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Abstract 

                This paper is concerned with the motion of a non-Newtonian fluid of Reiner-

Rivlin type through an annulus with porous walls in presence of radial magnetic field. 

Here, the inner cylinder rotates about its axis with a transient angular velocity while the 

outer one is kept fixed. 

Keywords : Reiner-Rivlin fluid, Circular cylinder, Radial magnetic field, transient angular 

velocity,  Hankel functions 

I.      Introduction 

The unsteady motion of a viscous conducting liquid between two porous 

concentric circular cylinders acted on by a radial magnetic field was studied by 

Mahapatra [1]. The motion of an ordinary viscous fluid between two co-axial 

porous circular cylinders when the inner cylinder is oscillating was investigated by 

Khamrui [2]. In this paper, an attempt has been made to investigate the flow of a 

Reiner-Rivlin fluid through two porous co-axial circular cylinders acted on by a 

radial magnetic field. The inner cylinder rotates with a transient angular velocity 

and the outer one is at rest. The approximate solutions for two extreme cases have 

been derived and in solving the problem Hankel functions have been used. 

The well-known constitutive relation of Reiner-Rivlin fluid is given by                                              

  𝜏𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜇𝑒𝑖𝑗 + 𝜇𝑐𝑒𝑖𝑘𝑒𝑘𝑗           (1) 

where 𝜇 is the coefficient of viscosity, 𝜇𝑐 is the coefficient of cross-viscosity, 𝜏𝑖𝑗 is 

the stress tensor,𝑒𝑖𝑗 is the rate of strain-tensor and 𝛿𝑖𝑗 = 1, 𝑖 = 𝑗 𝑎𝑛𝑑 𝛿𝑖𝑗 = 0, 𝑖 ≠ 𝑗.  

Here 𝜇 and 𝜇𝑐 are assumed to be constants. 
 

II.    Formulation and Solutions of the Problem 

                    Let us consider the radii of the inner and outer cylinders be ‘a’ and ‘b’ 

respectively. Choosing the cylindrical polar co-ordinates (𝑟, 𝜃, 𝑧) with z-axis as the 
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common axis of the cylinders, the velocity components can be taken as (𝑢, 𝑣, 0). It 

is assumed that all the physical quantities are independent of 𝜃 and z.  

                    Neglecting the effects due to the induced electric and magnetic fields, 

the equations of motion can be written as 

            

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑟
−
𝑣2

𝑟
) =

𝜕𝜏𝑟𝑟

𝜕𝑟
+
𝜕𝜏𝑧𝑟

𝜕𝑧
+
𝜏𝑟𝑟−𝜏𝜃𝜃

𝑟

𝑎𝑛𝑑

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑟
+
𝑢𝑣

𝑟
+
𝜎𝐵0

2

𝜌
.
𝑣

𝑟2
) =

𝜕𝜏𝑟𝜃

𝜕𝑟
+
𝜕𝜏𝜃𝑧

𝜕𝑧
+
2𝜏𝑟𝜃

𝑟 }
 

 

              (2) 

where 𝐵0 is the magnetic induction vector and 𝜎 is the conductivity of the fluid. 

The equation of continuity is                                                              

                                    
𝜕𝑢

𝜕𝑟
+
𝑢

𝑟
= 0              (3) 

Now,  𝑒𝑟𝑟 = 2
𝜕𝑢

𝜕𝑟
 ,   𝑒𝜃𝜃 =

2𝑢

𝑟
 ,   𝑒𝑟𝑧 = 𝑒𝜃𝑧 = 𝑒𝑧𝑧 = 0 , 𝑒𝑟𝜃 =

𝜕𝑣

𝜕𝑟
−
𝑣

𝑟
 . 

                   Hence,  we have on using (1), 

            𝜏𝑟𝑟 = −𝑝 + 2𝜇
𝜕𝑢

𝜕𝑟
+ 𝜇𝑐 {4 (

𝜕𝑢

𝜕𝑟
)
2

+ (
𝜕𝑣

𝜕𝑟
−
𝑣

𝑟
)
2

} 

            𝜏𝜃𝜃 = −𝑝 + 2𝜇
𝑢

𝑟
+ 𝜇𝑐 {(

𝜕𝑣

𝜕𝑟
−
𝑣

𝑟
)
2

+ 4
𝑢2

𝑟2
} 

            𝜏𝑟𝑧 = 𝜏𝜃𝑧 = 𝜏𝑧𝑧 = 0  

and       𝜏𝑟𝜃 = 𝜇 (
𝜕𝑣

𝜕𝑟
−
𝑣

𝑟
) + 𝜇𝑐 . 2 (

𝜕𝑣

𝜕𝑟
−
𝑣

𝑟
) (

𝜕𝑢

𝜕𝑟
+
𝑢

𝑟
) .  

