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Abstract  

This theoretical investigation is made in order to get the new exact solitary wave 

solutions of nonlinear partial differential equations (PDEs).  The well-known Tan-Cot 

Function method is employed  to obtain the exact solutions of Joseph–Egri equation (TRLW), 

Sharma–Tasso–Olver equation (STO), mKdV (modified Korteweg-de Vries) equation with 

additional first order dispersion term,  and KdV (Korteweg-de Vries) equation with additional 

fifth order dispersion term,.  The results which have been found in this theoretical work could 

be applicable to understand the characteristics and elastic behavior of nonlinear structures 

including solitons as well as play an important role in wide range of physical applications.  
 

Keywords : Nonlinear PDEs, Exact solutions, Tan-Cot function method, Joseph–Egri 

equation, Sharma–Tasso–Olver equation, mKdV equation with additional first order 

dispersion term, KdV equation with additional fifth order dispersion term, soliton solutions. 

I.    Introduction 

Nonlinear partial differential equations (PDEs) play significant role in the 

study of a wide variety of scientific applications such as plasma physics, solid state 

physics and fluid dynamics [1,2,3]. Recently, it has become a more attractive topic to 

find out the exact solutions of nonlinear PDEs directly.  

Considering lots of applications of Joseph–Egri equation (TRLW), Sharma–Tasso–

Olver equation (STO), modified Korteweg-de Vries  (mKdV) equation with additional 

first order dispersion term, and Korteweg-de Vries  (KdV) equation with additional 

fifth order dispersion term in contemporary problems,  several authors have got 

inspiration and attained the exact soliton solutions of these equations. The term 
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soliton, from the observation that waves like particles retained their shapes and 

velocities after interactions, was first introduced by Zabusky and Kruskal [4]. In 1834 

John Scott Russel [3], a naval architect, published the first observation 

about a solitary wave and explored his experiences to the British Association. By 

seeking more exact solutions is a superior way to comprehend the nonlinear 

phenomena of the aforementioned equations. A plenty of methods have been proposed 

to investigate the exact solutions of nonlinear evolution equations such as tanh -sech 

method [2,5,6], extended tanh method [7,8,9], hyperbolic function method [10,11], 

Jacobi elliptic method [13], the first Integral method [14,15], sine-cosine method 

[16,17]  

and Tan-Cot method. A number of authors have been motivated from these researches 

and applied the Tan – Cot method to solve the Joseph – Egri equation (TRLW), 

Sharma – Tasso – Olver equation (STO), mKdV equation with additional first order 

dispersion term, KdV equation with additional fifth order dispersion term equation. 

II.   The Tan-Cot Function Method  

Consider the nonlinear PDE in the form [12] 

  0,.....),,,,( =xxxxxxt uuuuuP                                                           (2.1) 

This PDE can be converted to an ordinary differential equation (ODE) 

  0,.....),,,(
3

3

2

2

=
 d

fd

d

fd

d

df
fQ                                                   (2.2) 

Upon using the following transformation )(),( ftxu = , where dctx +−= , c  is the 

speed of the travelling wave and d  is a constant.  

Equation (2.2) is then integrated as long as all term contains derivatives where we 

neglect the integration constants.  The solutions of Eq. (2.2) can be expressed in the 

form: 

 )(tan)(  =f ,    





2
                                                                                   (2.3) 

or in the form    )(cot)(  =f ,       





2
                                                        (2.4) 

where  , and   are parameters that will be determined,  and c are the wave number 

and the wave speed, respectively. The derivatives of Eq. (2.3) are 

)](tan)([tan 11 


 +− +=
d

df                                                                     (2.5) 
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)](tan)1()(tan2)(tan)1[( 222

2

2




 +− +++−=
d

fd                                               (2.6)                         

)](tan)1)(2()(tan)233()(tan)233()(tan)1)(2[( 3121233

3

3




 ++−− +++++++−+−−=
d

fd         (2.7) 

)](tan)1)(2)(3()(tan)22)(1(4

)(tan)53(2)(tan)22)(1(4)(tan)1)(2)(3[(

422

22244

4

4










++

−−

++++++++

+++−−+−−−=
d

fd

        

(2.8) 

and so on. 

Authors found all solutions by considering only in the form )(tan   . For this reason, 

all derivatives are calculated intentionally only for this form. 

