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Abstract 
 

In the present numerical study, laminar convection over a vertical plate with 

convective boundary condition is presented.  It is found that the similarity solution is possible 

if the convective heat transfer associated with the hot fluid on the left side of the plate is 

proportional to x1/2, and the thermal expansion coefficient β is proportional to x-1. The 

numerical solutions thus obtained are analyzed for a range of values of the embedded 

parameters and for representative Prandtl numbers of 0.72, 1, 3 and 7.1. The results of the 

present simulation are then compared with the reports published in literature and find a good 

agreement.  
 

Keywords: Convective Boundary Condition, Laminar Convection, Matlab, Numerical 

Simulation, Vertical Plate.  
 

NOMENCLATURE 

Bix parameter in Eq. (14), dimensionless  

c  constant in Eq. (15) 

cp specific heat capacity, J/Kg.K 

f   function defined in Eq. (6) 

g   gravitational acceleration, 9.81 m/s2 

Grx Grashof number based on x, dimensionless                                                                                                                                                                                                                                                                                                                                      

hf     heat transfer coefficient, W/m2.K  

k    thermal conductivity, W/m.K 

m constant in Eq. (15) 

Pr  Prandtl number, dimensionless 

Rex Reynolds Number, dimensionles 

T   temperature, K 

Tf   hot fluid temperature, K 

T    free streams temperature, K 

U free stream velocity, m/s 

u1, u2 initial values in Eq. (20) 
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u velocity component in x, m/s  

v  velocity component in y, m/s 

x  coordinate from the leading edge, m 

y  coordinate normal to plate, m 

z1, z2, z3, z4, z5 variables, Eq. (17) 
                                                                                                          

Greek Symbols 

α thermal diffusivity, m2/s 

    θ  function defined in Eq. (10), dimensionless 

   


  coefficient of thermal expansion, 1/K 

    μ   dynamic viscosity, N.s/m2 

      kinematic viscosity, m2/s 

   η   similarity variables, Eq. (7) 

   ψ stream function, m2/s 

   ρ  density, kg/m3 

   ρ∞  free stream density, kg/m3 
                        

I.     Introduction 

There have been a lot of studies on natural convection from a vertical plate with 

convective boundary condition due to its relevance to a variety of industrial 

applications and naturally occurring processes such as solar collectors, pipes, ducts, 

electronic packages, walls and windows etc. The earliest analytical investigation was a 

similarity analysis of the boundary layer equations Blasius, H [1]. The problem is also 

analyzed by several researchers from different perspectives [2-10]. 
 

In the present numerical investigation, a simple accurate numerical simulation of 

laminar free-convection flow and heat transfer over a vertical plate with constant heat 

flux is developed. The paper is organized as follows: Mathematical model of the 

problem, its solution procedure, development of code in Matlab, interpretation of the 

results, comparison with previous works. 
 

II.     MATHEMATICAL MODEL 

A steady, laminar, two-dimensional, no dissipation fluid flows over a vertical 

plate. On the  right side of the plate, a stream of cold fluid at temperature T∞ moving 

up with a uniform velocity U∞ whereas the left surface of the plate is heated by 

convection from a hot fluid at temperature Tf. We   assume the fluid to be Newtonian 

with constant properties, including density, with one exception: the density difference 

 −   is to be considered since it is this density difference between the inside and the 

outside of the boundary layer that gives rise to buoyancy force and sustains flow. (This 
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is known as the Boussinesq approximation.). The upward direction along the plate is x, 

and the direction normal to surface is y, as shown in figure 1. 