                    Hence from (2), with the help of (3), we get 

 𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑟
−
𝑣2

𝑟
) = −

𝜕𝑝

𝜕𝑟
+ 2𝜇

𝜕2𝑢

𝜕𝑟2
+ 𝜇𝑐

𝜕

𝜕𝑟
{4 (

𝜕𝑢

𝜕𝑟
)
2

+ (
𝜕𝑣

𝜕𝑟
−
𝑣

𝑟
)
2

} 

                    +
1

𝑟
[2𝜇 (

𝜕𝑢

𝜕𝑟
−
𝑢

𝑟
)  + 4𝜇𝑐 {(

𝜕𝑢

𝜕𝑟
)
2

−
𝑢2

𝑟2
}]        (4) 

and        

                     𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑟
+
𝑢𝑣

𝑟
+
𝜎𝐵0

2

𝜌
.
𝑣

𝑟2
) = 𝜇 (

𝜕

𝜕𝑟
+
2

𝑟
) (

𝜕𝑣

𝜕𝑟
−
𝑣

𝑟
)  (5) 

                 It is assumed that the rate of suction at the inner cylinder is equal to the 

rate of injection at the outer cylinder. So, we have on using (3)                                         

          𝑢 =
𝑎𝑢𝑎

𝑟
=

𝑏𝑢𝑏

𝑟
        (6) 

where  𝑢𝑎  and  𝑢𝑏 are the radial velocities at the inner and outer walls 

respectively. 
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Substituting for u  in (5) and considering  𝑢𝑎  to be constant, we get 

       𝜌 {
𝜕𝑣

𝜕𝑡
+
𝑎𝑢𝑎

𝑟
(
𝜕𝑣

𝜕𝑟
+
𝑣

𝑟
) +

𝜎𝐵0
2

𝜌
.
𝑣

𝑟2
} = 𝜇 (

𝜕

𝜕𝑟
+
2

𝑟
) (

𝜕𝑣

𝜕𝑟
−
𝑣

𝑟
)     (7) 

                   Again, substituting  𝑣 = 𝑟𝜔 in (7), we obtain 

      𝑟
𝜕𝜔

𝜕𝑡
+
𝑎𝑢𝑎

𝑟
(𝑟

𝜕𝜔

𝜕𝑟
+ 2𝜔) = 𝜈 [

𝜕

𝜕𝑟
(𝑟

𝜕𝜔

𝜕𝑟
) + 2

𝜕𝜔

𝜕𝑟
] −

𝜎𝐵0
2

𝜌
.
𝜔

𝑟
                          (8) 

where 𝜈 is the kinematic coefficient of viscosity and  𝜔 is the angular velocity of 

the inner cylinder.            

                   Further, putting 𝜔 = 𝜑(𝑟). 𝑒−𝑛𝑡  in (8), we get 

𝑟2
𝑑2𝜑

𝑑𝑟2
+ (3 − 𝑟)𝑟

𝑑𝜑

𝑑𝑟
+ (

𝑛

𝜈
𝑟2 − 2𝑅 −𝑀2)𝜑 = 0                                  (9) 

where  𝑀 = 𝐵0√
𝜎

𝜇
   and  𝑅 =

𝑎𝑢𝑎

𝜈
  is the cross-flow Reynolds number in 

Newtonian fluid. 

                 If the inner cylinder rotates with a transient angular velocity   Ω𝑒−𝑛𝑡,  

the boundery conditions are  

                         

𝜑(𝑟) = Ω  when r = a
and

𝜑(𝑟) = 0  when r = b
}                                                                 (10) 

                 Now, substituting  𝜑(𝑟) = 𝑟
𝑅

2
−1. 𝐹(𝑟)  in  (9), we have                           

              𝑟2
𝑑2𝐹

𝑑𝑟2
+ 𝑟

𝑑𝐹

𝑑𝑟
+ (𝑘2𝑟2 −𝑚2)𝐹 = 0                                                             (11) 

which is Bessel’s equation of  m-th order, where  𝑚 = √(1 +
𝑅

2
)
2

+𝑀2      

and   𝑘 = √
𝑛

𝜈
 . 