Using Eq. (2.3) and its derivatives in the reduced Eq.  (2.2) we can obtain a 

trigonometric equation in different powers of tangent functions. The parameters are 

then determined by collecting the coefficients of each pair of tangent functions with 

same exponents, where these coefficients have to vanish. Consequently, this gives a 

system of algebraic equations in the unknown parameters  , and   that will be 

determined.  The solutions proposed in Eq. (2.3) follow immediately. 

III.    Applications   

A.  Joseph – Egri (TRLW) Equation  

Consider the Joseph – Egri (TRLW) equation  

0=+++ xttxxt uauuuu                                                           (3.1.1) 

We introduce the transformation  

    )(),( ftxu = , where dctx +−= , c  is the speed of the travelling wave and d  is a 

constant.  

By using this transformation equation (3.1.1) transform to the ODE: 

  0)()1(
3

3
2 =++−




 d

fd
c

d

df
af

d

df
c                                          (3.1.2) 

Integrating (3.1.2) with respect to  once with zero constant to get 

( ) 0)(
2

)()1(
2

2
22 =++−




d

fd
cf

a
fc                                        (3.1.3) 

Seeking the solution in equation (2.6) 
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0)](tan)1(

)(tan2)(tan)1[(

)(tan
2

)(tan)1(

2

222

22

=++

+−

++−

+

−













c

a
c

                      

(3.1.4)                                                                                            

Equating the exponents 2 and 2− yield 

                              22 −=    i.e., 2−=  
Replacing  by -2 into equation (3.1.4) we get 

0)(tan8

)(tan6)(tan
2

)(tan)1(

222

422422

=+

++−

−

−−−





c

c
a

c               `       (3.1.5) 

Equation (3.1.5) is satisfied only if the following system of  

algebraic equations holds: 08)1( 22 =+−  cc                       (3.1.6) 

06
2

222 =+  c
a

                                                           (3.1.7) 

Solving Eqs. (3.1.6) and (3.1.7), we find 

         
2

1

2

1 −
=

c

c
  , 

a

c

2

)1(3 −
=                                    (3.1.8) 

Substituting Eq. (3.1.8) into Eq. (2.3), we obtain the exact solution of the TRLW 

equation in the form: 

       













+−

−


−
= − )(

2

1

2

1
tan

2

)1(3
),( 2 dctx

c

ca

c
txu  

i.e., 













+−

−


−
= )(

2

1

2

1
cot

2

)1(3
),( 2 dctx

c

ca

c
txu                         (3.1.9) 

Evolutional profile of ),( txu through the expression (3.1.9) is shown in the figure 1 

for 1010,2 −=== xdac  and 1010 − t .          
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Figure 1: Graphical representation of the travelling wave solution of ),( txu for 

1010,2 −=== xdac  and 1010 − t . 

Figure 2 presents the line diagram of ),( txu for 1010,2 −=== xdac  and 6,0=t . 
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Figure 2: Line diagram of ),( txu for 2=== dac  and 1010 − x . 

B.  Sharma–Tasso–Olver (STO) Equation  

Consider the (1+1) dimensional Sharma – Tasso – Olver (STO) equation 

 0333 22 =++++ xxxxxxxt uuuuuuu                                              (3.2.1) 

To solve the Eq.  (3.2.1) by the tan cot method we introduce the transformation 

 )(),( ftxu = , where dctx +−= , c  is the velocity of the travelling wave and d  is a 

constant.  

By using this transformation Eq.  (3.2.1) becomes 

( ) 0)(3)(33
3

3

2

2
2

2

=+++









+−







 d

fd

d

fd
f

d

df
f

d

df

d

df
c                    (3.2.2) 

Equation (3.2.2) can be re-written as 

   ( )  0)()(3
3

3
3 =++









+−






 d

fd
f

d

d

d

df
f

d

d

d

df
c                        

(3.2.3) 

Integrating Eq. (3.2.3) with respect to   and ignoring constant of integration, we 

obtain 

( ) 0)()(3)(
2

2
3 =+++−







d

fd
f

d

df
fcf                                         (3.2.4) 

Seeking the solutions in the Eqs. (2.5) and (2.6) 

 

