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Abstract: 

The paper is devoted to a theoretical study for the distribution of axial velocity for blood 

flow in a branch capillary emerging out of a parent artery at various locations of the branch. 

The results are computed for various values of r and the angle made by the parent artery and 

the branch capillary. Also due attention is given to the variation of n (fluid index). The output 

is compared with the results in the previous similar investigations. A theoretical estimate for 

the velocity of blood for various non negative values of the fluid index parameter and yield 

stress in different locations of the branch capillary is presented. 
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¢hj§aÑ p¡l (Bengali version of the Abstract) 

j§m djZ£ ­b­L Eá¨a ¢h¢iæ ÙÛ¡¢eL n¡M¡u n¡M¡ ­L±¢nL e¡m£­a lš² fËh¡­ql SeÉ Ar£u 

N¢a­hN h¾V­el ašÄNa Ae¤på¡­e HC fœ¢V HL¡¿¹ i¡­h ¢e­u¡¢Saz j§m djZ£ Hhw n¡M¡ 

­L±¢nL e¡m£ à¡l¡ L«a ¢h¢iæ ­L¡Z r-Hl j¡­el SeÉ NZe¡ Ll¡ q­u­Rz n- fËh¡q£ fc¡bÑ p§Q­Ll 

f¢lhaÑen£ma¡u J kb¡kb NZe¡ Ll¡ q­u­Rz f§hÑae pcªn Ae¤på¡­e ¢e¢ZÑa g­ml p­‰ fË¡ç 

g­ml a¥me¡ Ll¡ q­u­Rz fËh¡q£ fc¡­bÑl p§QL fËQm (Parameter) Hhw pqe-f£s­el (Yield 

Stress) AGZ¡aÈL j¡­el SeÉ n¡M¡ ­L±¢nL e¡m£l ¢h¢iæ ÙÛ¡¢eL ­r­œ l­š²l N¢a­h­Nl ašÄNa 

pñ¡hÉ j¡e­L f¢l­hne Ll¡ q­u­Rz 

1. Introduction : 

A systematic study of the rheologic and fluid dynamic properties of blood 

and blood flow could play a significant role in the basic understanding, 

diagnosis and treatment of many cardio-vascular, cerebra-vascular and 
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arterial diseases. Therefore, the rheological complexities involved in the 

blood flow in the cardiovascular system have attracted serious attention from 

many researchers. Physiologically blood is an aquous liquid (plasma) having 

some suspended particles like white blood cells, erythrocytes, platelets and 

others. Rheologically blood behaves like a homogeneous Newtonian fluid in 

large blood vessels while it behaves non-Newtonian in narrow blood vessels 

e.g. capillaries. The flow behavior is further complicated due to the fact that 

at low shear rate certain chemical reactions occur that may cause significant 

changes in the flow behavior of blood. Since harmful experiments cannot be 

carried out on living human beings, model studies related to blood flow 

through human artery with a branch capillary have been carried out by many 

theoretical researchers. The complications in describing the flow of blood in 

the arterial system leads to develop a constitutive mathematical model that 

can explain its non-Newtonian behavior. Misra and Chakravarty[1] 

developed a mathematical model to study unsteady flow of blood through 

arteries treating blood as a Newtonian viscous incompressible fluid paying 

due attention to the orthotropic material behavior of the wall tissues. In an 

another theoretical study Misra et al ( [4],[5],[6],[7] ) presented a 

mathematical analysis in which the blood was treated as a non-Newtonian 

fluid and the artery as non linearly viscoelastic. A good number of analytical 

as well as experimental studies on the flow of blood through the arterial 

segments having stenosis or multiple stenoses were carried out by 

Young,Shukla et al,Chaturani[3] and Sami. They assumed that blood 

behaves like a Newtonian fluid. On the basis of the experimental 

observations, Han,Barnett and Whitemore[10] suggested that blood behaves 

like a non Newtonian fluid under certain conditions. At a low shear rate( 
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about 0.1/sec) blood behaves like a Casson model fluid. Misra and Kar [8] 

developed a mathematical analysis of branching when blood enters from a 

feeding artery into a right-angled branch capillary. On the basis of the above 

assumptions the present analysis deals with the distribution of the axial 

velocity (u) at various locations of the branch capillary for different non-

negative values of n (fluid index) and θ (yield stress). In the present 

investigation, the following relevant assumptions are made: 

i) A two layered structure of blood flow through narrow artery is studied. The two 

layers are (a) the peripheral layer and (b) the core layer 

ii) The length of the main (feeding) artery is quite large in comparison to its 

diameter  

iii) The blood is treated as a Herschel-Bulkley fluid 

iv) The branch capillary makes an arbitrary angle α with the feeding artery 

v) R* and R1
* (<R*) respectively denote the radii of the feeding artery and the 

branch capillary 

                                     