For practical need, the solution of equation (11) can be taken as  

                                 𝐹(𝑟) = 𝐶𝐻𝑚
(1)(𝑘𝑟) + 𝐷𝐻𝑚

(2)(𝑘𝑟)  

where  𝐻𝑚
(1)(𝑘𝑟)   and  𝐻𝑚

(2)(𝑘𝑟)   are Hankel functions of the first kind and second 

kind respectively and  C, D are constants. 

Hence we obtain 

                                   𝜑(𝑟) = 𝑟
𝑅

2
−1[𝐶𝐻𝑚

(1)(𝑘𝑟) + 𝐷𝐻𝑚
(2)(𝑘𝑟)] . 
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Applying the boundary conditions (10), we obtain 

  𝐶 =
Ωa

1−
R
2𝐻𝑚

(2)(𝑘𝑏)

𝐻𝑚
(1)(𝑘𝑎)𝐻𝑚

(2)(𝑘𝑏)−𝐻𝑚
(1)(𝑘𝑏)𝐻𝑚

(2)(𝑘𝑎)
   and   𝐷 =

−Ωa
1−
R
2𝐻𝑚

(1)(𝑘𝑏)

𝐻𝑚
(1)(𝑘𝑎)𝐻𝑚

(2)(𝑘𝑏)−𝐻𝑚
(1)(𝑘𝑏)𝐻𝑚

(2)(𝑘𝑎)
 . 

             Hence we obtain the azimuthal velocity as 

         𝑣 = Ωr
R

2a1−
R

2e−nt [
𝐻𝑚
(1)(𝑘𝑟)𝐻𝑚

(2)(𝑘𝑏)−𝐻𝑚
(1)(𝑘𝑏)𝐻𝑚

(2)(𝑘𝑟)

𝐻𝑚
(1)(𝑘𝑎)𝐻𝑚

(2)(𝑘𝑏)−𝐻𝑚
(1)(𝑘𝑏)𝐻𝑚

(2)(𝑘𝑎)
]                                     (12) 

Using the relation (6), equation (4) becomes 

    𝜌 (−
𝑎2𝑢𝑎

2

𝑟3
−
𝑣2

𝑟
) = −

𝜕𝑝

𝜕𝑟
+ 𝜇𝑐

𝜕

𝜕𝑟
{
4𝑎2𝑢𝑎

2

𝑟4
+ (

𝜕𝑣

𝜕𝑟
−
𝑣

𝑟
)
2

} 

which on integration gives 

                 𝑝 = 𝑝0 + 𝜌∫
𝑣2

𝑟
𝑑𝑟 −

𝑎2𝑢𝑎
2𝜌

2𝑟2
+ 𝜇𝑐 {

4𝑎2𝑢𝑎
2

𝑟4
+ (

𝜕𝑣

𝜕𝑟
−
𝑣

𝑟
)
2

}  

                    = 𝑝0 + 𝑝𝐼 + 𝑝𝐼𝐼 + 𝑝𝐼𝐼𝐼  (𝑠𝑎𝑦)                                                                (13) 

which shows that the pressure is made up of the components  𝑝𝐼 due to the rotatory 

motion,  𝑝𝐼𝐼 due to the porosity of the cylinders and  𝑝𝐼𝐼𝐼 due to the cross-viscosity. 

It is also evident from the solution that the velocity is unaffected by the 

cross-viscosity while the pressure is affected by it. 

III.  Flow for Low Frequencies 

                We have the expressions (Watson [3], p. 73) for 𝐻𝑚
1 (𝑧)  and  

𝐻𝑚
2 (𝑧)  in terms of  𝐽𝑚(𝑧)  and  𝐽−𝑚(𝑧)  as 

         𝐻𝑚
1 (𝑧) =

𝑒
−
𝑚
𝜋𝑖𝐽𝑚(𝑧)−𝐽−𝑚(𝑧)

−𝑖 𝑠𝑖𝑛𝑚.  𝜋
   and    𝐻𝑚

2 (𝑧) =
𝑒
𝑚
𝜋𝑖𝐽𝑚(𝑧)−𝐽−𝑚(𝑧)

𝑖 𝑠𝑖𝑛𝑚.  𝜋
 . 