 
       

Fig. 1. Physical Model and its coordinate system 
 

The equations governing the flow are  
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The boundary conditions on the solution are: 

  At y = 0:  u = v = 0,   
− = −k

T

y
h T T xf f




[ ( , )]0

 

           

 For large y: u→U , T→T∞                   (4) 

 

The continuity equation (1) is automatically satisfied through introduction of the 

stream function:  

u
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A similarity solution is possible if  
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where 




= =y
U
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xRe

               (7) 

Then the velocity components can be written as  

u U f=  ( )                (8) 

v
U

x
f f=  −1

2


( )

              (9)  

Now, with the dimensionless temperature  

 =
−

−





T T

T Tf            (10) 

the partial differential Eqs. (2) and (3) are transformed to ordinary differential 

equations (with a prime denoting differentiation with respect to η)  

 

 +  + =f ff Grx
1

2
0

         (11) 

 +  = 
1

2
0Pr f

             (12) 

Eqs. (11) and (12) constitute a pair of simultaneous nonlinear ordinary differential 

equations for the velocity and temperature functions, f′’ and θ. They must be solved 

subject to the following boundary conditions: 
 

At y = 0: u = 0 i.e., at η = 0: f′ = 0 
 

At y = 0: v = 0 i.e., at η = 0: f = 0 
 

At y = 0: 
− = −k

T

y
h T T xf f




[ ( , )]0

  

i.e., at η = 0:  = − − ( ) [ ( )]0 1 0Bix  
 

For large y: u→ 0 i.e., for large η:  f′ = 1 
 

For large y: T→ T∞ i.e., for large η:  θ = 0           (13)  
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Pr, Grx and Bix are Prandtl number, Grashof number and local convective heat transfer 

parameter respectively. 

In order to get a similar solution of the momentum and energy equations, the 

parameters, Grx and Bix , defined in Eq. (14), must be constants and not functions of x. 

This condition can be met if the heat transfer coefficient hf is proportional to x−1/2 and 

the thermal expansion coefficient β is proportional to x−1. Accordingly 

h cx mxf = =
− −
1
2 1, 

           (15) 

where c and m are constants. Substituting Eq. (15) into Eq. (14), we get 
 

Bi
c

k U
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f
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( )
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          (16) 

With Bi and Gr defined by Eq. (16), the solutions of Eqs. (11) and (12) yield the 

similarity solutions. 
 

III.    SOLUTION PROCEDURE 

Eqs. (11) and (12) are coupled and must be solved simultaneously, which is 

always the case in convection problems. No analytic solution is known, so numerical 

integration is necessary. There are two unknown initial values at the wall. f ( )0  and 

( )0 . One must find the proper values of f ( )0  and ( )0 so that integration gives 

  =f ( ) 1  and ( ) = 0 . Pr, Gr and Bi are parameters. 
 

III.i.      Reduction of Equations to First-order System 

This is done easily by defining new variables: 

z f1 =  
z z f2 1=  = 

 
z z z f3 2 1=  = =   
z4 =   
z5 =                (17) 

Therefore from Eqs. (11) and (12), we get the following set of differential equations 

 = z f1  
 = = z z f2 1  

 =  = =  = −  − = − −z z z f ff Gr z z Grz3 2 1 1 3 4

1

2

1

2
  =z z4 5  

 = −  = −z f z z5 1 5

1

2

1

2
Pr Pr

           (18) 
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with the following boundary conditions: 

z f1 0 0 0( ) ( )= =  
z z f2 10 0 0 0( ) ( ) ( )=  =  =  
z z f2 1 1( ) ( ) ( ) =   =   =  
z4 0( ) ( ) =  =  
z z Bi Bi z5 4 40 0 0 1 0 1 0( ) ( ) ( ) [ ( )] [ ( )]=  =  = − − = − −            (19)   

Eq. (11) is third-order and is replaced by three first-order equations, whereas Eq. (12) 

is second-order and is replaced with two first-order equations. 
 

