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Abstract

The aim of the present paper is {o investigate the propagation of waves in a magneto-
visco-elastic initially stressed electrically conducting plate of finite thickness involving time
rate of strain and stress of higher order. The initial stress Is assumed to be of the nature of
hydrostatic tension or compression. The normal mode analysis is used to obtain the wave
velocity equations for the waves propagated in the plate bounded by stress free plane
boundaries. The wave velocity equations in different cases, obtained in this paper may be
considered as more general in the sense that the results presented by other authors may be
- obtained as special cases in the absence of additional fields. Numerical computations are
carried out and the effects of higher order viscoelasticity, magretic field and initial stress on
the phase velocity ratio are exhibited graphically,
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1. Introduction.

In the last few decades the interaction between strain and electromagnetic
fields has been receiving greater attention from many investigators [1-7] owing
to its applications to geophysical problems, certain topics in optics and acoustics
and various branches of engineering sciences. Moreover, the earth is placed in its
own magnetic field and the material medium of the Earth may be viscous in
nature in some places. Again the earth is also an initially stressed layered
structure where initial stresses exist due to variation of temperature, weight of
the matter on it, overburden layer, slow process of creep, gravitation and
largeness etc. It is generally supposed for simplicity that this initial equilibrium

state of stress is approximately of hydrostatic nature.

The seismic signals propagating through the earth medium have to travel
through such initially stressed magneto viscoelastic plates and hence it is
doubtless to say that the properties of these layered materials do affect the
propagation of the seismic waves. The subject of propagation of elastic waves
through the plates is very important and researchers have investigated several
problems [8-14] by assuming different models. Dilatational and rotational waves
in a magneto elastic initially stressed conducting medium have been thoroughly
studied by Yu and Tang [15]. Magneto-Elastic waves and the disturbances in
initially stressed conducting media have been investigated by De and Sengupta
[16]. Effect of viscosity of the material on the propagation of waves has been
studied by Roy Choudhuri and Banerjee [17], Addy and Chakraborty [18], Song
et al [19], Sharma and Othman [20], Yin-feng and Zhong-min [21], Rakshit and
Mukhopadhyay [22]. However in all the previous papers so far published it is
seen that the combined effect of magnetic field, initial stress and viscous nature
of the material medium in the form of a plate involving strain rate and stress rate
have not been considered in details. Keeping in view of such type of geophysical

situation the authors investigate the combined effect of magnetic field, initial
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stress in the nature of hydrostatic tension or compression and the viscous nature
of the material medium on the propagation of waves in an infinitely extended
thick plate. bounded by horizontal planes. Following Voigt [23] higher order
viscoelastic model with stress rate and strain rate has been used in this problem.
Starting from the field equations presented by Yu and Tang we have obtained
the wave velocity equations to determine the phase velocity of waves propagated
in the general higher order viscoelastic initially stressed plate in presence of a
constant magnetic field parallel to x;-axis. Two interesting special cases have
been deduced. Numerical calculation and graphical representation have been
made to highlight the effect of magnetic field, .initial stress and order of

viscoelasticity on the propagation of waves through a plate.
The governing equations

For electrically conducting charge free elastic solid under an initial stress
permeated by an electromagnetic field, the equation of motion when the body is

subjected to small perturbation, may be expressed as [15]

a d’u 0’u, (aﬁ,. _0H, ]+ 07

L= L+ uH
o~ Poavaxr, HU\ oy T | ox,

(1)
];ri = HO[QIL‘L_%)

ox, dx

where?, are the components of incremental stress tensor, u; are the components

of displacement vector # with respect to the coordinates x;, x5, x3 and time #, p is
the mass density, u,is magnetic permeability, p,(<0) is the tension and p,(>0)
denotes the compression. H,is the intensity of the initial constant magnetic field

parallel to the x;- axis and i, j=1, 2, 3.
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Let us consider a homogeneous, isotropic general higher order viscoelastic
infinitely extended thick flat plate of finite thickness 2H occupying the region Q
given by

Qz{(xl,xz,x3)j —oe <X <oo,—0 < X, <oo,—H L x, SH}

with the middle plane surface of the plate coinciding with the plane x,=0. The
plate which is under an initial hydrostatic state of stress i¢ permeated by a
constant magnretic field parallel to the x,-axis. The material of the plate will not
continue to remain homogeneous and isotropic wiien ir it subjes? to lnitial stress
and magnetic field. Here, in the present investigation, we ignore such variations.
Introduce a set of orthogonal Cartesian coordisizie & : ¢ 0X(x..7 ., the otigin D
beng any point on the middle plane and xs-axis being a line drawn vertically
downwards. We consider only a two dimensional problem We also assume that
all causes producing the wave propagation are independent of variable x,and
waves are propagated only in the x,x, -plane. Thus all functions appearin g in the

field equations are independent of variable x,and the displacement vector has

components (u,(x), x;,2), 0, u;(x,, x5,1)) (plane strain problem).

