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Abstract:  

The present study deals with the applicability and effectiveness of the 

algorithm of generalized Kudryashov method (GKM), which is one of the most 

workable methods to constitute the exact traveling wave solutions of non-linear 

evolution equations (NLEEs) in physical and mathematical science. The recent paper, 

we enucleated this method for each of the following Couple Boiti-Leon-Pempinelli 

equations system, DSSH equation and fourth-order nonlinear Ablowitz-Kaup-Newell-

Segur (AKNS) water wave dynamical equation. The prominent competence of this 

method is to naturalize the way of solving systems of NLEEs. Moreover, we can see 

that when the parameters are ascribed to the particular values, obtain solitary wave 

solution from the exact travelling wave solution. The obtained new solutions have a 

wide range of inflictions in the field of physics and other areas of applied science. To 

perceive the physical phenomena, we have plotted coupled with some 2𝐷 and 3𝐷 

graphical patterns of analytic solutions obtained in this study by using computer 

programming wolfram Mathematica. The worked-out solutions ascertained that the 

suggested method is effectual, simple and direct and can be exerted to several types 

of nonlinear systems of partial differential equations. 

Keywords: The generalized Kudryashov method; Couple Boiti-Leon-Pempinelli 

equations; DSSH equation; fourth-order nonlinear AKNS equation; traveling wave 

solution; exact solution. 

 

I.    Introduction 

At the current time the swift evolvement of the experiment in nonlinear science, it 

will be manifest ever improving interest of mathematicians and researchers in recent 

techniques to search effective methods for attaining approximate solutions to NLEEs. 
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The exact solutions of NLEEs are the key stone to comprehend the manifold 

mathematical and physical phenomena that govern the physical world today. 

Therefore, the study of traveling wave solutions for NLEEs is of enormous 

importance because of their prospective implementations in various scientific and 

engineering fields, especially in fluid mechanics, water wave mechanics, plasma 

physics, meteorology, electromagnetic theory, solid state physics, chemical 

kinematics, optical fibers, physics, geochemistry, and nonlinear optics. With the aid 

of the computer symbolic systems like Mathematica, the task of inventing new 

computational methods to obtain exact solutions of NLEEs is very fascinating for 

many scholars. For this reason, in the past several decades many effective methods 

have been presented, such as the exp (−𝜑(𝜉))-expansion method [I, XXI], the 

variational iteration method [XXXVII], the extended F-expansion method [XXIII], 

the improved F-expansion method [XVIII, XXX], the modified simple equation 

method [XX, V], the homogeneous balance method [XV], the Hirota’s bilinear 

method [VIII], the Khater method [XXXV], the extended trial equation method [XL, 

IX], the  exponential rational function method [IV, XXXI], the Bernoulli sub-

equation function method [XVII], the Sine-Cosine method [VII, XXII], the (𝐺 ′/𝐺)-

expansion method [VI, XXXIX], the tanh function method [XXXVIII], the extended 

tanh function method [XII], the He’s exp-function method [III] and so on (see for 

example [XI, XXVI, XIII, XXIV, XXXIII, XIV, XXIX, ]). Lately, Kudryashov 

[XXXII] has introduced a simple method to discuss the exact solutions for NLEE 

namely truncated expansion method. Kumar et al. [X] have developed a direct 

truncated expansion method for a nonlinear fractional differential equation, which 

called the improved of Kudryashov method. In recent decades, some researchers have 

improved the behavior of the current nonlinear differential equation, for example, 

Kabir et al. [XXVIII] proposed new approach method to acquire absolutely 

approximate analytic solutions which called the modified Kudryashov method. More 

recently, some scholars as like Mahmud et al. [XVI], koparan et al. [XXVII], 

Demiray et al. [XXXVI], Gepreel et al. [XIX] have the GKM to accomplish the exact 

and traveling wave solutions for nonlinear PDEs. In this current work, we have 

employed and made the best use of the novel GKM to obtain the exact and traveling 

wave solutions for the following nonlinear system of equations. 

We first consider the following Couple Boiti-Leon-Pempinelli equations system is of 

the form [XXV]: 

   
𝑢𝑡𝑦 = (𝑢2 − 𝑢𝑥)𝑥𝑦 + 2𝑣𝑥𝑥𝑥
𝑣𝑡 = 𝑣𝑥𝑥 + 2𝑢𝑣𝑥  .                   