0)(tan)1()(tan2

)(tan)1()(tan

)(tan3)(tan3)(tan

2222

2233

122122

=++

+−++

++−

+

−

+−











c

            (3.2.5)                                                                                                                                            

Equating the exponents 3 and 12 − yield 

         123 −=    i.e., 1−=  

Replacing  by -1 into Eq. (3.2.5) we get 
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0)(tan2)(tan2)(tan

)(tan3)(tan3)(tan

123233

12321

=+++

−−−

−−−

−−−



c

                  

(3.2.6) 

 

Equation (3.2.6) is satisfied only if the following system of algebraic equations holds: 

023 22 =+−− c                                                        (3.2.7)        

023 232 =++−                                                          (3.2.8) 

Solving Eqs. (3.2.7) and (3.2.8) we find the following sets of solutions: 

           ci= , ci=  or 
2

ci                                   (3.2.9) 

 and    ci−= , ci−=                                                     (3.2.10) 

 Substituting Eqs. (3.2.9) and (3.2.10) into Eq.  (2.3), we obtain the exact solution of 

the STO equation in the form 

            )(tanh),( 1 dctxcctxu +−= −                                    (3.2.11) 

  and   













+−= − )(

2
tanh),( 1 dctx

c
ctxu                                 (3.2.12) 

Solution graphs via expression from Eqs. (3.2.11) and (3.2.12) are shown in the figure 

3(a) and figure 3(b) respectively for 1010,1,1.0 −== xdc  and 1010 − t . 
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Figure 3: Graphical representation of the travelling wave solution of ),( txu for 

1010,1,1.0 −== xdc  and 1010 − t . 

Line diagrams of expression from Eqs. (3.2.11) and (3.2.12) are shown in the figure 

4(a) and figure 4(b) respectively for 1010,1,1.0 −== xdc  and 7,0=t . 
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Figure 4: Line diagrams of  ),( txu  via expression of Eqs. (3.2.11) and (3.2.12) for 

1,1.0 == dc  and 1010 − x . 

mKdV equation with additional first order dispersion term 

Consider the mKdV equation with additional first order dispersion term  

02 =++− xxxxxt buuuauu                                               (3.3.1) 

To solve the Eq. (3.3.1) by the tan cot method we introduce the transformation 

 )(),( ftxu = , where dctx +−= , c  is the velocity of the travelling wave and d  is a 

constant.  

By using this transformation Eq. (3.3.1) becomes 

 ( ) 0)(
3

3
2 =++−−




 d

df
b

d

fd

d

df
fa

d

df
c                                (3.3.2) 

Integrating Eq. (3.3.2) with respect to  and ignoring constant of integration, we 

obtain 

( ) 0)(
3

)()(
2

2
3 =++−




d

fd
f

a
fcb                                        (3.3.3) 

Seeking the solution in Eq. (2.6) 

0)(tan)1()(tan2

)(tan)1()(tan
3

)(tan)(

2222

2233

=+++

−++−

+

−







 a
cb

        (3.3.4) 

Equating the exponents 3 and 2− yield 

                          23 −=    i.e., 1−=  

Replacing  by -1 into Eq.  (3.3.4) we get 

0)(tan2

)(tan2)(tan
3

)(tan)(

12

32331

=+

++−

−

−−−




a

cb
                 (3.3.5)   
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Equation (3.3.5) is satisfied only if the following system  

of algebraic equations holds: 

02)( 2 =+− cb                                                                 (3.3.6) 

02
3

23 =+ 
a                                                                          (3.3.7) 

Solving Eq. (3.3.6) and Eq. (3.3.7) we obtain 

   
2

)( bc −
= ,

a

cb )(3 −
=                                (3.3.8) 

Substituting Eq. (3.3.8) into Eq. (2.3), we obtain the exact soliton solution of the Eq. 

(3.3.1) equation in the form 

 













+−

−


−
= − )(

2

)(
tanh

)(3
),( 1 dctx

cb

a

cb
itxu                   (3.3.9) 

Evolutional profile and line diagram of ),( txu through the expression of Eq. (3.3.9) are 

shown in the figure 5 (a) and figure 5(b) for 1010,1,1.0 −==== xdbac , 1010 − t  

and 1010,1,1.0 −==== xdbac , 4,2−=t respectively.   
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KdV equation with additional fifth order dispersion 

  We consider the fifth-order KdV equation of the form 

  0102030 2 =++++ xxxxxxxxxxxxt uuuuuuuu                               (3.4.1) 

where ),( txu is differentiable sufficiently.   