Hence we get 

𝐻𝑚
(1)(𝑘𝑟)𝐻𝑚

(2)(𝑘𝑏) − 𝐻𝑚
(1)(𝑘𝑏)𝐻𝑚

(2)(𝑘𝑟)

𝐻𝑚
(1)(𝑘𝑎)𝐻𝑚

(2)(𝑘𝑏) − 𝐻𝑚
(1)(𝑘𝑏)𝐻𝑚

(2)(𝑘𝑎)

=
𝐽𝑚(𝑘𝑟)𝐽−𝑚(𝑘𝑏) − 𝐽𝑚(𝑘𝑏)𝐽−𝑚(𝑘𝑟)

𝐽𝑚(𝑘𝑎)𝐽−𝑚(𝑘𝑏) − 𝐽𝑚(𝑘𝑏)𝐽−𝑚(𝑘𝑎)
                        (14) 

Again, we have (Watson [3], p.40) 
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        𝐽𝑚(𝑧) = (
𝑧

2
)
𝑚
. [

1

𝛤(𝑚+1)
−

𝑧2

4𝛤(𝑚+2)
+ ………………… . . ] 

                    =  (
𝑧

2
)
𝑚
. (𝑎0 − 𝑎1𝑧

2 + …………… . . ) 

and 

        𝐽−𝑚(𝑧) = (
𝑧

2
)
−𝑚

. [
1

𝛤(−𝑚+1)
−

𝑧2

4𝛤(−𝑚+2)
+ ………………… . . ] 

                     =  (
𝑧

2
)
−𝑚

. (𝑏0 − 𝑏1𝑧
2 + …………… . . ), 

where     
   𝑎0 =

1

𝛤(𝑚+1)
  ,     𝑎1 =

1

4𝛤(𝑚+2)
  ,

𝑏0 =
1

𝛤(−𝑚+1)
 ,     𝑏1 =

1

4𝛤(−𝑚+2)

}                                                      (15)    

The absolute values of kr, ka and kb are small for low frequencies and so avoiding 

terms involving powers of k higher than two, we get 

       𝐽𝑚(𝑘𝑟)𝐽−𝑚(𝑘𝑏) − 𝐽𝑚(𝑘𝑏)𝐽−𝑚(𝑘𝑟) =    

                       = 𝑎0𝑏0 [(
𝑟

𝑏
)
𝑚

− (
𝑏

𝑟
)
𝑚

]

− 𝑘2 [(𝑎0𝑏1𝑏
2 + 𝑎1𝑏0𝑟

2) (
𝑟

𝑏
)
𝑚

− (𝑎0𝑏1𝑟
2 + 𝑎1𝑏0𝑏

2) (
𝑏

𝑟
)
𝑚

] 

and 

𝐽𝑚(𝑘𝑎)𝐽−𝑚(𝑘𝑏) − 𝐽𝑚(𝑘𝑏)𝐽−𝑚(𝑘𝑎) =

= 𝑎0𝑏0 [(
𝑎

𝑏
)
𝑚

− (
𝑏

𝑎
)
𝑚

]

− 𝑘2 [(𝑎0𝑏1𝑏
2 + 𝑎1𝑏0𝑎

2) (
𝑎

𝑏
)
𝑚

− (𝑎0𝑏1𝑎
2 + 𝑎1𝑏0𝑏

2) (
𝑏

𝑎
)
𝑚

]. 

Putting in (14), we have  

𝐻𝑚
(1)(𝑘𝑟)𝐻𝑚

(2)(𝑘𝑏) − 𝐻𝑚
(1)(𝑘𝑏)𝐻𝑚

(2)(𝑘𝑟)

𝐻𝑚
(1)(𝑘𝑎)𝐻𝑚

(2)(𝑘𝑏) − 𝐻𝑚
(1)(𝑘𝑏)𝐻𝑚

(2)(𝑘𝑎)
=                      
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                            =

  
𝑎0𝑏0[(

𝑟

𝑏
)
𝑚
−(

𝑏

𝑟
)
𝑚
]−𝑘2[(𝑎0𝑏1𝑏

2+𝑎1𝑏0𝑟
2)(

𝑟

𝑏
)
𝑚
−(𝑎0𝑏1𝑟

2+𝑎1𝑏0𝑏
2)(

𝑏

𝑟
)
𝑚
]

𝑎0𝑏0[(
𝑎

𝑏
)
𝑚
−(

𝑏

𝑎
)
𝑚
]−𝑘2[(𝑎0𝑏1𝑏

2+𝑎1𝑏0𝑎
2)(

𝑎

𝑏
)
𝑚
−(𝑎0𝑏1𝑎

2+𝑎1𝑏0𝑏
2)(

𝑏

𝑎
)
𝑚
]
 . 