From the nature of the problem the non-zero displacement components u, and u;

at any point may be expressed as

7] :%_Qﬂ —_a?ﬁ.{.a_ll{_ (2)

U, =
2 3
'dx, ox, dx, ox,

where ¢ and y are displacement potentials which are functions of the co-

ordinates X, X3 and t and
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g dw o OO ow

VZ =A,V =2 , =t
? v ox, ox, . oxf ¥ ox? ox, ax3

3)

For a homogeneous isotropic higher order visco-elastic solid plate including both

strain rate and stress rate, the stress-strain relations may be presented as [23, 24]
D, =D,A8,+2D e, 4)

where
r; ak n k
D,= , =Y —, D = b
anak /1 é .’catk H ;u& atk

in which n,,A,and y,are the elastic parameters and 1,,4, and g, (k=1.2,...... n)
are parameters associated with k-th order viscoelasticity, €; = %(u iy J,),é‘ and

A are the strain tensor, Kronecker delta and dilatation respectively.

Using (4) in (1) one obtains the displacement equations of motion in the
generalized visco-elastic medium involving stress rate and strain rate under the
hydrostatic tension or compression in presence of a constant initial magnetic
field as
2
oD, I - =(D,+D, )a—A+D Vi, —D,p,Vu,

" ox,
(3)

82u3 dA 4 5 2 82u3 o,
D, +D,)—+D\V D Vi, +p HyD,
POy o’ ( )ax3 Y 15 dx!  OxOx,

The equations of motion (5) in view of (2) and (3) yield the following wave

equations
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d’p Py |2 2 Oy

Al Py

a7 (DT p) P+ o,

R PR
P

or? 4 ox?

(6)

in which

D,+2D, D f 1
D, = A" £ Dy=-—t 5 gy = M:Alfvenvclocity.
eD, pD, P

: _' Boundary conditions.

Since the plane x, =+H are assumed to be free of stresses, the boundary

conditions of the problem are
T,=7;=0 at x,=%H, @)

where 7, and 7,, are given by

T

oxdx; dx, ox}

8
o aij] (8)

ox,dx, ox’

Tyy=pD, V9 + ZPDS[

' Normal mode analysis.

Normal mode analysis is, in fact, to look for the solution in the Fourier
“transform domain. We assume that all the relations are sufficiently smooth on

the real line such that normal mode analysis of these functions exists.

The solution of the considered physical variables involved in equation (6) can be

decomposed in tenﬁs of normal modes as follows [22, 25, 26]
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(@.u)={0" (%, )" (x, ) }exp (et +inx,) 9)

where o is the (complex) time constant, i =+/-1 and 7 is the wave number in

the x;-direction and.¢"(x,) and y*(x, )are the amplitude of the functions.

Insertion of (9) in (6) gives
+ R .dL =0
D - P dx, .

2 2
where R, = c, &y =c—,. Co = ’&9-, P=—p°;=initial stress parameter,
Co ) P Py

(10)

c= % =phase velocity and

D: D"
2 Pl 14—t 14—l | D} ==L D! = 11
_Yln(DP}Y n(DP}lco "o (11)
in which
D: +2D’ D
D; = “T"'D-J‘-D pD,,DA-ZAa) , D -iukw D, En,,w

.
The general solutions of equations (10) may be taken as

¢" = Asinh ({,x, )+ Bcosh (§,x, ) + Csinh (§,x;) + Deosh({,x,)

12
w* = C,sinh({,x; )+ D, cosh ({,x,) (12)
Plugging (12) in (10) one obtains the following
C=aD , D=aC (13)
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where
—inR, gz
o, =— (14)
: D1 _ngz—}/lz
and
G2 =i, Gr=n?| 14— (15)
3 1° 2 D; _P

inwhich V, =¢, +R,, .
Employing the boundary conditions (7) we obtain

Aép - Bx,p, + ngzpz -Dx,p, =0
Axq, - Bélql +Cxq, - Dl€2q2 =0

. (16)
Anp ~Blp +Cn,p,-DlLp, =0
Alg - Bng +Cl,g,—Dn,g, =0
where
§=0, §= (gzz +n")-2i?70¢1C2 X =28, X%, =n, =l =0, an

By = D;h(glz —?72)+ 2D, L, = _[D; (g:a2 —772)051 +2D5n (nal +ig, )]
and

pj=sinh(§jH),' qj=cosh(CjH), =12 R A b )