 ,                       (1) 

The second considerable problem DSSH equation which is widely used in 

mathematical physics in the form is given by [XXXIV]: 

  𝑢𝑥𝑥𝑥𝑥𝑥𝑥 − 9𝑢𝑥𝑢𝑥𝑥𝑥𝑥 − 18𝑢𝑥𝑥𝑢𝑥𝑥𝑥 + 18𝑢𝑥
2𝑢𝑥𝑥 −

1

2
𝑢𝑡𝑡 +

1

2
𝑢𝑥𝑥𝑥𝑡 = 0.  (2) 

Finally, we consider the well known dynamic problem which widely used in the field 

of applied physics is fourth-order nonlinear AKNS water wave dynamical equation 

with a perturbation parameter 𝛽 in the form is given by [II]: 

  4𝑢𝑥𝑡 + 𝑢𝑥𝑥𝑥𝑡 + 8𝑢𝑥𝑢𝑥𝑦 + 4𝑢𝑥𝑥𝑢𝑦 − 𝛽𝑢𝑥𝑥 = 0.                  (3) 
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The structure of this paper is arranged as the following portions: In section 2 “Basic 

ideas of the method”, we proposed a novel GKM for more generality solitary 

solutions. Applications of the novel GKM to Couple Boiti-Leon-Pempinelli equations 

(1), DSSH equation (2) and fourth-order nonlinear AKNS water wave dynamical 

equation (3) is presented in “Implementations of the method” which is in section 3. In 

section 4 “Physical interpretation and graphical illustration”, we provided different 

shapes of graphical patterns to obtained solutions. In section 5, we presented 

“Comparison” and in section 6, we have decorated our “Results and discussion”. 

Lastly, we furnished “Conclusions” is in section 7. 

II.   Basic ideas of the method 

In this section, we analyze the novel GKM for attaining traveling wave 

solutions to the NLEEs. Assume that a nonlinear equation for a function 𝑣, say in two 

independent variables 𝑥 and 𝑡 is in the form 

  𝑇 𝑣, 𝑣𝑡 , 𝑣𝑥 , 𝑣𝑡𝑡 , 𝑣𝑥𝑡 , 𝑣𝑥𝑥 , ………… = 0.                   (4) 

Or in case of three independent variables 𝑥, 𝑦 and 𝑡 in the form 

  𝑇 𝑣, 𝑣𝑡 , 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑡𝑡 , 𝑣𝑥𝑡 , 𝑣𝑦𝑡 , 𝑣𝑥𝑥 , 𝑣𝑦𝑦 , ……… = 0.     (5) 

where 𝑇 is a polynomial of unknown function in 𝑣 = 𝑣(𝑥, 𝑡) or 𝑣 = 𝑣(𝑥, 𝑦, 𝑡) and its 

various partial derivatives and nonlinear terms are engaged. The main steps of the 

GKM are as follows 

Step1: we consider the following traveling wave transformation 

  𝑣 𝑥, 𝑡 = 𝑉(𝜉) or 𝑣 𝑥, 𝑦, 𝑡 = 𝑉(𝜉),      𝜉 = 𝑥 + 𝑦 ± 𝑐𝑡,                  (6) 

here 𝑐 is wave velocity. 

The traveling wave transformation (6) consents us decreasing Eq. (4) and (5) to an 

ordinary differential equation (ODE) of the form for 𝑉 = 𝑣(𝜉) is 

  𝐻 𝑉, 𝑉 ′ , 𝑉 ′′ , 𝑉 ′′′ , …… . .  = 0,                    (7) 

here prime indicates the derivative with respect to 𝜉. For obtaining the resulted 

expression becomes the simplest Eq. (7) can be integrated and letting the constant of 

integration to be zero or another character. 

Step 2: The aforesaid technique suggests the exact solution of Eq. (7) can be 

expressed in the following rational form: 

  𝑉 𝜉 =
 𝑎𝑖𝑄

𝑖(𝜉)𝑁
𝑖=0

 𝑏𝑗𝑄
𝑗 (𝜉)𝑀

𝑗=0

 ,        (8) 

where 𝑎𝑖(𝑖 = 0,1,2,… . . , 𝑁), 𝑏𝑗 (𝑗 = 0,1,2,…… ,𝑀) are constants to be determined 

later. Again 𝑎𝑁 ≠ 0, 𝑏𝑀 ≠ 0 and we also note that 𝑄(𝜉) is the solution of the 

auxiliary ODE 

  𝑄′ 𝜉 = 𝑄 𝜉 (𝑄 𝜉 − 1).       (9) 

It can be obvious that Eq. (9) has a solution of the form as follows 
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  𝑄 𝜉 =
1

1+𝐴𝑒𝜉
 ,         (10) 

herein 𝐴 being an integrating constant. 

Step 3: Evaluate the values of positive integers 𝑁 and 𝑀 in Eq. (8) by using 

homogeneous balance principle. As for instance, we balance the highest order 

derivative with the highest order nonlinear term appears in Eq. (7). 

Step 4: Substituting Eq. (8) into Eq. (7) along with Eq. (9), we acquire a polynomial 

𝑅(𝑄(𝜉)) of 𝑄(𝜉). Setting all of the coefficients of the like powers of 𝑅 𝑄 𝜉   to 

zero, we attain the algebraic system of equations. For solving this system of 

equations, we use Mathematica software package program and obtaining the 

unknown parameters 𝑎𝑖 , 𝑏𝑗  and 𝑐 and ultimately we furnish the exact solutions of the 

reduced Eq. (7). 

III.   Implementations of the method 

In this section, the GKM has been assigned to investigate the new exact 

traveling wave solutions of the Couple Boiti-Leon-Pempinelli equations system, 

DSSH equation and fourth-order nonlinear AKNS water wave dynamical equation. 