Now, substituting = √
𝑛

𝜈
 , we finally obtain the velocity from (12) as 

                          𝑣 =

     Ωr
R

2a1−
R

2e−nt. {
[(
𝑟

𝑏
)
𝑚
−(

𝑏

𝑟
)
𝑚
]−

𝑛

𝜈𝑎0𝑏0
[(𝑎0𝑏1𝑏

2+𝑎1𝑏0𝑟
2)(

𝑟

𝑏
)
𝑚
−(𝑎0𝑏1𝑟

2+𝑎1𝑏0𝑏
2)(

𝑏

𝑟
)
𝑚
]

[(
𝑎

𝑏
)
𝑚
−(

𝑏

𝑎
)
𝑚
]−

𝑛

𝜈𝑎0𝑏0
[(𝑎0𝑏1𝑏

2+𝑎1𝑏0𝑎
2)(

𝑎

𝑏
)
𝑚
−(𝑎0𝑏1𝑎

2+𝑎1𝑏0𝑏
2)(

𝑏

𝑎
)
𝑚
]
}          ( 16) 

IV.    Flow for High Frequencies 

                 The value of |𝑘| is very large for high frequencies and so, we use the 

asymptotic formulas (Sommerfeld [4], p.100) 

                            𝐻𝑚
1 (𝑧) = (

2

𝜋𝑧
)
1
2⁄
𝑒
𝑖{𝑧−

1

2
𝜋(𝑚+

1

2
)} 
     𝑎𝑛𝑑      𝐻𝑚

2 (𝑧) =

                                              (
2

𝜋𝑧
)
1
2⁄
𝑒
−𝑖{𝑧−

1

2
𝜋(𝑚+

1

2
)} 

 . 

Hence we get 

𝐻𝑚
(1)(𝑘𝑟)𝐻𝑚

(2)(𝑘𝑏) − 𝐻𝑚
(1)(𝑘𝑏)𝐻𝑚

(2)(𝑘𝑟) = −
2

𝜋𝑘√𝑟𝑏
{𝑒𝑖𝑘(𝑏−𝑟) − 𝑒−𝑖𝑘(𝑏−𝑟)} 

                                                                       ≈ −
2

𝜋𝑘√𝑟𝑏
 . 𝑒𝑖𝑘(𝑏−𝑟) ,

𝑠𝑖𝑛𝑐𝑒 𝑏 > 𝑟 

and 

𝐻𝑚
(1)(𝑘𝑎)𝐻𝑚

(2)(𝑘𝑏) − 𝐻𝑚
(1)(𝑘𝑏)𝐻𝑚

(2)(𝑘𝑎) = −
2

𝜋𝑘√𝑎𝑏
{𝑒𝑖𝑘(𝑏−𝑎) − 𝑒−𝑖𝑘(𝑏−𝑎)} 

                                                                   ≈ −
2

𝜋𝑘√𝑎𝑏
 . 𝑒𝑖𝑘(𝑏−𝑎) , 𝑠𝑖𝑛𝑐𝑒 𝑏 > 𝑎 . 

              Substituting in (12) and simplifying, we finally obtain the velocity for 

high frequencies as 

𝑣 = Ωr
1
2
(R−1)a

1
2
(3−R)e−nt𝑅𝑒[𝑒−𝑖𝑘(𝑟−𝑎)] 

                             = Ωr
1

2
(R−1)a

1

2
(3−R)e−ntcos𝑘(𝑟 − 𝑎)                                     (17) 

where  𝑘 = √
𝑛

𝜈
 . 
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             It is clear from the solution that the velocity is not affected by the 

magnetic field for high frequencies. 

Acknowledgement 

                 I acknowledge my deep gratitude to Prof. (Dr.) P. R. Sengupta, Ph.D., 

D. Sc., F. A. Sc .T., F.I.M.A.(U.K.),  F.N. A. Sc. for his help in preparing this 

paper. 

                                                      

 

References 

1)   Mahapatra, J. R . (1973) – Appl. Sci. Res., 27, 274. 

2)   Khamrui, S. R . (1960) – Bull. Cal. Math. Soc., 52, 45. 

3)  Watson, G. N. (1952) – Theory of Bessel functions. 

4)  Sommerfeld , A. (1949) – Partial Differential Equation in 

     Physics, New York. 

5)  Bagchi, K. C. (1966) – Appl. Sci. res., 16, 151.  

                                                           