Elimination of indispensable constants A, B, C, and D, from (16) gives

A=0 (19)
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where
tanh ¢, A tanh §,H
= X £ 2 X2 (:2
tanh §,H tanh§ H
" " tanh § H L tanh.é' H % L
tanh{,H tanh{,H
Xy ¢ X &
A n, I n,

On simplification equation (19) leads to the transcendental equation

tanh{\H | tanhOH _ xly +m& (20)
tanh{,H tanh{ H xmlE,

Equation (20) represents the wave velocity equation for waves propagated in a
higher order magneto viscoelastic plate (including both stress rate and strain

_ rate) under the initial state of hydrostatic stress. This equation contains ¢ (= w/n)
and n as only unknown quantities and hence ¢ can be expressed as a function of
n indicating the dispersive nature of wave considered. The above frequency

equation A=0 can be expressed as A,.A, =0

where

xtanh{H n
Etanh O H L

| =

and

ntanh{H x
Ltanh{,H &,

9 7=
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Hence (19) implies either

xtanh{H n,
=0 21
Etanh(,H L, €l :
or
ntanh{ H x - 22)
Ltanh{,H &, ‘

Special cases:

(i) For symmetric displacément, the solutions of equations (10) may be taken as

¢, = {B cosh (,x; )+ Dcosh (), x, )}exp [(cot +inx, ):|

W, = {Cl sinh (C 5 )}exp I:(a)t +inx, )] (23)

It is verified from (2) that the displacement components », and u, are symmetric

with respect to the plane x, =0.

Proceeding similarly as in the general case one obtains the wave velocity

equation for symmetric vibration in the following form

xtanh{H 1,
Etanh{,H |,

1

=0 (24)

(ii) For antisymmetric displacement, we now consider another set of interesting

solutions of (10) given by

¢, = {Asinh (€1x;)+ Csinh (£ ,x, )}exp[(a}t +inx, )]

25
w, ={D, cosh ({,x, )}exp[(a)t +inx, )] )
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In this case also it is verified that the displacement components », and u, are

antisymmetric with respect to the plane x, =0.
Proceeding similarly one obtains the following frequency equaﬁon

ntanh{ H x
Ltanh{,H &,

-0 (26)

In view of the above analysis, it is interesting to note that the wave velocity
equation for waves propagated in a higher order viscoelastic plate under the
influence of initial stress and magnetic field can be decomposed to two special
cases one of which corresponds to symmetric displacements and the other

corresponds to antisymmetric di3placements-._

We now discuss each of the above cases separately as foHéws:
Case A (A, =0):

In this case we have

tanh{ H &on
tanh{,H x|,

27)

(i) If the length of the wave is large in comparison with the thickness 2H of the
plate the hyperbolic tangents can be replaced by their arguments and the

equation (27) becomes

The equation (28) determines the wave velocity of plane waves in a magneto
viscoelastic initially stressed plate and may be considered as more generalized

form of the result obtained by Rayleigh [27] and Lamb [28] for an elastic layer.
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(ii) If the length of the wave is very small in comparison with the thickness 2H
of the plate we may assume that the ratios of the hyperbolic tangents in equatlon

(27) approaches.to unity and hence we have
xh=&m =0 (29)

Equation (29) determines the velocity of Rayleigh surface waves in a higher

order viscoelastic initially stressed plate in presence of magnetic field.

In the absence of initial stress the equation (29) reduces to

Vv :
2R [1+-4
21+ 1&1{2{1 Rﬂl L&*VH i) PR/ § | IE T
\ oV B|°| DOn) Oon, o |0 Op

*

where D, .—D—,,-, D, =K”T——8"L.
DS D2 Dl

It is noted that the result deduced from equation (30) for first order
viscoelasticity (n=1) is in agreement with the corresponding result obtained by
Das et al [9].

When the viscous effect and stress rate and strain rate are neglected the equation

(30) transfoﬁns to
L —&En =0 (31)
in which
x, =2ing, = —[D“ (¢3-n*)ey +2D5n (ney + i;’z)]

=[ D1 (§7-m)+2Din* |, & = (82 +n°) - 2nex,
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with

v,
2 _n2| g €y | Zon?| 14—t |,
b =1 ( o-p) T D;-P

1
Dlzlo 20’D2= 30 O S ——1 222
Pcy Py By ~P gz Y

This equation represents magneto elastic Rayleigh wave velocity equation under the
initial state of hydrostatic stress and is in agreement with the result obtained by

Acharya and Sengupta [8].

