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Abstract 

It is proposed to introduce some simple criteria regarding the existence of 

unique solutions of a class of nonlinear functional equations in supermetric and metric 

spaces followed by suitable examples. The results obtained may be of much useful to 

many physical problems arising nonlinear equations. 
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1. Introduction 

Iterative processes for the solutions of equations of various types are of common use 

in diversified fields.  But the method gets little reflection when dealing with abstract 

spaces, e.g. supermetric space, metric space, Hilbert space etc. Approximate iterative 

solution of a class of functional equations and its uniqueness in supermetric space has 

been given by Sen (1971), Sen and Mukherjee (1983, 1988) and others. On the other 

hand, the process got no light when the supermetric space is replaced by a generalised 

space, viz. a metric space. 

With this end in view, we intend to introduce some simple criteria regarding the 

existence of solutions of a class of nonlinear functional equations by the method of 

approximate iterative process in supermetric and metric spaces followed by suitable 

examples. It is expected that the results will be fruitful to those dealing with physical 

problems in which nonlinear equations arise frequently. 

2. Some general concepts 

A space R is a set of elements f, g,  .  .  .  .  .   . In the applications, these elements 

may be real or complex numbers, vectors, matrices, functions of one or more variables 

ISSN (Print) : 0973-8975 ISSN (Online) : 2454-7190 

mailto:dcs_klyuniv@yahoo.com


J.Mech.Cont.& Math. Sci., Vol.-10, No.-1, October (2015) Pages 1435-1450 

1436 
 

etc.  Ordinarily the spaces that occur in the applications are linear and hence we shall 

consider linear spaces only. 

A linear space is characterized by the following properties: 

(1) An operation is defined, which we call addition and this follows the rules of 

ordinary addition; if f and g are elements of R, then f + g  and  a null element 

 s.t.  

(2) A multiplication is defined between the elements f and scalars c of a field F. This 

multiplication obeys the rule of ordinary vector algebra, i.e. if f 

 The field F is usually the field of rational, real or 

complex numbers. 

Now we consider transformations (operations, mapping) T which associate 

certain elements f of the original space R uniquely with elements h of a linear space , 

called the image space. It will frequently be the case that R = . In the case when  is 

a number space, T associates each f with a number and T is called a real functional. 

An operator T is called linear when T is defined  and when 

                             T( ) =  , 

holds for all elements  ,  and   , . In all other cases T is called a 

nonlinear operator. 

3. Solutions of equations 

Let the unknown quantity u be an element of a given linear space R. T and S are 

given linear or nonlinear operators. Three types of equations can be distinguished:  

(i) Tu = u,                         (1) 

(ii) Su = ,                           (2) 

(iii) Tu =                (3) 

where the image elements are in the same space R,  belongs to the image space, u 

 

         Equation (2) is the most general one since it contains (1) and usually (3) as 

special cases. Let I  be the identity operator which maps each element into itself. Then 

equation (1) is seen to be of the form (2) by putting S = T – I. 
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 The eigenvalue problem (3) consists in finding those values of 𝜆, the eigenvalue, 

for which there exist vectors u, different form  and which satisfy equation (3). Here T 

is frequently assumed to be linear. We assume further that it is possible to satisfy a 

normalisation condition 

   Gu = 1              (4) 

where G is a given functional with a value different form unity when operating on the 

null element, G   1.  

Example 1 : Consider the eigenvalue problem  

                          

For the functional G, we may  choose, for example, Gu = u(1) or Gu = . In 

order to show that (3) is indeed equivalent to (2), we consider pairs v, a or in vector 

notation  with v  R, a , these pairs being elements of a new space . A new 

transformation  for the elements   is defined by  

                (5) 

Let the null element be  =  of the space . Then  

                                                                                  (6) 

which is equivalent to (3) and has the form (2). 

 Conversely, we find: if under the transformation (2) the original and image 

elements lie in the same space R, equation (2) assumes the form (1) if we put S = T – I. 

If the original space R and the image space  are different, the existence of a linear 

one-to-one mapping L or R onto  is sufficient to transform (2) into (1) by means of T 

=  It is often of advantage for numerical purposes to choose L 

in such a manner that L – S is nearly constant in the neighbourhood of a solution. 