Fig1. Schematic diagram of an arterial segment with branch capillary 
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In case of steady flow, the multiphase flow of blood through a narrow artery 

is studied for the microcirculatory system. The angle made by the arteriole 

emerging from the feeding artery (α) is taken arbitrary. The model presented 

here is relevant to blood flow in micro vessels having diameter less than 200 

μm and a shear rate below 10sec-1 

2. Formulation of the problem and the method of solution : 

In terms of cylindrical polar coordinates(r, φ, z) with z-axis along the vessel 

axis, the governing equation of motion (for a low Reynolds number) may be 

taken as 

* * * *

* * * *

1 ( )u p r

t z r r

   

  

= − −           (2.1) 

In conformity to the rheological properties of blood, the blood is considered 

non-Newtonian and of Herschel-Bulkey type. The constitutive equation for 

Herschel-Bulkley fluid may be taken as 

*
* *

*

1
( ) ,n

y y

u

r


   

 
− = −            (2.2) 

*
*
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u

r


 


− =               (2.3) 

The multiphase flow of blood may be taken to be governed by the following 

system of equations: 

*
* * * *
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* * *

,y pr R =               (2.6) 

where  *

1 (1 )
n

k kr = + −  

Let a be a characteristics radius, p(t) is a non- dimensional pressure gradient 

along the axis of the tube which is taken to be a periodic function of t. 

We non-dimensionlise the variables as  

* * *
*
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= = = = , 
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P

R R
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= =  

*
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p
p p t

z




= −              (2.7) 

Using non-dimensional variables the equation(2.1) takes the form 

2* 1 ( )
2 ( ) ,0

u r
p t r R

t r r

  


 
= −            (2.8) 

where 
2

2
*

p

a w





==   is the Womersley parameter. 

Equations (2.4)- (2.6) become 

0,nu
R r R

r





− =               (2.9) 
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where 
0

2 y

p a


 =  

3.  Boundary Conditions : 

Mathematically the boundary conditions for the present problem are 

      u = 0   at   r = R             (3.1) 

τ is finite at r = 0             (3.2) 

4.  Method of Solution for Steady Flow : 

For steady flow of blood, equation (2.8) can be written as  

1 ( )
2 ,0s

r
p r R

r r

 


=              (4.1) 

ps being the steady pressure gradient. 

Integrating Eq.(4.1) and using boundary condition (3.2), we get  

sp r =                (4.2) 

Integrating Eqs. (2.9) –(2.11) and using boundary condition (3.1) and 

Eq(4.2) we get 

1 1

0( ),
1

n
n nsp

u R r R r R
n

+ += −  
+

         (4.3) 
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By neglecting powers of θ higher than the second, 
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5.  Numerical Results and Discussion : 

For the purpose of the computational work, the following values of the 

material constants, and  the rheological other parameters have been taken: 

a = 0.0075 cm      R = 1.0      m = 0.05      k = 0.2     Rp = 0.1     R0 = 0.9       

R1 = 0.15 

ps = 1.0       A1 = 0.1         ( cf    Misra, Adhikery  and Shit [2] ) 

The experimental work of Merrill [11] led to report that the yield stress θ lies 

within the range 0.0 to 0.3. The distribution of axial velocity is presented in 
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the figures 2 – 4 along with our predictions on the basis of the present 

analysis. Fig 2 exhibits the distribution of axial velocity with varying fluid 

index parameter n from 0.75 to 2 and taking θ = 0.0. Our results presented in 

fig.2 shows that the axial velocity decreases with the increase in value of n. 

Within the whole range of  the values of n , the axial velocity is zero for r = 1 

and increases steadily as r is diminished. In fig.3, n is taken as 0.75 and θ is 

varied from θ = 0 to θ = 0.2. The axial velocity is found to decrease with the 

increase in the value of θ. In fig.4, the Newtonian model is considered taking 

θ = 0 and n = 1. The axial velocity becomes zero at r = 1 and increases 

consistently as we decrease the value of  r  from r = 0  to   r = 1. 
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Fig.2 Distribution of axial velocity( u) for different values of n at θ = 0.0 
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Fig.3 Distribution of axial velocity(u) for different values of  θ at n = 0.75 
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Fig.4 Comparison of axial velocity for Newtonian model(n = 1, θ= 0) with Misra and Ghosh in the 

steady case 

The above results show close conformity to the corresponding results 

obtained by Misra et. al.[9] 

6.  Conclusion : 

It follows from the above discussion that the fluid index parameter and the 

yield stress play an important role in the study of steady flow of blood in the 

arteries with branching. Also the consideration of the arbitrary α, the angle 

between the feeding artery and the branch artery gives the generalized form 

of the axial velocity. 
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