In the absence of initial stress and magnetic field equation (29) reduces to

2+-1—)-9§,-—"-'- 2+ -4 1+§—”,— 1+E—“i= (32)
D1 Dt Dz )

811'
D2
in which D] and D; are given by (11).

Case B(A, =0):

Equation (26) transforms to

tanh{\H _ xl,

tanh{,H &n, 33)

(1) If the length of the wave is very large in comparison with the thickness of the
plate, the hyperbolic tangents can be replaced by the first two terms of their

expansion into series and hence the equation (33) becomes
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Equation (34) may be regarded as the generalized form of classical result

obtained by Rayleigh and Lamb for elastic plate

(ii) If the lenggh of the wave is very small in comparison with the thickness 2H
of the plate the ratio of the hyperbolic tangents in equation (33) approaches to
unity and hence reduces to (29) which determine the velocity of Rayleigh
surface wave in a higher order viscoelastic initially stressed plate in presence of

magnetic field.
Numerical Results.
For numerical calculations following assumptions are made:

(a) We consider the viscosity of the medium upto third order only ie.

n=12and3.

(b)Since @ is complex in general we write w=a,+iw. Therefore
e™ =™ (coswy +isinwt) and hence, for small values of time, we can take

- w=a,(real).
(c) The medium is made of Poisson’s solid so that we assume A, = y,.

(d) Following Eringen [29] and Acharya and Mandal [30] the concept of
Poisson’s material is extended to include A, = u, ,A, = u, ,4; = 145

In view of the above assumptions the frequency equation (24) transforms to

255




ISSN 0973-8975
J.Mech.Cont.& Math. Sci., Vol.-3, No.-1, June (2008) Pages 242-263

[ = vV,
5 2R, 1+-2
[24-?3;[,i 2l+Y:%_ v sT '
[ H_CH
tannH, [1+-2 . L(—“—]
N1y - T_L (35)
V [
tannH, 1+-2 '
T 2,’1+§£,/1+~‘—"!- 21-— R 3R,Vy
Ly T L .Vi_.ffi 1T Yi_ﬁl_
. \T L T L
where L=D;-P,T=D,-P.
; ' - |
"The numerical constants of the problem are taken as w, =1, nH =1,—; = "
L
1 = 1
2=, _i—:__.._, ﬂu=7h=712=?73=1-

Using the numerical techniques outlined above the normalized wave velocity

(c*/c?) is found out for different values of c}/c; (square of the normalized
Alfven wave velocity) and for different viscoelastic order (rn=12,3).
Computations are carried out with the help of commercially available software
MathCAD-12. The frequency equation (35) gives infinite numbers of values of
wave velocity ¢?/c? for a particular value of c/c]. Each of the figs 1-3 gives
the variation of ¢’/c; against c} /cé, in the range 0.4<c’/c?<1.8, for different
viscoelastic order (n=1,2,3) and initial stréss parameter( P=-02, P=0,
P=02), always selecting minimum values of ¢*/cZ. The ranges of ¢}/c; for
minimum values of ¢?/c¢? are different for different viscoelastic order

irrespective of the presence or absence of the initial stress. The curves of these
figures are drawn for comparison. Contour plots (figs 4-6), indicated by

continuous lines with discreet zeros (~0-0-)are depicted to highlight a few

values of ¢?/c? for a particular value of c}/c; for which the equation (35) is
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satisfied. Though the figures are self explanatory yet we point out some of the
peculiarities .of the figs 1-3. For any viscoelastic order ¢?/c? diminishes
continuously 2s c2/cl increases. It is observed from fig 1 and fig 2 that
¢?/c? diminishes with the increase of viscoelastic order. However exceptions are

found out in fig 3 which corresponds to thé compressive initial stress, P =0.2.
Here no such conclusion could be made. In this case curves for n=1and n=3

intersect which indicates that there exists a particular value of c2/c2 for which

same value of wave velocity is obtained for n=1 and n=3,

25
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indicate zero (0) value are possible solution
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lines indicate zero
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lines indicate zero (0) value are possible solution

Conclusions.

~ From the analysis presented in this paper following concluding remarks are :
(i) Due to the complicated nature of the governing equations for generalized
magneto viscoelaétic problem with initial stress a few attémpts have been made
to solve the problem in this ficld. The present attempt utilized an approximate
method and contour plot that is valid only for a specified range of some

parameters.

(ii) Normal mode analysis introduced in this paper also shows the dispersive

nature of the wave as that of classical case.

(iii) Magnetic field, initial stress and the viscoelastic character of the medium
modulate the velocity of the waves propagated in a plate to a considerable

extent. Further modulation of wave velocity occurs due to their combined effect.
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