Equation (1) can be seen as a special case of (3). 

4. Supermetric Space 

A metric linear space R is supermetric (Collatz, 1966) when the distance  satisfies the 

relation 

, for any three elements          (7) 
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Example 2: The space R of all complex numbers z with the distance  

    

is supermetric. For, if , then  

        

                  =     

                   = . 

Example3 : In complex variable theory the chordal distance χ (f, g) of two complex 

numbers f, g is defined by  

   χ (f, g) =   , 

f and g may be infinite and it is always true that χ (f, g) < 1. 

 The chordal distance is an example of a space which is metric, but not 

supermetric, since for  the distances  

              = χ (1, 2) =     and   = χ (0, 1) =   

are different. 

 The following inequality holds in any supermetric space: 

   for                        (8) 

since the L.H.S. is equal to  

   

                                                           = . 

In the  supermetric space, the norm of an element is defined as  

    . 

This norm satisfies the relations 

      iff   f = 𝜃, 

     

    . 
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If the norm satisfies a homogeneity condition, the space becomes a normed space. 

Supermetric spaces which occur in the applications often are normed spaces. The 

concept of a supermetric space is used to demonstrate where in the applications the 

concept of distance suffices and where a norm with the homogeneity property is 

necessary. 

Condition number of a linear, bounded operator 

 Let T be a linear bounded operator and inverse (linear) operator   exists and 

is bounded also. Let T  and    be defined in normed space. Then 

    

is called the condition number of the operator T. 

Theorem 3.1: (Collatz, 1966)Let T satisfies the assumptions in the definition above and 

let v be an approximation to a solution u of the operator equation Tu = r with r . 

Using the condition number   and the defect d = Tv – r of the approximation v, we 

can find bounds for the ‘relative error’  : 

                    .                                    (9) 

Moreover, if bounds for  are known, the norm  of the error f = v – u can also 

be bounded from above and below. 

 From (8), there follows immediately. 

Theorem 3.2: (Collatz, 1966) The assumptions of the previous theorem imply: 

 The condition number  of the operator T is .For  we 

have 

    (for r ).                                          (10) 

Error estimated for an iteration process 

 Let T, , and  be linear, bounded ( and hence continuous) operators with a 

common domain D  and range in R; R itself is assumed to be linear and 

supermetric. Let T = . In the operator equation  

X = Tx + r, r                        (11) 
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Theorem 3.3: (Collatz, 1966) Under the assumptions about the operator T, we use for 

the operator equation (11) the following general iterative method: 

  + , ( n = 0, 1, 2, 3, . . . . . . . . . )                      (12) 

Starting with an element ; if there is a solution of (11) and if  , then 

the following error estimate holds: 

  . 

5. Solvability of nonlinear functional equations in supermatric space 

In solving the physical problems, the presence of more than one solution sometimes 

creates difficulty to find a true solution of the problem and thus there is lack of 

agreement of the solution with experimental results. Sen (1971) and Sen and Mukherjee 

(1983, 1988) devised some methods to overcome such difficulties. 

 In the following, we proceed to reduce the constraints occurred in the above 

works and improve the results to a great extent. 

 Consider a nonlinear complete supermetric space R and f be a number of R. Let 

A is a nonlinear mapping R into R. Our problem is to solve the nonlinear equation of 

the type 

                     u = Au + f,  f .                (13) 

We consider the iterate of the form 

                                (14)   

where .       

Theorem 4.1: Let the following conditions be fulfilled: 

L is the bounded linear operator mapping R into R such that 

(i) ,  

(ii) ,  and 0 <  for fixed m. 

(iii)f  belongs to the range of  I – A. 

Then the sequence of iterates   defined by (14) converges uniquely to the solution 

 

Proof. Let  be the solution of (13). Then  
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The space being supermetric, we have 

      =   

     =  

     =  ( ) 

      (by (i)) 

      

      

      0 as m  ( ). 

To prove the uniqueness, we suppose that  is another solution of (13). Then 

                     =   

     =  

       (by (i)) 

       

                                                         . . . . . . . . . . 