III.ii.    Conversion to Initial Value Problems 

To solve Eq. (18), let the two unknown initial values f ( )0  and ( )0 be u1 

and u2 respectively, the set of initial conditions is then: 
 

z f1 0 0 0( ) ( )= =  
z z f2 10 0 0 0( ) ( ) ( )=  =  =  
z z z f u3 2 1 10 0 0 0( ) ( ) ( ) ( )=  =  =  =  
z u4 20 0( ) ( )= =  
z z Bi Bi z Bi u5 4 4 20 0 0 1 0 1 0 1( ) ( ) ( ) [ ( )] [ ( )] [ ]=  =  = − − = − − = − −            (20) 

If Eqs. (18) are solved with adaptive Runge-Kutta method using the initial conditions 

in Eq. (20) for a particular value of Bi, the computed boundary values at  =   

depend on the choice of u1 and u2. Let this dependence be  
 

z z f f u2 1 1 1( ) ( ) ( ) ( ) =   =   =  
z f u4 2 2( ) ( ) ( ) =  =           (21) 

 

The correct choice of u1 and u2 yields the given boundary conditions at  =  ; that is, 

it satisfies the equations 

f u1 1 1( ) =  
f u2 2 0( ) =               (22) 

These are simultaneous nonlinear equations that can be solved by the Newton-

Raphson method. A value of 10 is fine for infinity, further integration will change 

nothing.  

III.iii.   Program Details 

This section describes a set of Matlab routines for the solution of Eqs. (18) 

along with the boundary conditions (20). They are listed in Table 1. 
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Table 1. A set of Matlab routines used sequentially to solve Eqs. (18). 
 

Matlab code Brief Description 

 

deqs.m Defines the differential Eqs. (18). 

incond.m Describes initial values for integration, u1 and u2 are guessed values, Eq. 

(20) 

runKut5.m Integrates the initial value problem (18) using adaptive Runge-Kutta 

method.  

residual.m Provides boundary residuals and approximate solutions. 

newtonraphson.m Provides correct values u1 and u2 using approximate solutions from  

residual.m  

runKut5.m Again integrates the initial value problem (18) using correct values of u1 

and u2.  
 

The output of the code runKut5.m gives the tabulated values of 

f f f, , , ,     as functions of η for various values of Pr, Gr, and Bi numbers.  

The set of discrete values of the parameters, Pr, Gr and Bi used in the codes are given 

in the Table 2. 
 

Table 2. Values of input parameters 

 

Input 

parameters 

Values 

Pr 0.72, 1, 3, 7.1 

Gr 0.1, 0.5, 1, 1.2 

Bi 0.05, 0.1, 0.2, 0.4, 0.5, 

0.6, 0.8, 1, 5, 10, 20 

 

IV.   INTERPRETATION OF COMPUTATIONAL RESULTS 

Physical quantities are related to the dimensionless functions f and θ through Eqs. (6) 

to (10). f and θ are now known.  
 

IV.i.    Comparison with previous numerical experiments 

The numerical results obtained from the abovementioned codes are validated by 

comparing with previously published results [7] for Pr = 0.72 and Gr = 0 in Table 3 

and are found in excellent agreement. 
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Table 3. Comparison with previous results [7] for Pr = 0.72 and Gr = 0. 

Bi ( )0
 

Aziz [7] 

−  ( )0
 

present 

 ( )0
 

Aziz [7] 

−  ( )0
 

Present 

0.05 0.1447 0.1447 0.0428 0.0428 

0.01 0.2528 0.2528 0.0747 0.0747 

0.2 0.4035 0.4035 0.1193 0.1193 

0.4 0.5750 0.5750 0.1700 0.1700 

0.6 0.6699 0.6699 0.1981 0.1981 

0.8 0.7302 0.7302 0.2159 0.2159 

1 0.7718 0.7718 0.2282 0.2282 

5 0.9441 0.9442 0.2791 0.2791 

10 0.9713 0.9713 0.2871 0.2871 

20 0.9854 0.9854 0.2913 0.2913 

 

IV.ii.   Some initial values for different parameters 

Some accurate initial values from this computation are listed in Table 4.  The values 

of the skin-friction coefficient and the local Nusselt number are represented by f ( )0 and 
−  ( )0  respectively. Table 4 indicates that the skin-friction and the heat transfer rate at the 

plate surface increases with the increase in local Grashof number and convective surface heat 

transfer parameter. On the other hand, an increase in the Prandtl number decreases the skin-

friction but increases the rate of heat transfer at the plate surface. 
 