III.a  Couple Boiti-Leon-Pempinelli equations system 

In this part, we will be applied the GKM to constitute the exact traveling 

wave solutions of the Couple Boiti-Leon-Pempinelli equations system (1). First, we 

will consider the following wave transformation 

  𝑢 𝑥, 𝑦, 𝑡 = 𝑈 𝜉  , 𝑣 𝑥, 𝑦, 𝑡 = 𝑉(𝜉), 𝜉 = 𝑥 + 𝑦 − 𝑐𝑡,   (11) 

hither 𝑐 is a velocity constant to be determined later. Using the above wave 

transformation and integrating the first equation of the system in Eq. (1) three times 

with respect to 𝜉 (letting the constant of integration to be zero) then substituting it 

into the second equation of the system in Eq. (1), we attain the relation as follows: 

  𝑈′′ − 2𝑈3 − 3𝑐𝑈2 − 𝑐2𝑈 = 0.      (12) 

Taking into account the homogeneous balance principle, balancing the highest order 

derivative 𝑈′′  with non-linear term 𝑈3 in Eq. (12), we get: 

  𝑁 = 𝑀 + 1.                     (13) 

Choosing   𝑀 = 1, we attain 𝑁 = 2, so that the exact solution of Eq. (7) constitutes as 

follows: 

  𝑈 𝜉 =
𝑎0+𝑎1𝑄+𝑎2𝑄

2

𝑏0+𝑏1𝑄
,                    (14) 

where 𝑎0, 𝑎1, 𝑎2, 𝑏0 and 𝑏1 are constants to be determined later and 𝑄 = 𝑄 𝜉  satisfy 

Eq. (9). Inserting Eq. (14) into Eq. (12) and putting off the denominator, we obtain a 

polynomial in 𝑄(𝜉). Equating all the coefficients like powers of 𝑄(𝜉)𝑘  to zero, we 

obtain the following system of algebraic equations 
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  𝑄0: 2𝑎0
3 + 3𝑐𝑎0

2𝑏0 + 𝑎0𝑐
2𝑏0

2 = 0, 

  𝑄1: 6𝑎0
2𝑎1 + 6𝑐𝑎0𝑎1𝑏0 − 𝑎1𝑏0

2 + 𝑐2𝑎1𝑏0
2 + 3𝑐𝑎0

2𝑏1 + 𝑎0𝑏0𝑏1 +
2𝑐2𝑎0𝑏0𝑏1 = 0, 

  𝑄2: 6𝑎0𝑎1
2 + 6𝑎0

2𝑎2 + 3𝑐𝑎1
2𝑏0 + 6𝑐𝑎0𝑎2𝑏0 + 3𝑎1𝑏0

2 − 4𝑎2𝑏0
2 + 𝑐2𝑎2𝑏0

2 +
                     6𝑐𝑎0𝑎1𝑏1 − 3𝑎0𝑏0𝑏1 + 𝑎1𝑏0𝑏1 + 2𝑐2𝑎1𝑏0𝑏1 − 𝑎0𝑏1

2 + 𝑐2𝑎0𝑏1
2 = 0, 

  𝑄3: 2𝑎1
3 + 12𝑎0𝑎1𝑎2 + 6𝑐𝑎1𝑎2𝑏0 − 2𝑎1𝑏0

2 + 10𝑎2𝑏0
2 + 3𝑐𝑎1

2𝑏1 +
6𝑐𝑎0𝑎2𝑏1 +                      2𝑎0𝑏0𝑏1 − 𝑎1𝑏0𝑏1 − 3𝑎2𝑏0𝑏1 + 2𝑐2𝑎2𝑏0𝑏1 + 𝑎0𝑏1

2 +
𝑐2𝑎1𝑏1

2 = 0, 

  𝑄4: 6𝑎1
2𝑎2 + 6𝑎0𝑎2

2 + 3𝑐𝑎2
2𝑏0 − 6𝑎2𝑏0

2 + 6𝑐𝑎1𝑎2𝑏1 + 9𝑎2𝑏0𝑏1 − 𝑎2𝑏1
2 +

𝑐2𝑎2𝑏1
2 =                       0, 

  𝑄5: 6𝑎1𝑎2
2 + 3𝑐𝑎2

2𝑏1 − 6𝑎2𝑏0𝑏1 + 3𝑎2𝑏1
2 = 0, 

  𝑄6: 2𝑎2
3 − 2𝑎2𝑏1

2 = 0, 

Solving the above set of algebraic equations by using Mathematica software package 

program, we acquire different cases of solutions which are representing as follows  

Case 1: 

  𝑎0 = −2𝑏0, 𝑎1 = 4𝑏0, 𝑎2 = −2𝑏0, 𝑏1 = −2𝑏0 and 𝑐 = 2,              (15) 

whereinto 𝑏0 is arbitrary constant.  