                  

      0 as m  ( ). 

Hence . 

Thus if f belongs to the range of I – A, the sequence of iterates  converges uniquely 

to the solution  of (13). 

Example: Let us consider Hammerstein equation 

  u(x) = 1 +  dt                                          (15) 

in C(0, 1). Using the theory of  monotonically decomposable operator, (Collatz , 1966) 

proved the existence of a unique solution u(x) of (15) provided 

    . 

Let R = . 

Here Au = . 

 



J.Mech.Cont.& Math. Sci., Vol.-10, No.-1, October (2015) Pages 1435-1450 

1442 
 

We choose Lu =   and 

   =  = . 

It is also supposed that the metric in R is induced by the metric in C(0, 1) and is 

complete in R  w. r. t. the induced metric so that 

Au – Av = dt 

              =  

 

where 0 < ξ < 1, 0 < . 

Now      

   

              = , 0 < , 0 <  

,                        

Neglecting the quantities of second and higher orders in ξ and η, we get 

    

Also  

so that  

and by Schwartz inequality, we have 

   . 

Hence by the use of the above theorem, the sequence defined by 

  , (n = 0, 1, 2, .  .  .  . )  

converges to the unique solution of the equation (15) in R.  

 

6. Solvability of nonlinear functional equations in metric space 

In this section, we propose to consider the solvability of a class of nonlinear functional 

equations of the type   Au = Pu           (16)  
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in a complete metric space R, where u , A and P are two nonlinear onto and into 

self-mapping of R. To do this, we construct the iterative sequence  such that   

A , (i = 0, 1, 2,  .  .  .  .  )           (17) 

 being prechosen. 

 also consider the existence and uniqueness of the solution of the equations of the 

form 

                                                                                          (18) 

m and n being positive integers. 

 To prove this, we use Kannan’s theorem (1968) for the existence of a fixed 

point of an operator as given below: 

Theorem 5.1(Kannan, 1968): T is a map of complete metric space X into itself and  

  ,                                 (19) 

where x, y  and 0 < ν < . Then T has a unique fixed point. 

Theorem 5.2: Let the following conditions are fulfilled for all u, v : 

(i)  , α > 1, 

(ii)  ,  

(iii) 0 < 3β < α. 

Then the sequence of iterates  defined by (17) converges to the unique solution of 

the equation 

   Au = Pu, u . 

The error estimate is given by   

  ,                                          (20) 

where ν = . 

Proof: The existence of , its boundedness and continuity follow from (i). Thus the 

sequence , where   

                =  , (n = 1, 2, 3, .  .  .  .  .  )      (21) 
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 being prechosen, is well defined. 

Now  

                        (by (i)) 

     or,      =     (by equation    (16)) 

      (by (ii))                                                         (22) 

  

    

      or,    

      i.e.     ,                   (23) 

since 0 < 3β < α, so 0 < ν <  . Thus by Theorem 5.1,  will have a unique fixed 

point  (say) 

To find the error estimate, we have  

( , )  =  (by (21)) 

   ν             (by (23)) 

                                                          = ν  

 = ν  

                                                          = ν      (by (21)) 

 = ν       (by (22)) 

                                      i.e ( , )  ν   

                                                          = ν  (by (21)) 

                                                          ν   

                                                        ....     ....    ....    .... 

  ν   

            ( , )  ν                                             (24) 
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Since 0 < ν <  , so 0 <  <  and hence ( , )  as i . Thus the sequence 

converges to the unique solution   and (24) gives the required error estimate. 

 

Theorem 5.3: Let the following conditions be fulfilled in a linear metric space R for 

all u, v  

(i)  , α > 1, 

(ii)  , 

(iii) A and P commute, 

(iv)  0 < 3  < α. 