Table 4. Some initial values for different parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pr Bi Gr f ( )0
 

( )0
 

−  ( )0
 

0.72 0.1 0.1 0.3688 0.2492 0.0751 

0.5 0.4970 0.2386 0.0761 

1.0 0.6320 0.2296 0.0770 

1.2 0.6810 0.2267 0.0773 

      

Pr Gr Bi f ( )0
 

( )0
 

−  ( )0
 

0.72 0.1 0.1 0.3688 0.2492 0.0751 

0.5 0.4207 0.6182 0.1909 

1.0 0.4404 0.7625 0.2375 

10.0 0.4679 0.9694 0.3056 

      

Bi Gr Pr f ( )0
 

( )0
 

−  ( )0
 

0.1 0.1 0.72 0.3688 0.2492 0.0751 

1 0.3632 0.2286 0.0771 

3 0.3494 0.1695 0.0830 

7.1 0.3427 0.1328 0.0867 



J.Mech.Cont.& Math. Sci., Vol.-12, No.-1, July (2017) Pages 7-18 

15 

 

IV.iii.   Effect of Bi on Dimensionless velocity (f’) 

Variations of dimensionless velocity f’ with η for various values of Bi are shown 

graphically in figure 2 for Pr = 0.72 and Gr = 0.1. 
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Bi = 0.1, 0.5, 1, 10

 
Fig. 2. Dimensionless velocity distributions for various values of Bi 

 

IV.iv.   Effect of Gr on Dimensionless velocity (f’) 

Variations of dimensionless velocity f’ with η for various values of Gr are 

shown graphically in figure 3 for Pr = 0.72 and Bi = 0.1. From figures 2 and 3, it is 

seen see that the effect of local Grashof number (Gr) on velocity profiles is more 

articulate than the effect of convection parameter (Bi). 
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Fig. 3. Dimensionless velocity distributions for various values of Gr. 
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IV.v.   Effect of Bi on Temperature profiles (θ) 

Variations of temperature distributions θ with η for various values of Bi are shown 

graphically in figure 4 for Pr = 0.72 and Gr = 0.1. 
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Fig. 4. Dimensionless temperature distributions for various values of Bi. 

 

IV.vi.   Effect of Gr on Temperature profiles (θ) 

Variations of temperature distributions θ with η for values of Gr are shown graphically 

in figure 5 for Pr = 0.72 and Bi = 0.1. 

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25




( 

)

Pr = 0.72, Bi = 0.1

Gr = 0.1, 0.5, 1, 1.2

 
 

Fig. 5. Dimensionless temperature distributions for various values of Gr. 
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IV.vii.   Effect of Pr on Temperature profiles (θ) 

Finally, variations of temperature distributions θ with η for values of Pr are shown 

graphically in figure 6 for Gr = 0.1 and Bi = 0.1. 
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Fig. 6. Dimensionless temperature distributions for various values of Pr. 

 

From figures 4 to 6, it is seen that thermal boundary layer thickness increases with an 

increase in Bi, but decreases with an increase in Gr and Pr. 

 

 

V.   Conclusions 

In the present numerical simulation, laminar convection over a vertical plate 

with convective boundary condition is presented. A similarity solution is possible if 

the convective heat transfer associated with the hot fluid on the left side of the plate is 

proportional to x1/2, and the thermal expansion coefficient β is proportional to x-1.  

Details of the solution procedure of the nonlinear coupled partial differential equations 

of flow are discussed. The computer codes are developed for this numerical analysis in 

Matlab environment. Numerical solutions are computed for a range of values of the 

embedded parameters and for representative Prandtl numbers of 0.72, 1, 3 and 

7.1using these codes. The computed results are in good agreement with reports 

published in literatures.  
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