Plugging these results in Eq. (14) by using Eqs. (10) and (11), the following solution 

will be derived 

  𝑢1,1 𝑥, 𝑦, 𝑡 =
2𝐴2 𝐶𝑜𝑠ℎ 𝑥+𝑦−2𝑡 + 𝑆𝑖𝑛ℎ 𝑥+𝑦−2𝑡  

 1−𝐴2  𝐶𝑜𝑠ℎ 𝑥+𝑦−2𝑡  − 1+𝐴2  𝑆𝑖𝑛ℎ 𝑥+𝑦−2𝑡 
,   (16) 

 In Particular, if we set 𝐴 = 1 then the solution turns into the form 

  𝑢1,1 𝑥, 𝑦, 𝑡 = − 1 + 𝐶𝑜𝑡ℎ 𝑥 + 𝑦 − 2𝑡  .     (17)  

Case 2: 

  𝑎0 = 𝑏0, 𝑎1 = − 𝑏0 − 𝑏1 , 𝑎2 = −𝑏1, 𝑐 = −1 and  𝑏0, 𝑏1are arbitrary 

constant.                       (18)  

Substituting these results into Eq. (14) by using Eqs. (10) and (11), we obtain the 

exact solution of Eq. (1) takes the form as follows 

  𝑢1,2 𝑥, 𝑦, 𝑡 =
𝐴 𝐶𝑜𝑠ℎ 

𝑥+𝑦+𝑡

2
 + 𝑆𝑖𝑛ℎ 

𝑥+𝑦+𝑡

2
  

 𝐴+1 𝐶𝑜𝑠ℎ 
𝑥+𝑦+𝑡

2
 + 𝐴−1 𝑆𝑖𝑛ℎ 

𝑥+𝑦+𝑡

2
 
.     (19) 

For simplicity, if we choose 𝐴 = 1  then, 

  𝑢1,2 𝑥, 𝑦, 𝑡 =
1

2
 1 + 𝑡𝑎𝑛ℎ  

𝑥+𝑦+𝑡

2
  .      (20) 
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Also if we choose 𝐴 = −1 the solution attains 

  𝑢1,2 𝑥, 𝑦, 𝑡 =
1

2
 1 + 𝐶𝑜𝑡ℎ  

𝑥+𝑦+𝑡

2
  .     (21)  

Case 3: 

  𝑎0 = 0, 𝑎1 = 𝑏1, 𝑎2 = −𝑏1, 𝑏0 = 0, 𝑐 = −1,    (22) 

Here 𝑏1 is arbitrary constant. 

These values coincide to the solution as analogous to the preceding solution. Due to 

congeniality, we did not issue it. 

 Csae

  𝑎0 = 0, 𝑎1 = 0, 𝑎2 = 2𝑏0, 𝑏1 = −2𝑏0and 𝑐 = 2,                (23) 

herein  𝑏0 is arbitrary constant. 

Inculcating these values in Eq. (14) with Eqs. (10) and (11), then we come up the 

closed form solution of Eq. (1) is  

     𝑢1,3 𝑥, 𝑦, 𝑡 =
2 𝐶𝑜𝑠ℎ 𝑥+𝑦−2𝑡 −𝑆𝑖𝑛ℎ 𝑥+𝑦−2𝑡  

 𝐴2−1 𝐶𝑜𝑠ℎ 𝑥+𝑦−2𝑡 + 𝐴2+1 𝑆𝑖𝑛ℎ 𝑥+𝑦−2𝑡 
.     (24) 

Also, if we put 𝐴 = 1 in the above equation yields, 

  𝑢1,3 𝑥, 𝑦, 𝑡 = 𝐶𝑜𝑡ℎ 𝑥 + 𝑦 − 2𝑡 − 1      (25) 

III.b   DSSH equation 

In this part, the GKM will be used to constitute the exact traveling wave 

solution of the DSSH equation (2). First we will consider the following 

transformation 

  𝑢 𝑥, 𝑡 = 𝑈(𝜉), 𝜉 = 𝑥 − 𝑐𝑡,                  (26) 

here 𝑐 is a celerity certain to be determined later. Inserting this transformation into 

Eq. (2), this converted into the following nonlinear ODE 

  𝑈(6) − 9𝑈′𝑈(4) − 18𝑈′′𝑈′′′ + 18(𝑈′)2𝑈′′ −
1

2
𝑐2𝑈′′ −

1

2
𝑐𝑈(4) = 0. (27) 

Integrating one time the ODE of Eq. (27) in terms of 𝜉, will give us 

  𝑈(5) − 9𝑈′𝑈′′′ −
9

2
(𝑈′′)2 + 6(𝑈′)3 −

1

2
𝑐2𝑈′ −

1

2
𝑐𝑈′′′ − 𝑔 = 0.  (28) 

where 𝑔 is an integrating constant that can be determined later. By considering the 

homogeneous balance principle, balancing the highest order derivative 𝑈(5) with the 

nonlinear term (𝑈′)3 in Eq. (28) and then the following relation is obtained 

  𝑁 = 𝑀 + 1.                     (29) 
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Now, by treating GKM, we attain the exact solution of Eq. (28). That solution is the 

similar solution of Eq. (12) and is in the form Eq. (14). Transforming Eq. (14) in Eq. 

