords at each support which have 

an area of 0.012 m
2
. All bars have yield strength 5 22.4*10 kN/m  and modulus of 

elasticity 8 22.1*10 kN/m . The displacements at the four supports are null. The load 
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pattern consists of two loads W=100 kN applied in the downward direction at the 

crown of the arch in the upper face of the truss.  

The arches have been analyzed with the Java implementation. Because the results of 

the limit analysis are symmetric with respect to plane 2x =1.0  only the results for 

elevation 2x =0 are shown in figure 5. Bars which are plastic during the load step 

leading to the specified load are shown continuous bold. Bars which yield at the 

specified load are shown dotted bold.  

 

II.    Results and Discussions 

Figure 5 shows the sequence in which bars of a truss arch with radius 30.0 m 

yield as the load at the crown increases. The left part of the figure shows elevations of 

face 2x =0. The right part of the figure shows a plan of the two bays in the upper face 

of the arch next to the loaded nodes. 

The cords in the upper face of the arch yield in the bays at the loaded nodes when the 

load reaches 65.9% of the ultimate load. At 88.5 % of the ultimate load the chords in 

the lower face yield in the third bay from the supports. The diagonals in the 

elevations of the arch which are incident at the loaded nodes yield at 90.7% of the 

ultimate load. At 95.6% of the ultimate load the plastic zone in the lower chords near 

the supports extends over an additional bay. Next the transverse tie in the upper face 

at the loads yields due to the forces in the crossed diagonals in the transverse section 

and the upper face. After the plastic zone in the lower face has extended over an 

additional bay at the supports, the ultimate load is reached when the diagonals in the 

upper face at the loaded nodes yield.  

The ultimate load of the arch truss with a radius of 30.0 m is 181.72 kN. The arch 

fails because all bars which support the two loaded nodes in the 1x direction have 

become plastic. The two loaded nodes can therefore displace in the 1x direction 

without an increase in load. This state is detected in the algorithm because the 

regularity of the stiffness matrix of the truss is monitored. The matrix becomes 

singular in the configuration which carries the ultimate load. 

The vertical downward displacement of the crown nodes in the upper face of the arch 

is shown in figure 6 as a function of the load. The maximum displacement is 89.5 mm 

for a load of 181.7 kN. It is noted that the tangent to the displacement-load curve is 

not horizontal at the ultimate load. This is due to the failure mode of the arch: the 

nodes under the load become locally unstable, but there is no mechanism or loss of 

stability of the structure as a whole. 
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Fig. 6.  Vertical downward displacement of the loaded nodes in Fig. 5 

 

The vertical downward displacement of the crown nodes in the upper face of the arch 

is shown in figure 6 as a function of the load. The maximum displacement is 89.5 mm 

for a load of 181.7 kN. It is noted that the tangent to the displacement-load curve is 

not horizontal at the ultimate load. This is due to the failure mode of the arch: the 

nodes under the load become locally unstable, but there is no mechanism or loss of 

stability of the structure as a whole. 

The plastic strain in the bars of the truss is shown in figure 7. The largest plastic 

strain of -6-2228*10 m/m  occurs in the upper chords like bar 104b at the loaded 

nodes. The next highest plastic strain of 6-1249*10 m/m  occurs in the diagonals of 

the vertical faces like bar 109b  which support the loaded nodes. Tensile plastic strains 

of -6791*10 m/m  occur in the transverse diagonal 119b  which connects the two 

loaded nodes. Bars 33 51b and b  are the lower chords in the third and fourth bay from 

the left support. Their plastic strains are considerably less than the strains in the upper 

chords at the loads. 
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Fig. 7.   Plastic strain in the bars of the arch truss 
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The variation of the maximum load factor
max  with the height of the center line of 

the arch at the crown above the supports is shown in Figure 8. For shallow arches the 

factor increases rapidly with the height. When the height reaches 7% of the span of 

28.0 m the rate of increase of
max becomes significantly less. For heights in excess 

of 20% of the span the increase of
max becomes small. 
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Fig. 8.  Variation of the maximum load factor with the height of the arch 

 

The maximum horizontal reaction at the supports does not increase continuously with 

the height of the arch, but rather reaches a maximum for a radius of 70.0 m when the 

height of the arch is 5.1% of its span. The ratio of the horizontal reaction to the load 

acting on the arch increases continuously with the radius. 

The arch trusses which have been investigated do not buckle elastically. If the yield 

strength of the material is set to an artificial high value so that plasticity is prevented, 

the shallow arches buckle for the following load factors
elastic :  

elastic max

elastic max

elastic max

elastic max

r= 90.0m λ   =  2.603      λ  = 0.942

r= 100.0m λ   =  2.064      λ  = 0.856

r= 120.0m λ   =  1.442      λ  = 0.716

r= 150.0m λ   =  0.970      λ  = 0.566

 

The results show that plasticity reduces the load carrying capacity of a truss arch 

significantly even if the arch is shallow. 

 

III.    Conclusions 

The example of the arch truss demonstrates that direct limit analysis of space 

trusses with large displacements can be implemented successfully on the Java 

platform. 

The method of analysis determines the exact load for each change of state in any bar 

of the truss. This detail of information permits a precise analysis of the behavior of 

the truss and the events that lead up to the collapse of the truss at the ultimate load. 
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For example, it was determined that failure of the arch truss is not due to an overall 

instability, but rather to a local instability of the loaded nodes. This knowledge can be 

used to improve the design of the structure. The computer application is suitable as a 

test platform for a broad spectrum of investigations into elastic-plastic truss behavior.  

The time required for the limit analysis of the arch on a conventional laptop computer 

is 0.010 seconds. The structure has 56 nodes and 238 bars. It was analyzed for 15 

configurations. The band width of the system equations is approximately 10% of the 

dimension of the equations.  

The computational effort for a limit analysis is approximately proportional to the time 

required for the solution of the system equations and to the number of changes in 

state of the bars that occur before the limit configuration is reached. An extrapolation 

of the measured computational effort indicates that the time required for a limit 

analysis a truss with 500 nodes, 2000 bars and 100 configurations is of the order or 

one minute. Before this capacity to analyze larger structures can be utilized, an 

interactive graphic user surface must, however, be implemented to support the 

interpretation of the computed results which are very voluminous.  
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