Equation (3.4.1) is a special case of the standard  

fifth-order KdV equation 

  02 =++++ xxxxxxxxxxxxt uuuuuuuu                                    (3.4.2) 

This special case Eq. (3.4.1) is known as the Lax case [1], which is characterized by 

 2= and 2

10

2
 = .  

Figure 5: Evolutional profile and line diagram of ),( txu through the expression of Eq. (3.3.9) 
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The Eq. (3.4.1) can be written as 

  0}){(5)(10)(10 23 =++++ xxxxxxxxxxxt uuuuuu ,                         (3.4.3) 

that can be converted to the ODE 

( )
4

42

2

2
3 5)(10)(10)(




d

fd

d

df

d

fd
ffcf +










+++−  ,                      (3.4.4) 

upon using the transformation  

)(),( ftxu = , where dctx +−= , c  is the velocity of the travelling wave, d  is a 

constant and integrating once.  

Seeking the solutions in Eqs. (2.5), (2.6) and (2.8)

                                                  

 

 

0)](tan)1)(2)(3(

)(tan)22)(1(4

)(tan)53(2)(tan)22)(1(4

)(tan)1)(2)(3[()(tan5

)(tan10)(tan5

)}(tan)1(10)(tan20

)(tan)1(10)(tan10)(tan

4
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4422222

222222222

22222222

222233

=++++

+++

++++−−+

−−−++
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+++

−++−

+

+

−

−+

−

+

−



























c

        

(3.4.5)          

                                                      

Equating the exponents 3 and 4− yield 

                43 −=    i.e., 2−=  

Replacing  by -2 into Eq.  (3.4.5) we get 

0)(tan120

)(tan80)(tan10

)(tan240)(tan120

)(tan136)(tan40)(tan

64

62263

44422

242222

=+

++

++

++−

−

−−

−−

−−−







c

                

(3.4.6)          

                                              

Setting the coefficients of each )(tan i to zero gives the system 

013640 422 =++− c  
       0240120 422 =+                                                    (3.4.7)           

       01208010 4223 =++   

Solving the system Eq.  (3.4.7) leads the following sets of solutions: 

         
14

c
=  , 4

56

c
i=                                                (3.4.8) 

 and   

14

c
−=  , 4

56

c
=                                                  (3.4.9) 
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Substituting Eq. (3.4.7) into Eq. (2.3), we obtain the exact solution of the Eq. (3.4.1) 

equation in the form 

       













+−−= − )(

56
tanh

14
),( 42 dctx

cc
txu                                (3.4.10)           

Solution graph via expression of Eq. (3.4.10) is shown in the figure 5.1 for 55,1 −= xc  

and 1010 − t .                                

Again, Substituting Eq.  (3.4.9)  into Eq. (2.3), we obtain the exact solution of the Eq.  

(3.4.1) in the form 

 













+−−= − )(

56
tan

14
),( 42 dctx

cc
txu                         (3.4.11) 

Evaluation profiles via expression of Eqs. (3.4.10) and (3.4.11) are shown in the figure 

6(a) and figure 6(b) respectively for 55,1 −== xdc  and 1010 − t . 
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Figure 6: Graphical representation of the travelling wave solution of ),( txu for 

55,1 −== xdc  and 1010 − t . 

Line diagrams of expression of Eqs. (3.4.10) and (3.4.11) are shown in the figure 7(a) 

and figure 7(b) respectively for 55,1 −== xdc  and 4,2−=t . 
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Figure 7: Line diagram of  ),( txu  via expression of Eqs. (3.4.10) and (3.4.11) for 

1== dc  and 55 − x .   
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IV.    Conclusions  

In our present attempt, the Tan-Cot Function method has been successfully 

implemented to find the exact solutions of different nonlinear PDEs including solitons, solitary 

waves and travelling waves. The investigation presented here has been an advanced 

nonlinear wave mode analysis and this investigation predicts unique findings on 

nonlinear wave solutions. 

As a consequence, it is stressed that this direct and effective algebraic method can be 

extended to solve the problems of nonlinear structures which arising in the theory of 

solitons and other nonlinear science areas. 
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