(28) and removing the denominator, we get a system of algebraic equations by 

solving it, we obtain several results as follows 

Case 1: 

  𝑎1 = −2𝑎0, 𝑎2 = −4𝑏0, 𝑏1 = −2𝑏0, 𝑐 = 4 and 𝑔 = 0,   (30) 

hither 𝑎0 and 𝑏0 are arbitrary constant. 

Inserting these values in Eq. (14) with Eqs. (10) and (26), the following solution will 

be performed 

  𝑢2,1 𝑥, 𝑡 = 1 +
4 𝐶𝑜𝑠ℎ 𝑥−4𝑡 −𝑆𝑖𝑛ℎ 𝑥−4𝑡  

 1−𝐴2 𝐶𝑜𝑠ℎ 𝑥−4𝑡 − 1+𝐴2 𝑆𝑖𝑛ℎ 𝑥−4𝑡 
.                (31) 

Taking hyperbolic function identities and assuming 𝐴 = 1 Eq. (31) becomes 

  𝑢2,1 𝑥, 𝑡 = 3 − 2𝐶𝑜𝑡ℎ 𝑥 − 4𝑡 .                  (32) 

Case 2: 

  𝑎1 = 2(𝑎0 +  2𝑎0 + 𝑏0), 𝑎2 = 4(𝑏0 + 2𝑏0), 𝑏1 = 2(𝑏0 +  2𝑏0), 𝑐 = 1 

and   𝑔 = 0           (33) 

Herein 𝑎0 and 𝑏0 are arbitrary constant.  

Consequently, the exact traveling wave solution of Eq. (2) will be in the form as 

follows 

  𝑢2,2 𝑥, 𝑡 = 1 +
2 𝐶𝑜𝑠ℎ 

𝑥−𝑡

2
 −𝑆𝑖𝑛ℎ 

𝑥−𝑡

2
  

 𝐴+1 𝐶𝑜𝑠ℎ 
𝑥−𝑡

2
 + 𝐴−1 𝑆𝑖𝑛ℎ 

𝑥−𝑡

2
 
.    (34) 

Setting 𝐴 = 1 then Eq. (34) can be expressed as 

  𝑢2,2 𝑥, 𝑡 = 2 − 𝑡𝑎𝑛ℎ  
𝑥−𝑡

2
 .                   (35) 

Again if we choose 𝐴 = −1 Eq. (34) yields 

  𝑢2,2 𝑥, 𝑡 = 2 − 𝐶𝑜𝑡ℎ  
𝑥−𝑡

2
 .                   (36) 

Case 3: 

  𝑎1 = −2(𝑎0 − 𝑏0),  𝑎2 = −4𝑏0,  𝑏1 = −2𝑏0, 𝑐 = 1 and 𝑔 = 0,   (37) 

where 𝑎0, 𝑏0 are arbitrary constant. 

These values coincide to the solution as like as the preceding solution. Due to 

congeniality, we did not express it. 

Case 4: 
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  𝑎1 =
2

21
 5𝑎0 + 21𝑏0 , 𝑎2 =

20 𝑏0

21
, 𝑏1 =

10 𝑏0

21
, 𝑐 = 1, 𝑔 = 0,  (38) 

Where 𝑎0 and 𝑏0are arbitrary constant. 

  𝑢2,4 𝑥, 𝑡 =
2

3
+

2 𝐶𝑜𝑠ℎ 
𝑥−𝑡

2
 −𝑆𝑖𝑛ℎ 

𝑥−𝑡

2
  

 1+𝐴 𝐶𝑜𝑠ℎ 
𝑥−𝑡

2
 − 1−𝐴 𝑆𝑖𝑛ℎ 

𝑥−𝑡

2
 
.    (39) 

For instance, we input 𝐴 = −1 the solution takes the form 

  𝑢2,4 𝑥, 𝑡 =
5

3
− 𝐶𝑜𝑡ℎ  

𝑥−𝑡

2
 .       (40) 

If we set 𝐴 = 1we to come up the solution as follows 

  𝑢2,4 𝑥, 𝑡 =
5

3
− 𝑡𝑎𝑛ℎ  

𝑥−𝑡

2
 .       (41) 

III.c    Fourth-order nonlinear AKNS water wave dynamical equation 

In this part, the GKM will be employed to establish the exact traveling wave 

solution of the fourth-order nonlinear AKNS water wave dynamical equation (3). We 

first take into consideration the following traveling waves transformation, 

  𝑢 𝑥, 𝑦, 𝑡 = 𝑈(𝜉), 𝜉 = 𝑥 + 𝑦 + 𝜔𝑡,      (42) 

here 𝜔 is wave speed to evaluated later. Plugging this transformation into Eq. (3), this 

transforms into the following nonlinear ODE and integrated with respect to 𝜉 (letting 

the constant of integration to be zero), we obtain: 