Then the sequence  defined by 

          , (i = 0, 1, 2, . . . . . ),                                                           (25) 

where  being prechosen, n and m are positive and n  m converges to the unique 

solution  of the equation 

          .                                                          (26) 

The error estimate is given by 

      ( , )                                                        (27)   

Proof : The existence of , its boundedness and continuity follow from (i). Then 

the sequence  expressed by (25) gives  

    

so that we obtain similarly 

          =   i.e.    = .                                       (28) 

Since  exists and A commutes with P, so  and , therefore,  

commutes with P. Hence    

          =  =   

so that  

          =                                      (29) 
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Hence 

               =  for p  

Now proceeding along the same lines as in Theorem 5.2 it follows that  

has a unique fixed point  (say), i.e. . We now show that  is also 

the unique fixed point of . If possible suppose is another fixed point of 

 and  . Then 

 ( , ) =  

                     (by 

Theorem 5.1) 

                 =   

i.e. ( , )     

                           

                          ....     ....    ....    ....    .... 

                          

                        =  

                        =  

                           

  ....     ....    ....    ....    .... 

     

  ....     ....    ....    ....    .... 

                          , (i = 1, 2, . . . . . ) 

   as i , since 0 < . 

Hence . 

Since A is an onto mapping,  exists, is continuous and is also an onto 

mapping. Furthermore, it follow from (i) that  is a contraction mapping and 

hence has a unique fixed point in R. Also  and  commute and each 

of them has a unique fixed point, so  has a unique fixed point 

say). 
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( , ) =  

      

                          =  

                           

                         ....     ....    ....     .... 

                           

                         =   

                          

                          

                          ....    ....    ....    ....    .... 

   

                          

                       =  

                        as i  

This shows that  as i  and the error estimate is  

 ( , )  . 

  

Theorem 5.4 : Let R be a linear metric space and the following conditions be 

fulfilled for all u, v : 

(i) ,  

(ii)  , for all positive integers 𝜆, 

(iii)  is continuous at its fixed point, 

(iv)  commute, 

(v)  is compact 

(vi)  for all finite positive integers ν. 

Then the sequence  defined by  

              = , (i = 0, 1, 2, .  .  .  .)                                   (30) 
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  being prechosen and n and m (n < m) are positive integers will converge 

to the unique solution  of the equation  

             = .                                                                              (31) 

Proof: The sequence  expressed by                

             =  =  = .  .  .  .  = , (i = 1, 2, .  .  .  ) 

is well defined. Let us denote  by Q. Since R is a linear metric space, so 𝜃 

 

Now by condition (ii) 

  ( , ) = ( , ) 

which implies that  is bounded. 

 Since P is compact and  is bounded,  is sequentially compact and 

hence bounded. Thus  is again compact so that  is compact. In general 

 is compact with m positive integer. Also  and  being bounded, 

 is also bounded. Moreover,  is compact and  commutes with  

and so  is compact. Thus the sequence  defined by  = 

 = Q , (i = 1, 2, . . . . . .) contains a convergent subsequence , 

(say). 

          Let  as p  and since  for some integer k, so 

  as p  for finite k.  

Again, since  and  commute, so 

    

and  being continuous 

   . 

Hence  

    

and so  

         Thus  is a solution of u = u and, therefore, by virtue of the 

condition (vi),  is also a solution of  =  
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          Now Q being continuous at its fixed point, 

   . 

Hence the sequence  converges to , a solution of the equation (31). 

The uniqueness of the solution follows in the usual way. 

Example : Let u(x) ; 

Au =  + 2(x + 15)u(x) – 1.5,  D(A) = {u(x): 0.05 

}; 

P(u) = 7 {u(x): 0.06 

}. 

We propose to test the solvability of the integral equation Au = Pu. 

Solution : We have 

        Pu = 7  

                                    7  

               = 0.203  

and since  

so Pu  

Again, 

       Pu = 7  

     7  

               = 0.455  

and since  

so Pu  

Thus 0.102 . 

We introduce in D(A) the  norm (i.e. 

)) and D(A) is complete w.r.t. the above norm. 

Now D(A) is a subspace of  and so we introduce the scalar product  

(u, v) =  

and . 
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       On the choice of the metric , , D(A) becomes a 

complete metric space. 

Since A is continuous, so D(A) is closed. 

Now for all u  

(Au – Av, u – v) = 2 

 

                 +  

= 30 , 

0 < ξ < 1 

     (30 + 2 )  

= 30.1    

Thus we have   
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