   4𝜔 − 𝛽 𝑈′ + 6(𝑈′)2 +𝜔𝑈′′′ = 0.                (43) 

In Eq. (8) the relation between 𝑁 and 𝑀 is conferred by homogeneous balance 

principle, balancing highest order derivative 𝑈′′′ with highest order nonlinear term 

(𝑈′)2 in Eq. (43), we attain the relation as follows: 

  𝑁 = 𝑀 + 1.                  (44) 

The solution of Eq. (43) is similar to Eq. (12), which form is in Eq. (14). Substituting 

Eq. (14) into Eq. (43) and cleaning the denominator, we acquire a system of algebraic 

equations by solving it, we attain  

Case 1: 

  𝑎1 = −2𝑎0, 𝑎2 =
𝛽𝑏0

4
, 𝑏1 = −2𝑏0, 𝜔 =

𝛽

8
,              (45) 

 

wherein 𝑎0, 𝑏0 are arbitrary constant.   

 Inserting these conditions of Eq. (45) into Eq. (14), hence the following solution will 

be furnished 
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  𝑢3,1 𝑥, 𝑦, 𝑡 = 1 +
𝛽

4

 𝐶𝑜𝑠ℎ 𝑥+𝑦+
𝛽

8
𝑡 −𝑆𝑖𝑛ℎ 𝑥+𝑦+

𝛽

8
𝑡  

 𝐴2−1 𝐶𝑜𝑠ℎ 𝑥+𝑦+
𝛽

8
𝑡 + 𝐴2+1 𝑆𝑖𝑛ℎ 𝑥+𝑦+

𝛽

8
𝑡 

.  (46) 

If we set 𝐴 = 1 then Eq. (46) turns into the form 

  𝑢3,1 𝑥, 𝑦, 𝑡 = 1 +
𝛽

8
 𝐶𝑜𝑡ℎ  𝑥 + 𝑦 +

𝛽

8
𝑡 − 1 .            (47) 

Similar result will be found if we set 𝐴 = −1. 

Case 2: 

  𝑎1 =
−𝛽𝑏0

2+5𝑎0𝑏1

5𝑏0
, 𝑎2 = −

𝛽𝑏1

5
, 𝜔 =

𝛽

5
,      (48) 

therein 𝑎0, 𝑏0, 𝑏1 are arbitrary constant. 

Accordingly, the new exact solution of Eq. (3) can be explored as follows  

               𝑢3,2 𝑥, 𝑦, 𝑡 = 1 −
𝛽

5

 𝐶𝑜𝑠ℎ 
𝑥+𝑦+

𝛽
5
𝑡

2
 −𝑆𝑖𝑛ℎ 

𝑥+𝑦+
𝛽
5
𝑡

2
  

 𝐴+1 𝐶𝑜𝑠ℎ 
𝑥+𝑦+

𝛽
5
𝑡

2
 + 𝐴−1 𝑆𝑖𝑛ℎ 

𝑥+𝑦+
𝛽
5
𝑡

2
 

.              (49) 

Using hyperbolic function identities and choose 𝐴 = 1 Eq. (49) yields, 

  𝑢3,2 𝑥, 𝑦, 𝑡 = 1 +
𝛽

10
 𝑡𝑎𝑛ℎ  

𝑥+𝑦+
𝛽

5
𝑡

2
 − 1 .    (50) 

Also, if we set 𝐴 = −1 Eq. (49) can be written as 

  𝑢3,2 𝑥, 𝑦, 𝑡 = 1 +
𝛽

10
 𝐶𝑜𝑡ℎ  

𝑥+𝑦+
𝛽

5
𝑡

2
 − 1 .                (51) 

Case 3: 

  𝑎0 = 0, 𝑎2 = −
𝛽𝑏1

5
, , 𝑏0 = 0, 𝜔 =

𝛽

5
 and 𝑏1 is arbitrary constant.  (52) 

So that, the new exact traveling wave solution of Eq. (3) can be described the 

following form 

   𝑢3,3 𝑥, 𝑦, 𝑡 =
1

2
−
𝛽

5

 𝐶𝑜𝑠ℎ 
𝑥+𝑦+

𝛽
5
𝑡

2
 −𝑆𝑖𝑛ℎ 

𝑥+𝑦+
𝛽
5
𝑡

2
  

 𝐴−1 𝑆𝑖𝑛ℎ 
𝑥+𝑦+

𝛽
5𝑡

2
 + 𝐴+1 𝐶𝑜𝑠ℎ 

𝑥+𝑦+
𝛽
5𝑡

2
 

.  (53) 

Choosing 𝐴 = −1 and simplifying we attain 

  𝑢3,3 𝑥, 𝑦, 𝑡 =
𝛽

10
 𝐶𝑜𝑡ℎ  

𝑥+𝑦+
𝛽

5
𝑡

2
 − 1 +

1

2
.                (54) 
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And if 𝐴 = 1 then we deduce the solution, which converts into 

  𝑢3,3 𝑥, 𝑦, 𝑡 =
𝛽

10
 𝑡𝑎𝑛ℎ  

𝑥+𝑦+
𝛽

5
𝑡

2
 − 1 +

1

2
.     (55) 

Remark: All of the solutions in this treatise have been corroborated by substituting 

back into the original equation via the symbolic computer program Mathematica and 

found them new. 

IV.   Physical interpretation and graphical illustration 

In this section, we have exemplified physical explanation and graphical 

representation of the attained solution of the Couple Boiti-Leon-Pempinelli, DSSH 

and fourth-order nonlinear AKNS equations. Let us now examine Figs. 1-6 as it 

illustrates 3D and 2D plots of some of our obtained solutions, which will provide 

different types of kink, soliton, singular kink etc. solutions. To this goal, we choose 

various special values of the constants obtained, such as  Fig.1 shows the profile of 

Eq. (17) that behaves like the soliton solution for 𝑦 = 0 and 𝐴 = 1 within the interval 

−5 ≤ 𝑥 ≤ 5 and −5 ≤ 𝑡 ≤ 5. Fig. 2 represent the profile of kink solution of 3𝐷 and 

corresponding 2𝐷 shape of Eq. (20) for 𝑦 = 0, 𝐴 = 1 within the interval −5 ≤ 𝑥 ≤ 5 

and −5 ≤ 𝑡 ≤ 5. Fig. 3 which represent the shape of singular soliton solution of Eq. 

(32) for 𝑎0 = 1, 𝑏0 = 1 and 𝐴 = 1 within the interval −10 ≤ 𝑥 ≤ 10 and −10 ≤ 𝑡 ≤
10. Fig. 4 depicts the 3𝐷 and the corresponding 2𝐷 plot of Eq. (35) for a0 = 1, 

𝑏0 = 1 and A = 1 within the interval −5 ≤ 𝑥 ≤ 5 and −5 ≤ 𝑡 ≤ 5. The kink 

solution of Eq. (50) for 𝑎0 = 1,𝑏0 = 1, 𝑦 = 0.5, 𝛽 = 15 and 𝐴 = 1 within the 

interval −10 ≤ 𝑥 ≤ 10 and −10 ≤ t ≤ 10 which is in Fig. 5. Fig. 6 shows the 

singular kink solution of Eq. (51) for 𝑎0 = 1, 𝑏0 = 1, 𝑦 = 0, 𝛽 = −5 and 𝐴 = −1 

within the interval −5 ≤ 𝑥 ≤ 5 and −5 ≤ 𝑡 ≤ 5. 

   

Fig. 1: Shape of the exact solution of Eq. (17) and its projection at 𝑡 = 1 when 𝑦 = 0. 
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Fig. 2: Shape of the exact solution of Eq. (20) and its projection at 𝑡 = 0 when 𝑦 = 0. 

    

  

Fig. 3: Shape of the exact solution of Eq. (32) and its projection at 𝑡 = 1. 

 

  

Fig. 4: Shape of the exact solution of Eq. (35) and its projection at 𝑡 = 0. 
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Fig. 5: Shape of the exact solution of Eq. (50) and its projection at 𝑡 = 0. 

  

Fig. 6: Shape of the exact solution of  Eq. (51) and its projection at 𝑡 = 1 

V.    Comparison 

In this portion, we compare our performed solutions with Khater et al. 

[XXV], Feng and Zheng [XXXIV], Ali et al. [II], results for Eqns. (1), (2), (3) 

respectively. Wherein Khater et al. [XXV] solved Couple Boiti-Leon-Pempinelli 

equations system by using Khater method, Feng and Zheng [XXXIV] solved the 

DSSH equation by implementing  
𝐺 ′

𝐺
 - expansion method and Ali et al. [II] solved 

fourth-order nonlinear AKNS water wave dynamical equation by applying Simple 

equation method. The comparison is ascertained as follows 
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Couple Boiti-Leon-Pempinelli equations system: 

 

   Khater et al. [XXV] solution                     Our solution 

For 𝛼 =
− 𝛽2−𝑐1

2 

4𝜎
, 𝑎0 =

𝛽−𝑐1

2
 and 𝑎1 = 𝜎 then the 

solitary wave solution 

𝑢 𝑥, 𝑦, 𝑡 =

−
𝛽+𝑐1

2
−   𝛽2 − 𝛼𝜎  𝑡𝑎𝑛ℎ  

  𝛽2−𝛼𝜎  

2
 𝑥 + 𝑦 − 𝑐1𝑡  .  

and 

𝑢 𝑥, 𝑦, 𝑡 =

−
𝛽+𝑐1

2
−   𝛽2 − 𝛼𝜎  𝐶𝑜𝑡ℎ  

  𝛽2−𝛼𝜎  

2
 𝑥 + 𝑦 − 𝑐1𝑡  . 

Since 𝑎0 = 𝑏0, 𝑎1 = − 𝑏0 − 𝑏1 , 
𝑎2 = −𝑏1 and 𝑐 = −1 then exact 

solution 

𝑢1,2 𝑥, 𝑦, 𝑡 =
1

2
 1 + 𝑡𝑎𝑛ℎ  

𝑥+𝑦+𝑡

2
  . 

                        and 

𝑢1,2 𝑥, 𝑦, 𝑡 =
1

2
 1 + 𝐶𝑜𝑡ℎ  

𝑥+𝑦+𝑡

2
  . 

DSSH equation: 

 

 Feng and Zheng [XXXIV]                 Our solution 

When 𝑎1 = −2, 𝑎0 = 𝑎0, 𝑔 = 0, 𝑐 = 𝜆2 −
4𝜇, then for particular values of 𝑐1 = 1 , 

𝑐2 = 0, 𝜆 = 2 and 𝜇 = 0 the hyperbolic 

solution comes up 

𝑢 𝑥, 𝑡 = 2 − 2 tanh 𝑥 − 4𝑡 + 𝑎0. 

 

 

For 𝑎1 =
2

21
 5𝑎0 + 21𝑏0 , 𝑎2 =

20 𝑏0

21
, 𝑏1 =

10 𝑏0

21
, 𝑐 = 1, 𝑔 = 0 the exact solution is 

𝑢2,4 𝑥, 𝑡 =
5

3
− 𝐶𝑜𝑡ℎ  

𝑥−𝑡

2
 .  

                      and 

𝑢2,4 𝑥, 𝑡 =
5

3
− 𝑡𝑎𝑛ℎ  

𝑥−𝑡

2
 . 

Fourth-order nonlinear AKNS water wave dynamical equation: 

          Ali et al. [II]                Our solution 

For 𝑘 =
𝛽

𝑏1
2−4𝑏0𝑏2+4

, 𝐴1 =
𝛽𝑏2

−𝑏1
2+4𝑏0𝑏2−4

, 

𝐴−1 = 0, 𝐴−2 = 0, 𝐴2 = 0 then the 

solution yields 

𝑣2 𝑥, 𝑦, 𝑡 =
𝐴0 +

𝛽

 

 
 
𝑏1− 4𝑏0𝑏2−𝑏1

2  𝑡𝑎𝑛  
 4𝑏0𝑏2−𝑏1

2

2
 𝜉+𝜉0  

 

 
 

 2𝑏1
2−8𝑏0𝑏2+8 

, 

4𝑏0𝑏2 > 𝑏1
2,          

where 𝜉 = 𝑥 + 𝑦 +
𝛽

𝑏1
2−4𝑏0𝑏2+4

𝑡. 

𝑎1 =
−𝛽𝑏0

2+5𝑎0𝑏1

5𝑏0
, 𝑎2 = −

𝛽𝑏1

5
, 𝜔 =

𝛽

5
 then 

we obtained the exact travelling wave 

solution is 

𝑢3,3 𝑥, 𝑦, 𝑡 =
𝛽

10
 𝐶𝑜𝑡ℎ  

𝑥+𝑦+
𝛽

5
𝑡

2
 − 1 +

1

2
. 

 

                           and 

𝑢3,3 𝑥, 𝑦, 𝑡 =
𝛽

10
 𝑡𝑎𝑛ℎ  

𝑥+𝑦+
𝛽

5
𝑡

2
 − 1 +

1

2
. 
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VI.   Results and Discussion 

The fundamental key stone of the GKM is to punctuate the new exact solutions of 

the above mentioned Equations (1-3). These equations have been solved by several 

scholars (Khater et al. [XXV]; Feng and Zheng [XXXIV]; Ali et al. [II]). Also, 

utilizing different methods they have found different types of the exact solution such 

as Khater et al. [XXV] obtained solitary wave solutions by using Khater method and 

these results expressed tan, cot, tanh, coth form. Besides Feng and Zheng [XXXIV] 

and Ali et al. [II] has gotten some new traveling wave solutions which represented by 

sin, cos, sinh, cosh and sinh, cosh, tanh form. In our term, the first time we envisage 

the novel GKM and used a different technique for obtaining several types of new 

exact traveling wave solution of the aforecited equations (1-3). All the solutions in 

this article represented by hyperbolic form and these are new. 

VII.   Conclusion 

The main purpose of this work has been effectively utilized novel GKM to 

attain exact traveling wave solutions of Couple Boiti-Leon-Pempinelli, DSSH and 

fourth-order nonlinear AKNS equations. The obtained solutions are discerned by 

putting them back into the said physical model and are accomplished to be very 

commodious over various existing methods. The obtained solutions may be congenial 

to perceive the mechanism of the tangled non-linear physical phenomena in wave 

collaboration. These solutions have an extraordinary specialty that keeps its 

uniformity upon interacting with others. The results out solutions emphasize that the 

GKM provides a powerful mathematical tool that some new exact solutions are 

frequently extracted. This method is very legitimate, modest, efficient, simple and 

effective for NLEEs in mathematical and pragmatical point of view. Finally, we 

consider that the method can easily be applicable to a large category of physical 

problems in a wide range of applied nonlinear science.     
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